8 北京四中2010-2011学年度第一学期期中测试高一年级数学(有答案)
- 格式:doc
- 大小:791.00 KB
- 文档页数:7
高一数学 期中测试卷试卷分为两卷,卷(I )100分,卷(II )50分,共计150分考试时间:120分钟卷(I )一.选择题:(本大题共10小题,每小题5分,共50分) 1.设集合{1,2,6}A =,{2,4}B =,则A B =A .{2}B .{1,2,4}C . {1,2,4,6}D .{2,4}2.函数y =A .(2,2)-B .(,2)(2,)-∞-+∞C .[2,2]-D .(,2][2,)-∞-+∞3.43662log 2log 98+-=A .14B .14-C .12D . 12-4.若函数2312()325x x f x x x ⎧--≤≤=⎨-<≤⎩,则方程()1f x =的解是A 2B 或3C 或4D 或45.若函数3()f x x =,则函数)2(x f y -=在其定义域上是 A .单调递增的偶函数 B .单调递增的奇函数 C .单调递减的偶函数 D .单调递减的奇函数6.若432a =,254b =,3log 0.2c =,则,,a b c 的大小关系是A .a b c <<B .c b a <<C .b a c <<D .c a b <<7.函数2343x x y -+-=的单调递增区间是A .(,2]-∞B .[2,)+∞C .[1,2]D .[1,3]8.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程s (千米)与行进时间x (秒)的函数图象的示意图,你认为正确的是9.已知(10)xf x =,则(5)f =A .510B .105C .5log 10D .lg 510.某同学在研究函数()||1xf x x =+()x ∈R 时,分别给出下面几个结论:①函数()f x 是奇函数; ②函数()f x 的值域为()1 1-,; ③函数()f x 在R 上是增函数; 其中正确结论的序号是A .①②B .①③C .②③D .①②③二.填空题:(本大题共6小题,每小题4分,共24分) 11.若集合[0,2]A =,集合[1,5]B =,则A B = .12.函数24xy =-的零点是 .13.函数3()log (21)f x x =-([1,2]x ∈)的值域为 .14.函数()31f x x =-,若[()]23f g x x =+,则一次函数()g x = . 15.若函数()(0,1)xf x a a a =>≠的反函数的图象过点)1,2(-,则a = .16.若函数21()2x x f x a+=-是奇函数,则使()3f x >成立的x 的取值范围是 .三.解答题(本大题共3小题,共26分) 17.(本小题满分6分)已知:函数()(2)()f x x x a =-+(a ∈R ),()f x 的图象关于直线1x =对称. (Ⅰ)求a 的值;(Ⅱ)求()f x 在区间[0,3]上的最小值.18.(本小题满分10分)某家庭进行理财投资,根据长期收益率市场预测,投资债券类稳健型产品的收益与投资额成正比,投资股票类风险型产品的收益与投资额的算术平方根成正比. 已知两类产品各投资1万元时的收益分别为0.125万元和0.5万元,如图:(Ⅰ)分别写出两类产品的收益y (万元)与投资额x (万元)的函数关系;(Ⅱ)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,最大收益是多少万元?19.(本小题满分10分)已知:函数()()()log 1log 1a a f x x x =+--(0a >且1a ≠). (Ⅰ)求函数()f x 的定义域;(Ⅱ)判断函数()f x 的奇偶性,并加以证明; (Ⅲ)设12a =,解不等式()0f x >.卷(II )1.设集合2{|0}A x x x =-=,{|20}B x x =-=,则2{|()(2)0}x x x x --≠=A .()AB R ð B .()A B R ð C .()A B R ð D .()AB R ð2.已知函数21311()log [()2()2]33xx f x =-⋅-,则满足()0f x <的x 的取值范围是A .(,0)-∞B .(0,)+∞C .(,1)-∞-D .(1,)-+∞3.下表是某次测量中两个变量x ,y 的一组数据,若将y 表示为关于x 的函数,则最可能的函数模型是A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型 4.用二分法求方程21x +=已经确定有根区间为(0,1),则下一步可确定这个根所在的区间为 .5.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()2f x x x =-,如果函数()()g x f x m =-恰有4个零点,则实数m 的取值范围是 .6.函数()log (1)xa f x a x =++(0a >且1a ≠)在区间[0,1]上的最大值与最小值之和为a ,则a 的值是 .7.已知函数c bx x x f +-=2)(,若(1)(1)f x f x -=+,且3)0(=f . (Ⅰ)求b ,c 的值;(Ⅱ)试比较()mf b 与()mf c (m ∈R )的大小.8.集合A 是由满足以下性质的函数()f x 组成的:对于任意0x ≥,()[2,4]f x ∈-且()f x 在[0,)+∞上是增函数.(Ⅰ)试判断1()2f x 与21()46()2x f x =-⋅(0x ≥)是否属于集合A ,并说明理由;(Ⅱ)对于(Ⅰ)中你认为属于集合A 的函数()f x ,证明:对于任意的0x ≥,都有()(2)2(1)f x f x f x ++<+.答题纸班级姓名成绩卷(I)一.选择题(本大题共10小题,每小题5分,共50分)二.填空题(本大题共6小题,每小题4分,共24分)三.解答题(本大题共3小题,共26分)17.(本小题满分6分)18.(本小题满分10分)19.(本小题满分10分)班级姓名成绩卷(II)一.选填题:(本大题共6小题,每小题5分,共30分)二.解答题:(本大题共2小题,共20分)7.(本小题满分10分)8.(本小题满分10分)参考答案卷(I)C A B CD B AC D D11.[1,2];12.2;13.[0,1];14.3432+x ;15.12;16.(0,1); 17.解: 2()(2)()(2)2f x x x a x a x a =-+=---,(Ⅰ)函数()f x 图象的对称轴为212ax -==,则0a =; ┈┈┈┈┈┈┈┈┈┈3分 (Ⅱ)由(Ⅰ)得22()2(1)1f x x x x =-=--,因为1[0,3]x =∈,所以min ()(1)1f x f ==-. ┈┈┈┈┈┈┈┈┈┈6分18.解:(Ⅰ)投资债券类稳健型产品的收益满足函数:y kx =(0x >),由题知,当1x =时,0.125y =,则0.125k =,即0.125y x =, ┈┈┈┈┈┈2分投资股票类风险型产品的收益满足函数:y k =0x >),由题知,当1x =时,0.5y =,则0.5k =,即y = ┈┈┈┈┈┈┈4分(Ⅱ)设投资债券类稳健型产品x 万元(020x ≤≤),则投资股票类风险型产品20x -万元,由题知总收益0.125y x =+020x ≤≤), ┈┈┈┈┈┈┈┈┈┈6分令t =0t ≤≤,则220x t =-,22211510.125(20)0.5(2)38228y t t t t t =-+=-++=--+,当2t =,即16x =时,max 3y =(万元) ┈┈┈┈┈┈┈┈┈┈9分答:投资债券类稳健型产品16万元,投资股票类风险型产品4万元,此时受益最大为3万元. ┈┈┈┈┈┈┈┈┈┈10分19.解:(Ⅰ)由题知:1010x x +>⎧⎨->⎩, 解得:11x -<<,所以函数()f x 的定义域为(1,1)-;┈┈┈┈┈┈┈┈┈┈3分(Ⅱ)奇函数,证明:因为函数()f x 的定义域为(1,1)-,所以对任意(1,1)x ∈-,()log (1)log (1())[log (1)log (1)]()a a a a f x x x x x f x -=-+---=-+--=-所以函数()f x 是奇函数; ┈┈┈┈┈┈┈┈┈┈6分(Ⅲ)由题知:1122log (1)log (1)x x +>-,即有101011x x x x+>⎧⎪->⎨⎪+<-⎩,解得:10x -<<,所以不等式()0f x >的解集为{|10}x x -<<. ┈┈┈┈┈┈┈┈┈┈10分卷(II )D C D 4.1(0,)2;5.10m -<<;6.12; 7.解:(Ⅰ)由已知,二次函数的对称轴12bx ==,解得2b =, 又(0)3f c ==,综上,2b =,3c =; ┈┈┈┈┈┈┈┈┈┈4分 (Ⅱ)由(Ⅰ)知,2()23f x x x =-+,所以,()f x 在区间(,1)-∞单调递减,在区间(1,)+∞单调递增.当0m >时,321m m>>,所以(2)(3)m mf f <.当0m =时,321m m==,所以(2)(3)m mf f =.当0m <时,321m m<<,所以(2)(3)m mf f > ┈┈┈┈┈┈┈┈┈┈10分8.解:(Ⅰ)1()f x A ∉,2()f x A ∈,理由如下:由于1(49)54f =>,1(49)[2,4]f ∉-,所以1()f x A ∉. 对于21()46()2x f x =-⋅(0x ≥), 因为1()2x y =在[0,)+∞上是减函数,且其值域为(0,1], 所以21()46()2x f x =-⋅在区间[0,)+∞上是增函数. 所以2()(0)2f x f =-≥,且21()46()42x f x =-⋅<, 所以对于任意0x ≥,()[2,4]f x ∈-.所以2()f x A ∈ ┈┈┈┈┈┈┈┈┈┈6分 (Ⅱ)由(Ⅰ)得,2131(2)46()4()222x x f x ++=-⋅=-⋅,111(1)46()43()22x x f x ++=-⋅=-⋅, 所以2(1)[()(2)]f x f x f x +-++11312[43()][46()4()]2222x x x =-⋅--⋅+-⋅31()022x =⋅>, 所以对于任意的0x ≥,都有()(2)2(1)f x f x f x ++<+. ┈┈┈┈┈┈┈┈┈┈10分。
高一年级上学期数学期中考试试卷 一、选择题 (3'⨯10=30')1. 已知集合A={x │x ≤5,x ∈N},B={x │x >1,x ∈N},那么A ∩B 等于 ( )A. {1,2,3,4,5}B. {2,3,4,5}C. {2,3,4}D.{ x ∈R │1<x ≤}2. 已知全集∪={a ,b ,c ,d ,e ,f ,g ,h},A={c ,d ,e} B={a ,c ,f}那么集合{b ,g ,h} 等于( )A. A ∪BB. A ∩BC. (C u A )∪(C u B )D. (C u A)∩(C u B )3. 若ax 2+ax+a+3>0对于一切实数x 恒成立,则实数a 的取值范围( )A. (-4,0)B. (-∞,-4)∪(0,+∞)C. [0,+∞]D.(-∞,0)4. 设命题P :关于x 的不等式a 1x 2+b 1x+c 1>0与a 2x 2+b 2x+c 2>0的解集相同:命题Q : 212121c c b b a a ==,则命题P 是命题Q 的( ) A. 充分不必要条件 B.必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 已知:(1,2)∈(A ∩B ),A={(x ,y )│y 2=ax+b,}B={(x,y)│x 2-ay-b=0}则( )A. a=-3B. a=-3C. a=3D. a=3b=7 b=-7 b=-7 b=76. 已知ax 2+bx+c=0的两根为-2,3,且a >c 那么ax 2+bx+c >0的解集为( )A. {x │x <-2或x >3=}B. {x │x <-3或x >2=}C. {x │-2<x <3==}D. {x │-3<x <2=7. 已知集合A=B=R ,x ∈A ,y ∈B, f :x →ax+b ,若4和10的象分别为6和9,则19在f 作用下的象为( )A. 18B. 30C. 227 D. 28 8. 如下图可以作为y=f (x)的图象的是( )9. 已知函数y=1-x +1(x ≥1)的反函数是( )A. y=x 2-2x+2(x <1=)B. y=x 2-2x+2(x ≥1)C. y=x 2-2x (x <1=)D. y=x 2-2x (x ≥1)10. 下列函数中是指数函数人个数为( )①y= (21)x ②y=-2x ③y=3-x ④y= (x 1)101 A. 1 B. 2 C. 3 D. 4二、填空题 (4'⨯=16')11. 已知方程x 2-px+15=0与x 2-5x+q=0的解集分别为s ,M ,且S ∩M={3}则实数p+q=_________.12. 函数f (x)=2x 2-mx+3,当x ∈[-2,+∞]时是增函数,当x ∈[-∞,-2]时是减函数,则f(1)=____________.13. 不等式x 2-5x+4≤0的解集用区间表示为______________.14. 已知函数f (2x+1)=x 2+2x+3,则f (1)=____________.三、解答题:15. 解下列不等式(5'⨯2=10')(1)25--x x ≥0 (2)│x-5│-│2x+3│<1. 16. 已知:A={x │x 2-5x+6<0=},B={x │x 2-4ax+3a 2<0=}(a >0)且A ⊆B ,试求实数a 的取值范围(10分)17. (12分)已知函数f (x)=x 2-2x+3(x ∈R )(1)写出函数f (x)的单调增区间,并用定义加以证明.(2)设函数f (x)=x 2-2x+3(2≤x ≤3)试利用(1)的结论直接写出该函数的值域(用区间表示)18. (12分)已知函数f (x)=1-252+ax 的定义城为[-5,0],它的反函数为y=f –1(x ), 且点P (-2,-4)在y=f –1(x )的图象上。
北京四中2008~2009学年度第一学期期中测试高一年级数学试卷(试卷满分150分,考试时间为120分钟) 试卷分为两卷,卷(I)100分,卷(II)50分 卷(I)一.选择题:(本大题共10小题,每小题5分,共50分) 1.集合{}1,2,3的真子集的个数为( ) A .5 B .6 C .7 D .82.函数y =( )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤3.函数()22x x f x -=-12f ⎛⎫=⎪⎝⎭( ) A . B . C . D .4.设全集,若,,则(e1M)∩N=( )A .B .C .D .5.下列函数的值域是的是( )A .B .C .D .6.下列函数中,在区间上为增函数的是( )A .B .C .D .7.函数的图象关于( )A .轴对称 B .直线对称 C .坐标原点对称 D .直线对称8.( )A.12 B.-12 C.-16 D.-49.函数的图象是下列图象中的( )10.设且,则( )A.B.C.D.二.填空题:(本大题共4小题,每小题5分,共20分)11.若、、,则的大小关系是____________。
12.若函数满足,则____________。
13.已知:集合,,若,则____________。
14.函数的定义域是____________,单调减区间是____________。
三.解答题(本大题共3小题,每小题10分,共30分)15.已知:函数的定义域为,集合,(1)求:集合;(2)求:。
16.某厂今年1月、2月、3月生产某种产品分别为9.5万件、18万件、25.5万件。
如果该厂每月生产此种产品的产量与月份之间满足二次函数关系:,(1)求:此二次函数的解析式;(2)求:哪个月的产量最大,最大产量是多少?17.已知:函数,(1)求:函数的定义域;(2)判断函数的奇偶性并说明理由;(3)判断函数在()上的单调性,并用定义加以证明。
一、选择题1.(0分)[ID :11819]在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭2.(0分)[ID :11818]已知函数f (x )=23,0{log ,0x x x x ≤>那么f 1(())8f 的值为( )A .27B .127C .-27D .-1273.(0分)[ID :11811]若35225a b ==,则11a b+=( ) A .12B .14C .1D .24.(0分)[ID :11805]三个数0.32,20.3,0.32log 的大小关系为( ).A .20.30.3log 20.32<< B .0.320.3log 220.3<<C .20.30.30.3log 22<<D .20.30.30.32log 2<<5.(0分)[ID :11778]对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2436450x x -+<成立的x 的取值范围是( )A .315,22⎛⎫⎪⎝⎭ B .[]28, C .[)2,8 D .[]2,76.(0分)[ID :11759]函数()sin lg f x x x =-的零点个数为( ) A .0B .1C .2D .37.(0分)[ID :11752]已知函数)25f x =+,则()f x 的解析式为( )A .()21f x x =+B .()()212f x x x =+≥C .()2f x x =D .()()22f x xx =≥8.(0分)[ID :11791]已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)9.(0分)[ID :11771]函数2()ln(28)f x x x =--的单调递增区间是 A .(,2)-∞- B .(,1)-∞ C .(1,)+∞D .(4,)+∞10.(0分)[ID :11770]已知定义在R 上的函数()f x 是奇函数且满足,3()(2)32f x f x f ⎛⎫-=-=- ⎪⎝⎭,,数列{}n a 满足11a =-,且2n n S a n =+,(其中n S 为{}n a 的前n 项和).则()()56f a f a +=()A .3B .2-C .3-D .211.(0分)[ID :11765]函数()f x 的图象如图所示,则它的解析式可能是( )A .()212xx f x -= B .()()21xf x x =-C .()ln f x x =D .()1xf x xe =-12.(0分)[ID :11747]若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,313.(0分)[ID :11743]设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭14.(0分)[ID :11741]设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =( ) A .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)215.(0分)[ID :11735]设a =2535⎛⎫ ⎪⎝⎭,b =3525⎛⎫ ⎪⎝⎭ ,c =2525⎛⎫ ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .a>c>b B .a>b>c C .c>a>bD .b>c>a二、填空题16.(0分)[ID :11909]设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.17.(0分)[ID :11893]已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______.18.(0分)[ID :11892]若1∈{}2,a a, 则a 的值是__________19.(0分)[ID :11874]已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.20.(0分)[ID :11850]已知函数f(x)=log a (2x −a)在区间[12,23],上恒有f (x )>0则实数a 的取值范围是_____.21.(0分)[ID :11841]某班有36名同学参加数学、物理、化学竞赛小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有__________人.22.(0分)[ID :11840]函数()221,0ln 2,0x x f x x x x x ⎧+-≤=⎨-+>⎩的零点的个数是______. 23.(0分)[ID :11834]己知函数()f x =x a b +的图象经过点(1,3),其反函数()1f x -的图象经过点(2.0),则()1fx -=___________.24.(0分)[ID :11831]已知()f x 定义在R 上的奇函数,当0x ≥时,,则函数()()3g x f x x =-+的 零点的集合为 .25.(0分)[ID :11848]设函数()()()2,1{42, 1.x a x f x x a x a x -<=--≥①若1a =,则()f x 的最小值为 ;②若()f x 恰有2个零点,则实数a 的取值范围是 .三、解答题26.(0分)[ID :12010]已知函数()f x 对任意的实数m ,n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求()0f ;(2)求证:()f x 在R 上为增函数;(3)若()12f =,且关于x 的不等式()()223f ax f x x -+-<对任意的[)1,x ∈+∞恒成立,求实数a 的取值范围.27.(0分)[ID :12004]已知函数24()(0,1)2x xa af x a a a a-+=>≠+是定义在R 上的奇函数. (1)求a 的值:(2)求函数()f x 的值域;(3)当[]1,2x ∈时,()220xmf x +->恒成立,求实数m 的取值范围.28.(0分)[ID :11957]已知()y f x =是定义域为R 的奇函数,当[)0,x ∈+∞时,()22f x x x =-.(1)写出函数()y f x =的解析式;(2)若方程()f x a =恰3有个不同的解,求a 的取值范围.29.(0分)[ID :11937]为了研究某种微生物的生长规律,研究小组在实验室对该种微生物进行培育实验.前三天观测的该微生物的群落单位数量分别为12,16,24.根据实验数据,用y 表示第()*x x ∈N天的群落单位数量,某研究员提出了两种函数模型;①2y ax bx c =++;②x y p q r =⋅+,其中a ,b ,c ,p ,q ,r 都是常数.(1)根据实验数据,分别求出这两种函数模型的解析式;(2)若第4天和第5天观测的群落单位数量分别为40和72,请从这两个函数模型中选出更合适的一个,并计算从第几天开始该微生物群落的单位数量超过1000.30.(0分)[ID :11936]某厂生产某产品的年固定成本为250万元,每生产x 千件,需另投入成本C(x)(万元),若年产量不足80千件,C(x)的图象是如图的抛物线,此时C(x)<0的解集为(−30,0),且C(x)的最小值是−75,若年产量不小于80千件,C(x)=51x +10000x−1450,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L(x)(万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.B3.A4.A5.C6.D7.B8.C9.D10.A11.B12.B13.C14.D15.A二、填空题16.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注17.【解析】【分析】根据题意分离出参数a后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立18.-1【解析】因为所以或当时不符合集合中元素的互异性当时解得或时符合题意所以填19.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力20.(131)【解析】【分析】根据对数函数的图象和性质可得函数f(x)=loga(2x﹣a)在区间1223上恒有f(x)>0即0<a<10<2x-a<1或a>12x-a>1分别解不等式组可得答案【详解】21.8【解析】【分析】画出表示参加数学物理化学竞赛小组集合的图结合图形进行分析求解即可【详解】由条件知每名同学至多参加两个小组故不可能出现一名同学同时参加数学物理化学竞赛小组设参加数学物理化学竞赛小组的22.4【解析】【分析】当时令即作和的图象判断交点个数即可当时令可解得零点从而得解【详解】方法一:当时令即作和的图象如图所示显然有两个交点当时令可得或综上函数的零点有4个方法二:当时令可得说明导函数有两个23.【解析】∵函数=的图象经过点(13)∴∵反函数的图象经过点(20)∴函数=的图象经过点(02)∴∴∴==∴=24.【解析】试题分析:当时由于定义在上的奇函数则;因为时则若时令若时令因则的零点集合为考点:奇函数的定义与利用奇函数求解析式;2函数的零点;3分段函数分段处理原则;25.(1)-1(2)或【解析】【分析】【详解】①时函数在上为增函数且函数在为减函数在为增函数当时取得最小值为-1;(2)①若函数在时与轴有一个交点则则函数与轴有一个交点所以;②若函数与轴有无交点则函数与三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.2.B解析:B 【解析】 【分析】利用分段函数先求f (1)8)的值,然后在求出f 1(())8f 的值. 【详解】f =log 2=log 22-3=-3,f =f (-3)=3-3=.【点睛】本题主要考查分段函数求值以及指数函数、对数函数的基本运算,属基础题.3.A解析:A 【解析】 【分析】由指数式与对数式的转化,结合换底公式和对数的运算,即可求解. 【详解】由题意3225,5225a b==根据指数式与对数式的转化可得35log 225,log 225a b == 由换底公式可得lg 2252lg15lg 2252lg15,lg 3lg 3lg 5lg 5a b ==== 由对数运算化简可得11lg 3lg 52lg152lg15a b +=+ lg3lg52lg15+=lg1512lg152== 故选:A 【点睛】本题考查了指数式与对数式的转化,对数的运算及换底公式的应用,属于中档题.4.A解析:A 【解析】 【分析】利用指数函数与对数函数的单调性即可得出. 【详解】∵0<0.32<1,20.3>1,log 0.32<0, ∴20.3>0.32>log 0.32. 故选A . 【点睛】本题考查了指数函数与对数函数的单调性,属于基础题.5.C解析:C 【解析】 【分析】 【详解】分析:先解一元二次不等式得315[]22x <<,再根据[]x 定义求结果. 详解:因为[][]2436450x x -+<,所以315[]22x << 因为[][]2436450x x -+<,所以28x ≤<, 选C.点睛:本题考查一元二次不等式解法以及取整定义的理解,考查基本求解能力.6.D解析:D 【解析】 【分析】画出函数图像,根据函数图像得到答案. 【详解】如图所示:画出函数sin y x =和lg y x =的图像,共有3个交点. 当10x >时,lg 1sin x x >≥,故不存在交点. 故选:D .【点睛】本题考查了函数的零点问题,画出函数图像是解题的关键.7.B解析:B 【解析】 【分析】利用换元法求函数解析式,注意换元后自变量范围变化. 【详解】 2x t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+ ()2x ≥.【点睛】本题考查函数解析式,考查基本求解能力.注意换元后自变量范围变化.8.C解析:C【解析】 【分析】画出函数图像,根据图像得到20a -<≤,1bc =,得到答案. 【详解】()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a -<≤,20192019log log b c -=,故1bc =,故20abc -<≤. 故选:C .【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.9.D解析:D 【解析】由228x x -->0得:x ∈(−∞,−2)∪(4,+∞), 令t =228x x --,则y =ln t ,∵x ∈(−∞,−2)时,t =228x x --为减函数; x ∈(4,+∞)时,t =228x x --为增函数; y =ln t 为增函数,故函数f (x )=ln(228x x --)的单调递增区间是(4,+∞), 故选D.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增;当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减;当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减;当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.10.A解析:A 【解析】 由奇函数满足()32f x f x ⎛⎫-=⎪⎝⎭可知该函数是周期为3T =的奇函数, 由递推关系可得:112,21n n n n S a n S a n +-=+=+-, 两式做差有:1221n n n a a a -=--,即()()1121n n a a --=-, 即数列{}1n a -构成首项为112a -=-,公比为2q 的等比数列,故:()1122,21n n n n a a --=-⨯∴=-+,综上有:()()()()()552131223f a f f f f =-+=-==--=,()()()()66216300f a f f f =-+=-==,则:()()563f a f a +=. 本题选择A 选项.11.B解析:B 【解析】 【分析】根据定义域排除C ,求出()1f 的值,可以排除D ,考虑()100f -排除A . 【详解】根据函数图象得定义域为R ,所以C 不合题意;D 选项,计算()11f e =-,不符合函数图象;对于A 选项, ()10010099992f -=⨯与函数图象不一致;B 选项符合函数图象特征.故选:B 【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.12.B解析:B 【解析】 【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可 【详解】解:函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增,()301373a a a a⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤<所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭. 故选:B . 【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题.13.C解析:C 【解析】 【分析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小. 【详解】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.14.D解析:D 【解析】试题分析:集合()(){}{}|130|13A x x x x x =--<=<<,集合,所以3|32A B x x ⎧⎫⋂=<<⎨⎬⎩⎭,故选D.考点:1、一元二次不等式;2、集合的运算.15.A解析:A 【解析】试题分析:∵函数2()5xy =是减函数,∴c b >;又函数25y x =在(0,)+∞上是增函数,故a c >.从而选A考点:函数的单调性.二、填空题16.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注 解析:1(,)4-+∞ 【解析】 由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞. 【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.17.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值.【详解】1240xxa ++⋅>可化为212224xx x x a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭. 【点睛】本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.18.-1【解析】因为所以或当时不符合集合中元素的互异性当时解得或时符合题意所以填解析:-1 【解析】 因为{}21,a a∈,所以1a =或21a=,当1a =时,2a a =,不符合集合中元素的互异性,当21a =时,解得1a =或1a =-,1a =-时2a a ≠,符合题意.所以填1a =-.19.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力解析:6 【解析】 【分析】先求函数周期,再根据周期以及偶函数性质化简()()9191f f =-,再代入求值. 【详解】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+=()16f =-=.【点睛】本题考查函数周期及其应用,考查基本求解能力.20.(131)【解析】【分析】根据对数函数的图象和性质可得函数f (x )=loga (2x ﹣a )在区间1223上恒有f (x )>0即0<a<10<2x-a<1或a>12x-a>1分别解不等式组可得答案【详解】解析:(13,1)【解析】 【分析】根据对数函数的图象和性质可得,函数f (x )=log a (2x ﹣a )在区间[12,23]上恒有f (x )>0,即{0<a <10<2x −a <1 ,或{a >12x −a >1,分别解不等式组,可得答案.【详解】 若函数f (x )=log a (2x ﹣a )在区间[12,23]上恒有f (x )>0,则{0<a <10<2x −a <1 ,或{a >12x −a >1当{0<a <10<2x −a <1时,解得13<a <1,当{a >12x −a >1时,不等式无解.综上实数a 的取值范围是(13,1) 故答案为(13,1). 【点睛】本题考查的知识点是复合函数的单调性,及不等式的解法,其中根据对数函数的图象和性质构造不等式组是解答的关键,属于中档题.21.8【解析】【分析】画出表示参加数学物理化学竞赛小组集合的图结合图形进行分析求解即可【详解】由条件知每名同学至多参加两个小组故不可能出现一名同学同时参加数学物理化学竞赛小组设参加数学物理化学竞赛小组的解析:8 【解析】 【分析】画出表示参加数学、物理、化学竞赛小组集合的Venn 图,结合图形进行分析求解即可. 【详解】由条件知,每名同学至多参加两个小组,故不可能出现一名同学同时参加数学、物理、化学竞赛小组,设参加数学、物理、化学竞赛小组的人数构成的集合分别为A ,B ,C , 则()0card A B C ⋂⋂=,()6card A B ⋂=,()4card B C ⋂=, 由公式()card A B C ⋃⋃()()()()()()card A card B card C card A B card A C card B C =++-⋂-⋂-⋂知()3626151364card A C =++---⋂,故()8card A C ⋂=即同时参加数学和化学小组的有8人, 故答案为8.【点睛】本小题主要考查Venn 图表达集合的关系及运算、Venn 图的应用、集合中元素的个数等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.22.4【解析】【分析】当时令即作和的图象判断交点个数即可当时令可解得零点从而得解【详解】方法一:当时令即作和的图象如图所示显然有两个交点当时令可得或综上函数的零点有4个方法二:当时令可得说明导函数有两个解析:4 【解析】 【分析】当0x >时,令()2ln 20f x x x x =-+=,即2ln 2x x x =-,作y ln x =和22y x x =-的图象,判断交点个数即可,当0x <时,令()210f x x =+-=,可解得零点,从而得解. 【详解】方法一:当0x >时,令()2ln 20f x x x x =-+=,即2ln 2x x x =-.作y ln x =和22y x x =-的图象,如图所示,显然有两个交点,当0x <时,令()210f x x =+-=,可得1x =-或3-. 综上函数的零点有4个.方法二:当0x >时,()2ln 2f x x x x =-+,()21221'22x x f x x x x-++=-+=,令()'0f x =可得()2'2210f x x x =-++=,()'01f =,()'230f =-<,说明导函数有两个零点,函数的()110f =>,()30f <,可得0x >时, 函数的零点由2个.0x <时,函数的图象如图:可知函数的零点有4个. 故答案为4. 【点睛】本题考查了对分段函数分类问题和利用构造函数,把方程问题转换为函数交点问题,函数()()y f x g x =-零点的个数即等价于函数()y f x =和()y g x =图象交点的个数,通过数形结合思想解决实际问题.23.【解析】∵函数=的图象经过点(13)∴∵反函数的图象经过点(20)∴函数=的图象经过点(02)∴∴∴==∴= 解析:()2log 1,1x x ->【解析】∵函数()f x =x a b +的图象经过点(1,3), ∴3a b +=, ∵反函数()1fx -的图象经过点(2,0),∴函数()f x =x a b +的图象经过点(0,2), ∴12b +=. ∴2, 1.a b == ∴()f x =x a b +=2 1.x + ∴()1fx -=()2log 1, 1.x x ->24.【解析】试题分析:当时由于定义在上的奇函数则;因为时则若时令若时令因则的零点集合为考点:奇函数的定义与利用奇函数求解析式;2函数的零点;3分段函数分段处理原则; 解析:【解析】 试题分析:当时,,由于()f x 定义在R 上的奇函数,则;因为0x ≥时,,则若时,令若时,令,因,则,的零点集合为考点:奇函数的定义与利用奇函数求解析式;2.函数的零点;3.分段函数分段处理原则;25.(1)-1(2)或【解析】【分析】【详解】①时函数在上为增函数且函数在为减函数在为增函数当时取得最小值为-1;(2)①若函数在时与轴有一个交点则则函数与轴有一个交点所以;②若函数与轴有无交点则函数与解析:(1)-1,(2)112a ≤<或2a ≥. 【解析】 【分析】 【详解】①1a =时,()()()2,1{42, 1.x a x f x x a x a x -<=--≥,函数()f x 在(,1)-∞上为增函数且()1f x >-,函数()f x 在3[1,]2为减函数,在3[,)2+∞为增函数,当32x =时,()f x 取得最小值为-1;(2)①若函数()2xg x a =-在1x <时与x 轴有一个交点,则0a >, (1)2g a =->0,则02a <<,函数()4()(2)h x x a x a =--与x 轴有一个交点,所以211a a ≥<⇒且112a ≤<; ②若函数()2xg x a =-与x 轴有无交点,则函数()4()(2)h x x a x a =--与x 轴有两个交点,当0a ≤时()g x 与x 轴有无交点,()4()(2)h x x a x a =--在1x ≥与x 轴有无交点,不合题意;当当2a ≥时()g x 与x 轴有无交点,()h x 与x 轴有两个交点,x a =和2x a =,由于2a ≥,两交点横坐标均满足1x ≥;综上所述a 的取值范围112a ≤<或2a ≥.考点:本题考点为函数的有关性质,涉及函数图象、函数的最值,函数的零点、分类讨论思想解题.利用函数图象研究函数的单调性,求出函数的最值,涉计参数问题,针对参数进行分类讨论.三、解答题 26.(1)1 (2)见解析(3)(),231-∞ 【解析】 【分析】(1) 令0m n ==,代入计算得到答案.(2) 任取1x ,2x ∈R ,且12x x <,计算得到()()()()221111f x f x x f x f x =-+->得到证明.(3)化简得到()()221f ax x xf -+-<,根据函数的单调性得到()2130x a x -++>对任意的[]1,x ∈+∞恒成立,讨论112a +≤和112a +>两种情况计算得到答案. 【详解】(1)令0m n ==,则()()0201f f =-()01f ∴=.(2)任取1x ,2x ∈R ,且12x x <,则210x x ->,()211f x x ->.()()()1f m n f m f n +=+-,()()()()()()221121111111f x f x x x f x x f x f x f x ∴=-+=-+->+-=⎡⎤⎣⎦,()()21f x f x ∴>()f x ∴在R 上为增函数.(3)()()223f ax f x x -+-<,即()()2212f ax f x x -+--<,()222f ax x x ∴-+-<()12f =()()221f ax x x f ∴-+-<.又()f x 在R 上为增函数221ax x x ∴-+-<,()2130x a x ∴-++>对任意的[]1,x ∈+∞恒成立.令()()()2131g x x a x x =-++≥,只需满足()min 0g x >即可当112a +≤,即1a ≤时,()g x 在[)1,+∞上递增,因此()()min 1g x g =, 由()10g >得3a <,此时1a ≤; 当112a +>,即1a >时,()min 12a g x g +⎛⎫= ⎪⎝⎭,由102a g +⎛⎫> ⎪⎝⎭得11a -<<,此时11a <<.综上,实数a 的取值范围为(),1-∞. 【点睛】本题考查了抽象函数的函数值,单调性,不等式恒成立问题,意在考查学生的综合应用能力.27.(1)2a =(2)()1,1-(3)(10,3)+∞ 【解析】 【分析】(1)利用函数是奇函数的定义求解a 即可(2)判断函数的单调性,求解函数的值域即可(3)利用函数恒成立,分离参数m ,利用换元法,结合函数的单调性求解最大值,推出结果即可.【详解】(1)∵()f x 是R 上的奇函数, ∴()()f x f x -=-即:242422x x x xa a a aa a a a ---+-+=-++. 即2(4)2422x x x x a a a a a a a a+-+⋅-+-=+⋅+ 整理可得2a =.(2)222212()12222121x x x x xf x ⋅--===-⋅+++在R 上递增 ∵211x +>,22021x∴-<-<+, 211121x ∴-<-<+∴函数()f x 的值域为()1,1-. (3)由()220xmf x +->可得,()2 2xmf x >-,21()2221x x x mf x m -=>-+.当[]1,2x ∈时,(21)(22)21x x xm +->- 令(2113)xt t -=≤≤), 则有(2)(1)21t t m t t t+->=-+, 函数21y t t=-+在1≤t ≤3上为增函数, ∴max 210(1)3t t -+=, 103m ∴>, 故实数m 的取值范围为(10,3)+∞ 【点睛】本题主要考查了函数恒成立条件的应用,函数的单调性以及函数的奇偶性的应用,属于中档题.28.(1) ()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩ (2) ()1,1-【解析】 【分析】(1)由奇函数的定义求解析式,即设0x <,则有x ->0,利用()f x -可求得()f x ,然后写出完整的函数式;(2)作出函数()f x 的图象,确定()f x 的极值和单调性,由图象与直线y a =有三个交点可得a 的范围. 【详解】解:(1)当(),0x ∈-∞时,()0,x -∈+∞,()f x 是奇函数,()()f x f x ∴=--=-()()2222x x x x ⎡⎤---=--⎣⎦()222,02,0x x x f x x x x ⎧-≥∴=⎨--<⎩.(2)当[)0,x ∈+∞时,()()22211f x x x =-=--,最小值为1-;当(),0x ∈-∞,()()22211f x x x x =--=-+,最大值为1.据此可作出函数的图象,如图所示,根据图象得,若方程()f x a =恰有3个不同的解, 则a 的取值范围是()1,1-. 【点睛】本题考查函数奇偶性,考查函数零点与方程根的关系.在求函数零点个数(或方程解的个数)时,可把问题转化为一个的函数图象和一条直线的交点个数问题,这里函数通常是确定的函数,直线是动直线,由动直线的运动可得参数取值范围.29.(1)函数模型:①22212y x x =-+;函数模型②:128x y +=+(2)函数模型②更合适;从第9天开始该微生物群落的单位数量超过1000 【解析】 【分析】(1)由题意利用待定系数法求函数的解析式;(2)将4x =,5x =代入(1)中的两个函数解析式中,结合数据判断两个模型中那个更合适。
北京四中-高一上学期期中考试试卷数学试卷分为两卷,卷(Ⅰ)100分,卷(Ⅱ)50分,满分共计150分考试时间:120分钟卷(Ⅰ)一、选择题:本大题共10小题,每小题5分,共50分 1Q如果A =,那么正确的结论是A Q0 A B Q{0} A C Q{0}A D QA2Q函数f (x )=2,则f ()= A Q0 B Q- C QD Q- зQ设全集I =,A ={1,2},B ={-2,-1,2},则A (C I B )等于A Q{1} B Q{1,2} C Q{2} D{0,1,2}4Q与函数y =10的定义域相同的函数是A Qy =x -1 B Qy = C Qy =D Qy =5Q若函数f (x )=з+з与g (x )=з-з的定义域均为R,则AQf (x )与g (x )均为偶函数B Qf (x )为偶函数,g (x )为奇函数 C Qf (x )与g (x )均为奇函数DQf (x )为奇函数,g (x )为偶函数6Q设a =log 2,b =ln2,c =5,则A Qa<b<c B Qb<c<a C Qc<a<b D Qc<b<a7Q设函数y =x 与y =的图象的交点为(x ,y ),则x 所在的区间是A Q(0,1) B Q(1,2) C Q(2,з) D Q(з,4)8Q已知函数f (x )是R上的偶函数,当x 0时,则f (x )<0的解集是A Q(-1,0) B Q(0,1) C Q(-1,1) D Q9Q某商店同时卖出两套西服,售价均为168元,以成本计算,一套盈利20%,另一套亏损20%,此时商店{}1->x x ⊆∈⊂≠φ∈2-x2122222{}33<<-∈x Z x )1lg(-x 1-x 11-x 1-x xx-xx-3213x⎪⎭⎫ ⎝⎛21000≥1)(-=x x f ()()∞+-∞-,,11A Q不亏不盈 B Q盈利з7Q2元 C Q盈利14元 D Q亏损14元10Q设函数f (x )在上是减函数,则A Qf (a )>f (2a )B Qf (a )<f (a )C Qf (a +a )<f (a )D Qf (a +1)<f (a )二、填空题:本大题共4小题,每小题5分,共20分 11Qlog 4+ log 9-8=____Q12Q已知函数y =f (x )为奇函数,若f (з)-f (2)=1,则f (-2)-f (-з)=____Q1зQ若函数f (x )=-2x +з在[0,m]有最大值з,最小值1,则m 的取值范围是____Q14Q已知函数f (x )=,若函数g (x )=f (x )-m 有з个零点,则实数m 的取值范围是____Q三、解答题(本大题共з小题,每小题10分,共з0分)15Q已知:函数f (x )=+lg (з-9)的定义域为A ,集合B =,(1)求:集合A ; (2)求:A B Q16Q已知:函数f (x )=x -bx +з,且f (0)=f (4)Q(1)求函数y =f (x )的零点,写出满足条件f (x )<0的x 的集合; (2)求函数y =f (x )在区间[0,з]上的最大值和最小值Q17Q已知:函数f (x )=,x ,(1)当a =-1时,判断并证明函数的单调性并求f (x )的最小值; (2)若对任意x ,f (x )>0都成立,试求实数a 的取值范围Q卷(Ⅱ)一、选择题:本大题共з小题,每小题5分,共15分1Q下列函数中,满足“对任意x ,x ,当x <x 时,都有f (x )>f (x )”的是A Qf (x )=(x -1)()∞+∞-,2226632221x ⎩⎨⎧>≤--)0()0(22x x x x x x -4x{}Ra a x x ∈<-,0 2xax x ++22[)+∞∈,1[)+∞∈,112()+∞∈,012122B Qf (x )=C Qf (x )=eD Qf (x )=ln x2Q设二次函数f (x )=x +2x +з, x ,x R ,x x ,且f (x )=f (x ),则f(x +x )=A Q 1B Q 2C Q зD Q4зQ若函数f (x )=x +x , x ,x R ,且x +x >0,则f (x )+f (x )的值A Q一定大于0 B Q一定小于0 C Q一定等于0 D Q正负都有可能二、填空题:本大题共з小题,每小题5分,共15分 4Q函数y =的定义域为____,值域为____Q5Q已知函数f (x )=ax +(1-зa )x +a 在区间上递增,则实数a 的取值范围是____Q6Q若0<a<b<1,则在a ,b ,log b ,log a 这四个数中最大的一个是____Q三、解答题:本大题共2小题,每小题10分,共20分 7Q已知:函数f (x )=a x (0<a<1),(Ⅰ)若f (x )=2,求f (зx );(Ⅱ)若f (2x -зx +1)f (x +2x -5),求x 的取值范围Q8Q已知:集合M 是满足下列性质的函数f (x )的全体:在定义域内存在x ,使得f (x +1)=f (x )+f (1)成立Q(1)函数f (x )=是否属于集合M ?说明理由; (2)设函数f (x )=lg,求实数a 的取值范围; (з)证明:函数f (x )=2+x M Qx1x212∈1≠21212312∈121222321x x -+⎪⎭⎫ ⎝⎛2[)+∞,1b aa b 002≤2000x1M x a∈+12x 2∈【试题答案】卷Ⅰ 1Q C 2Q A зQ D 4QC 5QB6QA7Q B8Q C9Q D10QD11Q-2 12Q11зQ[2,4] 14Q(0,1)15Q解:(1),定义域A =; 4分 (2)B ==(-,a ) Q 当a , 6分②当2<a , 8分 ③当a>4时,Q10分 16Q解:(1)由f (0)=f (4),得b =4, 2分所以,f (x )=x -4x +з,函数的零点为1,з, 4分 依函数图象,所求集合为Q6分(2)由于函数f (x )的对称轴为x =2,开口向上,所以,f (x )的最小值为f (2)=-1, 8分 f (x )的最大值为f (0)=з 10分17Q解:(1)当a =-1时f (x )=, 1分 对任意,з分∵,∴ ∴∴f (x )-f (x )<0,f (x )<f (x )42334093042≤<⇒⎩⎨⎧>≤⇒⎩⎨⎧>-≥-x x x x x (]4,2{}Ra a x x ∈<-,0∞φ=≤B ,A 时2a )(B ,A ,24=≤ 时(]42,B A = 2{}31<<x x 21122+-=-+xx x x x 211x x <≤212121212121221121)1)(()(2121)()(x x x x x x x x x x x x x x x x x f x f +-=-+-=-+-+-=-211x x <≤,1,02121><-x x x x ,0121>+x x 1212所以f (x )在上单调递增 5分所以x =1时f (x )取最小值,最小值为2 6分(2)若对任意x ,f (x )>0恒成立,则>0对任意x 恒成立,所以x +2x +a>0对任意x 恒成立,令g (x )=x +2x +a , x因为g (x )= x +2x +a 在上单调递增,所以x =1时g (x )取最小值,最小值为з+a ,∵ з+a>0,∴ a>-зQ10分卷Ⅱ 1QB2Q CзQA4Q R,; 5Q[0,1] 6Qlog a7Q解:(Ⅰ)f (зx )=a=(a)=8; 4分(Ⅱ)因为0<a<1,所以f (x )=a 单调递减;所以2x -зx +1≥x +2x -5,解得x≤2或x≥з; 10分8Q解:(Ⅰ)f (x )=的定义域为, 令,整理得x +x +1=0,△=-з<0, 因此,不存在x 使得f (x +1)=f (x )+f (1)成立,所以f (x )=; з分 (Ⅱ)f (x )=lg的定义域为R,f (1)=lg ,a>0,若f (x )= lgM ,则存在x R使得lg =lg +lg ,整理得存在x R使得(a -2a )x +2a x +(2a -2a )=0Q[)+∞,1[)+∞∈,1xax x ++22[)+∞∈,12[)+∞∈,12[)+∞∈,12[)+∞,1⎪⎭⎫⎢⎣⎡+∞,161b 003x 0x 3x22x1()()∞+∞-,,00 1111+=+xx 2∈()()∞+∞-,,00 M x∉112+x a 2a12+x a ∈∈1)1(2++x a12+x a 2a ∈2222(1)若a -2a =0即a =2时,方程化为8x +4=0,解得x =-,满足条件: (2)若a -2a 0即a 时,令△≥0,解得a ,综上,a [з-,з+]; 7分(Ⅲ)f (x )=2+x 的定义域为R, 令2+(x +1)=(2+x )+(2+1),整理得2+2x -2=0,令g (x )=2+2x -2,所以g (0)·g (1)=-2<0, 即存在x (0,1)使得g (x )=2+2x -2=0, 亦即存在x R使得2+(x +1)=(2+x )+(2+1),故f (x )=2+x M Q10分2212≠∈()()∞+,,220 ∈[)(]532253+-,, ∈55x21+x 2x 2xx0∈x0∈1+x 2x 2x 2∈。
数学试卷(试卷满分为150分,考试时间为120分钟) 试卷分为两卷,卷(I )100分,卷(II )50分卷(I )一.选择题:本大题共10小题,每小题5分,共50分 1.集合{1,2,3}的真子集的个数为( )A .5B .6C .7D .82.函数y = ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x U ≥ D .{}|01x x ≤≤3.函数()22x x f x -=-,则1()2f =( )A .2-B .C . 2D .4.设全集{,,,,}I b c d e f =,若{,,}M b c f =,{,,}N b d e =,则()I M N =I ð( ) A .∅ B .{}d C .{,}d e D .{,}b e5.下列函数中的值域是(0,)+∞的是( ) A .2()log f x x = B .2()1f x x =- C .1()12f x x =+D .()2x f x =6.下列函数中,在区间()0,2上为增函数的是( )A .1y x =-+B .y =C .245y x x =-+D .2y x=7.函数3()f x x x =+的图象关于( ) A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称8.4366312log 2log 9log 89+--=( )A .12B .12-C .16-D .4-9.函数111y x -=+-的图象是下列图象中的( )A .B .C .D .10.设2()f x x bx c =++且(0)(2)f f =,则( )A .3(2)()2f c f -<<B .3()(2)2f c f <<-C .3()(2)2f f c <-<D .3()(2)2c f f <<-二.填空题:本大题共4小题,每小题5分,共20分11.若 3.40.5a =、0.5log 4.3b =、0.5log 6.7c =,则,,a b c 的大小关系是____________。
北京四中-高一上学期期中考试试卷数学试卷分为两卷,卷(Ⅰ)100分,卷(Ⅱ)50分,满分共计150分考试时间:120分钟卷(Ⅰ)一、选择题:本大题共10小题,每小题5分,共50分 1O如果A ={}1->x x ,那么正确的结论是A O0⊆A B O{0}∈A C O{0}⊂≠A D Oφ∈A2O函数f (x )=22-x,则f (21)= A O0 B O-2 C O22 D O-22 3O设全集I ={}33<<-∈x Z x ,A ={1,2},B ={-2,-1,2},则A (C I B )等于A O{1} B O{1,2} C O{2} D{0,1,2}4O与函数y =10)1lg(-x 的定义域相同的函数是A Oy =x -1 B Oy =1-x C Oy =11-x D Oy =1-x5O若函数f (x )=3x +3x-与g (x )=3x-3x-的定义域均为R,则AOf (x )与g (x )均为偶函数B Of (x )为偶函数,g (x )为奇函数 C Of (x )与g (x )均为奇函数DOf (x )为奇函数,g (x )为偶函数6O设a =log 32,b =ln2,c =521,则A Oa<b<c B Ob<c<a C Oc<a<b D Oc<b<a7O设函数y =x 3与y =x⎪⎭⎫⎝⎛21的图象的交点为(x 0,y 0),则x 0所在的区间是A O(0,1) B O(1,2) C O(2,3) D O(3,4)8O已知函数f (x )是R上的偶函数,当x ≥0时1)(-=x x f ,则f (x )<0的解集是A O(-1,0) B O(0,1) C O(-1,1) D O()()∞+-∞-,,11 9O某商店同时卖出两套西服,售价均为168元,以成本计算,一套盈利20%,另一套亏损20%,此时商店A O不亏不盈 B O盈利37O2元 C O盈利14元 D O亏损14元10O设函数f (x )在()∞+∞-,上是减函数,则A Of (a )>f (2a )B Of (a 2)<f (a )C Of (a 2+a )<f (a )D Of (a 2+1)<f (a )二、填空题:本大题共4小题,每小题5分,共20分 11Olog 64+ log 69-832=____O12O已知函数y =f (x )为奇函数,若f (3)-f (2)=1,则f (-2)-f (-3)=____O13O若函数f (x )=221x -2x +3在[0,m]有最大值3,最小值1,则m 的取值范围是____O14O已知函数f (x )=⎩⎨⎧>≤--)0()0(22x x x x x ,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是____O三、解答题(本大题共3小题,每小题10分,共30分)15O已知:函数f (x )=x -4+lg (3x-9)的定义域为A ,集合B ={}Ra a x x ∈<-,0,(1)求:集合A ; (2)求:A B O16O已知:函数f (x )=x 2-bx +3,且f (0)=f (4)O(1)求函数y =f (x )的零点,写出满足条件f (x )<0的x 的集合; (2)求函数y =f (x )在区间[0,3]上的最大值和最小值O17O已知:函数f (x )=xax x ++22,x [)+∞∈,1,(1)当a =-1时,判断并证明函数的单调性并求f (x )的最小值; (2)若对任意x [)+∞∈,1,f (x )>0都成立,试求实数a 的取值范围O卷(Ⅱ)一、选择题:本大题共3小题,每小题5分,共15分1O下列函数中,满足“对任意x 1,x 2()+∞∈,0,当x 1<x 2时,都有f (x 1)>f (x 2)”的是A Of (x )=(x -1)2B Of (x )=x1 C Of (x )=e xD Of (x )=ln x2O设二次函数f (x )=x 2+2x +3, x 1,x 2∈ R ,x 1≠x 2,且f (x 1)=f (x 2),则f (x 1+x 2)=A O1B O 2C O 3D O43O若函数f (x )=x +x 3, x 1,x 2∈ R ,且x 1+x 2>0,则f (x 1)+f (x 2)的值A O一定大于0 B O一定小于0 C O一定等于0 D O正负都有可能二、填空题:本大题共3小题,每小题5分,共15分 4O函数y =22321x x -+⎪⎭⎫⎝⎛的定义域为____,值域为____O5O已知函数f (x )=ax 2+(1-3a )x +a 在区间[)+∞,1上递增,则实数a 的取值范围是____O6O若0<a<b<1,则在a b ,b a,log a b ,log b a 这四个数中最大的一个是____O三、解答题:本大题共2小题,每小题10分,共20分 7O已知:函数f (x )=a x (0<a<1),(Ⅰ)若f (x 0)=2,求f (3x 0);(Ⅱ)若f (2x 2-3x +1)≤f (x 2+2x -5),求x 的取值范围O8O已知:集合M 是满足下列性质的函数f (x )的全体:在定义域内存在x 0,使得f (x 0+1)=f (x 0)+f (1)成立O(1)函数f (x )=x1是否属于集合M ?说明理由; (2)设函数f (x )=lg M x a∈+12,求实数a 的取值范围; (3)证明:函数f (x )=2x +x 2∈M O【试题答案】卷Ⅰ 1O C 2O A 3O D 4OC 5OB6OA7O B8O C9O D10OD11O-2 12O113O[2,4] 14O(0,1)15O解:(1)42334093042≤<⇒⎩⎨⎧>≤⇒⎩⎨⎧>-≥-x x x x x ,定义域A =(]4,2; 4分 (2)B ={}Ra a x x ∈<-,0=(-∞,a ) O 当a φ=≤B ,A 时2, 6分②当2<a a )(B ,A ,24=≤ 时, 8分 ③当a>4时,(]42,B A = O10分 16O解:(1)由f (0)=f (4),得b =4, 2分所以,f (x )=x 2-4x +3,函数的零点为1,3, 4分 依函数图象,所求集合为{}31<<x x O6分(2)由于函数f (x )的对称轴为x =2,开口向上,所以,f (x )的最小值为f (2)=-1, 8分 f (x )的最大值为f (0)=3 10分17O解:(1)当a =-1时f (x )=21122+-=-+xx x x x , 1分 对任意211x x <≤,212121212121221121)1)(()(2121)()(x x x x x x x x x x x x x x x x x f x f +-=-+-=-+-+-=- 3分∵211x x <≤,∴,1,02121><-x x x x ∴,0121>+x x∴f (x 1)-f (x 2)<0,f (x 1)<f (x 2)所以f (x )在[)+∞,1上单调递增 5分所以x =1时f (x )取最小值,最小值为2 6分(2)若对任意x [)+∞∈,1,f (x )>0恒成立,则xax x ++22>0对任意x [)+∞∈,1恒成立,所以x 2+2x +a>0对任意x [)+∞∈,1恒成立,令g (x )=x 2+2x +a , x [)+∞∈,1因为g (x )= x 2+2x +a 在[)+∞,1上单调递增,所以x =1时g (x )取最小值,最小值为3+a ,∵ 3+a>0,∴ a>-3O10分卷Ⅱ 1OB2O C3OA4O R,⎪⎭⎫⎢⎣⎡+∞,161; 5O[0,1] 6Olog b a7O解:(Ⅰ)f (3x 0)=a3x =(ax )3=8; 4分(Ⅱ)因为0<a<1,所以f (x )=a x单调递减;所以2x 2-3x +1≥x 2+2x -5,解得x≤2或x≥3; 10分 8O解:(Ⅰ)f (x )=x1的定义域为()()∞+∞-,,00 , 令1111+=+xx ,整理得x 2+x +1=0,△=-3<0, 因此,不存在x ∈()()∞+∞-,,00 使得f (x +1)=f (x )+f (1)成立,所以f (x )=M x∉1; 3分 (Ⅱ)f (x )=lg12+x a 的定义域为R,f (1)=lg 2a,a>0,若f (x )= lg12+x a ∈M ,则存在x ∈R使得lg 1)1(2++x a=lg 12+x a +lg 2a , 整理得存在x ∈R使得(a 2-2a )x 2+2a 2x +(2a 2-2a )=0O(1)若a 2-2a =0即a =2时,方程化为8x +4=0,解得x =-21,满足条件:(2)若a 2-2a ≠0即a ∈()()∞+,,220 时,令△≥0,解得a ∈[)(]532253+-,, ,综上,a ∈[3-5,3+5]; 7分(Ⅲ)f (x )=2x+x 2的定义域为R, 令21+x +(x +1)2=(2x +x 2)+(2+1),整理得2x+2x -2=0,令g (x )=2x+2x -2,所以g (0)·g (1)=-2<0, 即存在x 0∈(0,1)使得g (x )=2x+2x -2=0, 亦即存在x 0∈R使得21+x +(x +1)2=(2x +x 2)+(2+1),故f (x )=2x +x 2∈M O10分。
北京四中期中测试高三年级数学学科(理)高三数学 期中测试卷(理)试卷满分共计150分 考试时间:120分钟一、选择题:本大题共8小题,每小题5分,共40分1.若{}2log A y y x ==,12x B y y ⎧⎫⎪⎪⎛⎫==⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A.102y y ⎧⎫<<⎨⎬⎩⎭ B.{}0y y > C.∅ D.R 2.等比数列{}n a 中,37a =,前3项之和321S =,则数列{}n a 的公比为( )A.1B.12-C.1或12-D.1-或123.曲线21x y x =-在点()1,1处的切线方程为( ) A.20x y --= B.20x y +-= C.450x y +-= D.450x y --=4.对任意复数z x yi =+(),R x y ∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y +≤5.若偶函数()f x 满足当0x ≥时,()28f x x =-,则(){}20x f x ->=( ) A.{}24x x x <->或 B.{}06x x x <>或 C.{}04x x x <>或 D.{}22x x x <->或 6.已知函数()()πsin R 2f x x x ⎛⎫=-∈ ⎪⎝⎭,下面结论错误..的是( ) A.函数()f x 的最小正周期为2π B.函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上是增函数 C.函数()f x 的图象关于y 轴对称 D.函数()f x 奇函数7.设()22f x x =-,若0a b <<,且()()f a f b =,则ab 的取值范围是( )A.()0,2B.(]0,2C.(]0,4D.(8.给出下列三个命题:①若奇函数()f x 对定义域内任意x 都有()()2f x f x =-,则()f x 为周期函数;②若函数()()22,log x f x g x x ==,则函数()2y f x =与()12y g x =的图象关于直线y x =对称; ③函数11cos ln 21cos x y x -=+与ln tan 2x y =是同一函数. 其中真命题的个数是( )A.0B.1C.2D.3二、填空题:本大题共6小题,每小题5分,共30分9.()101x dx -=⎰ 10.若a 为第三象限角,且3cos25a =-,则πtan 24a ⎛⎫+= ⎪⎝⎭11.若二次函数()f x 满足()()22f x f x +=-,且()()()01f a f f ≤≤,则实数a 的取值范围是 .12.函数28ln y x x =-的单调减区间是 ,极小值是 .13.E 、F 是等腰直角ABC △斜边AB 上的三等分点,则tan ECF ∠= .B F E A C14.已知:数列{}n b 满足()()**12111,,2,n n n b b x x N b b b n n N +-==∈=-∈≥.①若2x =,则该数列前10项和为 ;②若前100项中恰好含有30项为0,则x 的值为 .三、解答题:本大题共6小题,共80分15.(本小题满分13分)已知:函数()()sin f x A ωx φ=+(其中π0,0,02A ωφ>><<)的图象与x 轴的交点,相邻两个交点之间的距离为π2,且图象上一个最低点为2π,23M ⎛⎫- ⎪⎝⎭. ⑴求:()f x 的解析式; ⑵当ππ,122x ⎡⎤∈⎢⎥⎣⎦,求:()f x 的值域.16.(本小题满分13分)已知:函数()()()221ln 1f x x x =+-+.⑴求:()f x 的单调区间;⑵若[]0,1x ∈时,设函数()y f x =图象上任意一点处的切线的倾斜角为θ,求:θ的取值范围.17.(本小题满分13分)已知:对于数列{}n a ,定义{}n a ∆为数列{}n a 的一阶差分数列,其中()*1n n n a a a n N +∆=-∈, ⑴若数列{}n a 的通项公式()2*5322n a n n n N =-∈,求:{}n a ∆的通项公式; ⑵若数列{}n a 的首项是1,且满足2n n n a a ∆-=,①设2n n na b =,求:数列{}n b 的通项公式; ②求:{}n a 的前n 项和n S .18.(本小题满分13分)已知:ABC △中,角A 、B 、C 所对的三边,,a b c 成等比数列.⑴求证:π0;3B <≤ ⑵求函数1sin 2sin cos B y B B+=+的值域.19.(本小题满分14分)已知:函数()f x 的定义域为()(),00,D --∞+∞,且满足对于任意12,x x D ∈,都有()()()1212f x x f x f x ⋅=+. ⑴求:()1f 的值;⑵判断()f x 的奇偶性并证明;⑶如果()()()41,31263f f x f x =++-≤,且()f x 在()0,+∞上是增函数,求:x 的取值范围.20.(本小题满分14分)已知:二次函数()2f x ax bx =+的图象过点()4,0n -,且()()*'02,f n n N =∈.⑴求:()f x 的解析式;⑵若数列{}n a 满足111'n n f a a +⎛⎫= ⎪⎝⎭,且14a =,求:数列{}n a 的通项公式; ⑶对于()2中的数列{}n a ,求证:145;23n n k k k a =-<<∑①②≤.。
北京四中高一年级期中数学试卷试卷分为两卷,卷(I )100分,卷(II )50分,共计150分考试时间:120分钟卷(I )一、选择题:(本大题共10小题,每小题5分,共50分) 1. 若实数a ,b 满足a>b ,则下列不等式一定成立的是( ) A. a 2<b 2B.ba11<C. a 2>b 2D. a 3>b 32. 等差数列{a n }中,若a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A. 7B. 15C. 20D. 253. 不等式(31)x -1>1的解集为( ) A. {1>x x }B. {1<x x }C. {2>x x }D. {2<x x }4. ∆ABC 中,三边a ,b ,c 的对角为A ,B ,C ,若B=45°,b=23,c=32,则C=( )A. 60°或120°B. 30°或150°C. 60°D. 30°5. 已知数列{a n }的前n 项和为S n ,且S n =2a n -1(*N n ∈),则a 5=( ) A. 32B. 31C. 16D. 156. 等差数列{a n }中,a n =6-2n ,等比数列{b n }中,b 5=a 5,b 7=a 7,则b 6=( ) A. 42B. -42C. ±42D. 无法确定7. ∆ABC 中,若∠ABC=4π,AB=2,BC=3,则sin ∠BAC=( ) A.1010B.510C.10103 D.55 8. 计算机是将信息转换成二进制进行处理的,所谓二进制即“逢二进一”,如(1101)2表示二进制的数,将它转换成十进制数的形式是1×23+1×22+0×21+1×20=13,那么将二进制数(位91...11)2转换成十进制数是( ) A. 512 B. 511 C. 256 D. 2559. 不等式①x 2+3>3x ;②a 2+b 2≥2(a -b -1);③2≥+baa b ,其中恒成立的是( ) A. ①②B. ①③C. ②③D. ①②③10. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( )A. 0.5小时B. 1小时C. 1.5小时D. 2小时二、填空题:(本大题共6小题,每小题4分,共24分) 11. 不等式x 2+x -2<0的解集为_________。
北京四中2010~2011学年度第一学期期中测试初三数学试题及答案(考试时间为120分钟,试卷满分为120分)试题部分:第Ⅰ卷 (共32分)一、选择题(本题共32分,每小题4分)1.下列图形中,是中心对称图形但不是轴对称图形的是( ).2. 在下列二次根式中,是最简二次根式的是( ).AB .xCD 3.将二次函数25y x=的图象先向右平移2个单位,再向下平移3个单位,得到的函数图象的解析式为( ). A .25(2)3y x =++ B .25(2)3y x =-+ C .25(2)3yx =+- D .25(2)3y x =--4.已知⊙O 1、⊙O 2的半径分别是12r =,24r =,若两圆相交,则圆心距O 1O 2可能取的值是( ). A .2 B .4 C .6 D .85.已知22560x x y y-+=,则:y x 等于 ( ).A .116或B .61或C . 1132或D .23或6.已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是( ).A .202cmB .202cm πC .102cm πD .52cm π7.若方程06)4(22=+--x kx x 没有实数根,则k 的最小整数值是( ). A . 2 B . 1 C . -1 D . 不存在A .B .C .D .8.已知抛物线1C :221yx m x =-++(m为常数,且0≠m )的顶点为A ,与y 轴交于点C ;抛物线2C 与抛物线1C 关于y 轴对称,其顶点为B .若点P 是抛物线1C 上的点,使得四边形A B C P 为菱形,则m 为( ). A .B .C .D .第Ⅱ卷 (共88分)二、填空题(本题共18分,每题3分)9.若二次根式3+x 有意义,则x 的取值范围是_______. 10.抛物线b bx x y -+-=82,若其顶点在x 轴上,则b 值为 .11.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD =l ,则弦AB 的长是 .12.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .13.已知圆的一条弦把圆周分成1:3两部分,则这条弦所对的圆周角的度数是 . 14.已知二次函数)0(2≠++=a c bx axy 的图象如图所示,抛物线经过点(1,0),则下列结论: ①0>ac ;②方程02=++c bx ax的两根之和大于0;③ y 随x 的增大而增大;④0<+-c b a ,其中正确的是.三、解答题(本题共70分;第15—20题各5分,第21—23题各6分,第24—25题7分,26题8分) 15.计算:)21420112-⎛⎫-+ ⎪⎝⎭.C 'B '16.解方程:23620x x --=.17.已知关于x 的一元二次方程()2221230x m x mm -++--=的两个不相等的实数根中,有一个根是0,求m 的值. 18.已知二次函数c bx axy ++=2中,函数y 与自变量x 的部分对应值如下表:(1)写出二次函数的顶点坐标及对称轴; (2)求二次函数的解析式; (3)若1()A m y ,,2(1),B my -, 两点都在该函数的图象上,且m <2, 试比较1y 与2y 的大小.19.如图1,正方形ABCD 是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图2的程序移动. (1)请在图1中画出光点P 经过的路径; (2)求光点P 经过的路径总长(结果保留π).20.抛物线2ya x=与直线3yx =--交于点(1),A b .(1)求,a b 的值; (2)设抛物线2y a x=与直线2y=-的两个交点为B 、C (点B 在点C 的左侧),求△ABC的面积.21.如图,已知A B 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与A B 的延长线交于点P ,A CP C=,2C O BP C B=∠∠.(1)求证:P C 是⊙O 的切线;(2)点M 是弧AB 的中点,C M 交A B 于点N , 求∠CNA 的度数.图2D 图122.某园艺公司计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y (万 元)与投入资金x (万元)成正比例关系,如图1所示;种植花卉的利润2y (万元)与 投入资金x (万元)成二次函数关系,如图2所示.(1)分别求出利润1y (万元)与2y (万元)关于投入资金x (万元)的函数关系式; (2)如果该园艺公司以8万元资金投入种植花卉和树木,他至少获得多少利润?他能 获取的最大利润是多少?23. 农科所有一块五边形的实验田,用于种植1号良种水稻进行实验,如图所示,已知五边形ABCDE 中,∠ABC =∠AED =90°,AB=CD=AE=BC+DE =20米. (1)若每平方米实验田需要水稻1号良种25克,若在△ABC 和△ADE 实验田中种植1号良种水稻,问共需水稻1号良种多少克?(2)在该五边形实验田计划全部种上这种1号良种水稻,现有1号良种9千克,问是否够用,通过计算加以说明.24.已知关于x 的方程2(1)10nx m x -++=① 有两个相等的实数根.(1)用含n 的代数式表示2m ; (2)求证:关于y 的22222230m y m y mn ---+=方程②必有两个不相等的实数根;(3)若方程①的一根的相反数恰好是方程②的一个根,求代数式212m n n+的值.图1EDCBA25.如图,⊙'O 与x 轴的正半轴交于C 、D 两点,E 为圆上一点,给出 5 个论断: ① ⊙'O 与y 轴相切于点A ;② DE ⊥x 轴;③ EC 平分∠AED ;④ DE =2AO ;⑤OD =3OC .(1)如果论断①、②都成立,那么论断④一定成立吗?答: (填“成立”或“不成立”). (2)从论断①、②、③、④中选取三个作为条件,将论断⑤作为结论,组成一个真命题,并加以证明. 已知:如图,⊙'O 与x 轴的正半轴交于C 、D 两点,E 为圆上一点, (只需填论断的序号). 求证:OD =3OC .26.已知抛物线b ax axy --=22(0>a )与x 轴的一个交点为(10)B -,,与y 轴的负半轴交于点C ,顶点为D .(1)直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点A 的坐标; (2)以AD 为直径的圆经过点C .①求抛物线的解析式;②点E 在抛物线的对称轴上,点F 在抛物线上,且以E F A B ,,,四点为顶点的四边形为平行四边形,直接写出点F 的坐标.参考答案: 一、选择题1.B ;2.C ;3.D ;4.B ;5.C ;6.C ;7.A ;8.A 二、填空题9.3x ≥-; 10.-8或4; 11. 6;1; 13. 45°或135°; 14.②④ 三、解答题15.1-;16.3x =17.3m =;18.(1)顶点坐标(2,2)-,对称轴为直线2x =;(2)242y x x =-+; (3)因为12m m -<<,所以21y y >. 19. (1)(2)6π.20.(1)4,4a b =-=-;21.(1) 解:(1)O A O C A A C O =∴∠=∠ ,, 又22C O B A C O B P C B ∠=∠∠=∠ ,, A A C O P C B ∴∠=∠=∠. 又A B 是O ⊙的直径, 90A C O O C B ∴∠+∠=°,90P C B O C B ∴∠+∠=°,即O C C P ⊥, 而O C 是O ⊙的半径, ∴P C 是O ⊙的切线. (2)A C P C A P =∴∠=∠ ,, A A C O P C B P ∴∠=∠=∠=∠,又C O B A A C O C B O P P C B ∠=∠+∠∠=∠+∠ ,,,C O B C B O B C O C B C O C O B ∴∠=∠∴=∴==,,∴∠COB =60°, ∴∠A =30°点M 是弧AB的中点且AB为直径A C M B C M ∴∠=∠=45°, ∴∠CNA =105°.22. 解:(1)设1y k x =, 直线过点(1,2),∴2k =. ∴12(0)y x x =≥.设22y a x =, 抛物线过点(2,2),∴12a =. ∴221(0)2y xx =≥.(2)设该园艺公司投入资金x 万元种植花卉,则投入资金(8)x -万元种植树木,则获取的利润212(8)(08)2y x xx =-+≤≤,整理得21216(08)2y x x x =-+≤≤.根据图象得,当x =2时,y 有最小值为14,当x =8时,y 有最大值为32.答:该园艺公司投入资金2万元种植花卉和6万元种植树木时,获得最少14万元利润; 投入资金8万元种植花卉时,能获取最大利润,且最大利润是32万元. 23.解: 将△DEA 绕A 顺时钟旋转,使A E 与A B 重合,点D 到'D ∴'AD E AD B ∆≅∆∴'''D B D ED B AE D A A E=∠=∠=∵90A B CA E D ∠=∠=︒∴'90A B D ∠=︒∴'180C B D ∠=︒即'C B D 共线 ∵B C D E C D += ∴'D C C D =在'A D C ∆和A D C ∆中'''A D A D A C A C D C D C=⎧⎪=⎨⎪=⎩∴'A D C A D C∆≅∆∴'A D C A D CS S ∆∆=∴''2A D C S D CBC ∆=⋅÷ ∵20A B B CDE m=+= ∴2'200A D CA C DS mS ∆∆== ∴2'400A D C D B C D ES mS ∆==∵一平方米需25克∴共需25×200=5000(克)2400A B C D E S m=∴共需2225/400100009g m mg ⨯=>千克 ∴不够用答⑴共需5000g ⑵不够用24. (1)解:∵方程①有两个相等的实数根.1,0)1(4.0)1(4,01221>-≠-=∴⎩⎨⎧=--=∆≠-∴n m n m n m n 则且 (2) 证明: 由方程②,有0)1)(3(8.03,08,0,01)1)(3(8)642(4)32441(4)321(4)32(442222222222222222>∆∴>-+∴>+>∴≠>--+=-+=-+-+=-++=+---=∆n n m n mm n n n m n n m n n m nmm n mm m且∴方程②必有两个不相等的实数根. (3)解法一:由24(1)mn =-,可得412m n =-.将412m n =-代入方程①得,.01422=++mx xm解得 .221mx x -==∵方程①的一个根的相反数恰好是方程②的一个根, 由根的定义,得03222)2(2222=+--⋅-⋅nmmm mm.14)42(284)1244()12(12742.03)1(4203222222222=+=+=+-=+=+∴=+∴=+---=+--n n n nn n mn n n m n n n nn m即整理,得解法二: )1(42-=n m,∴方程②为032)1(42)1(422=+-----n n my y n ,③∵方程①的一个根的相反数恰好是方程②的一个根,设方程②的此根为1y , ∴-1y 为方程①的根. ∴01)1(121=+--my y n .由方程③变形,得03242]1)1[(421121=+--++--n n mymyy n ..1.742.21.032422121以下同解法可知由解法=+∴==+--∴n n my nn my25.(1)成立; (2)题设:(1)(2)(3)(不唯一,含(1)(3)即可) (3)证明:连结AC 、O ′A. ∵⊙O´与y 轴相切于点A∴O ′A ⊥y 轴 ∴∠OAC+∠O ′AC=90° ∵DE ⊥x 轴;∴CE 是⊙O ′的直径, ∴∠O ′AE+∠O ′AC=90° ∴∠OAC=∠O ′AE ∵EC 平分∠AED∴设∠AEC=∠DEC=x,AC=CD,∵O ′A=O ′E, ∴∠O ′AE=∠AEC=∠OAC=x, ∵四边形ACDE 内接于⊙O ′, ∴∠ACO=∠AED=2x, ∵∠AOC=90°,∴∠OAC=x =30°, ∴CD=AC=2OC, ∴OD=3OC. 26、(1)直线x=1 , A(3,0)(2)①由抛物线对称轴是直线x=1得,D 点的横坐标为1,代入bax ax y --=22得D(1,-a-b) ,∵点B (-1,0)在 bax ax y --=22上,∴b=3a ∴D(1,-4a)∵点C 在 bax axy --=22上 ∴C(0,-b) 即C(0,-3a)连AC 、CD 、AD 得△ACD 为直角三角形 有222CDACAD+= 222199164a aa+++=+∴1=∴a 33==∴a b 322--=∴x x y②)12,3()12,5()4,1(321--F F F。
北京四中2010-2011学年度第一学期期中测试高一年级数学试卷卷(Ⅰ)一、选择题:本大题共10小题,每小题5分,共50分1. 若集合{}0123A =,,,,{}124B =,,,则集合A B = ( )A .{}01234,,,,B .{}1234,,,C .{}12,D .{}0【解析】 A{}01234A B = ,,,,2. 函数()lg(1)f x x =-的定义域是( )A .(2)+∞,B .(1)+∞,C .[)1+∞,D .[)2+∞,【解析】 B10x -> ∴1x >3. 下列各选项的两个函数中定义域相同的是( )A .2()f x =,()g xB .()xf x x=,()1g x =C .()2f x x =-,()g x =D .()f x ()0g x =【解析】 C对于A ,()f x 的定义域为0x >,()y x 的定义域为R对于B ,()f x 的定义域为0x ≠,()y x 的定义域为R 对于D ,()f x 的定义域为1x =,()y x 的定义域为R4. 下列函数中值域是(0)+∞,的是( )A .2()32f x x x =++B .21()4f x x x =++ C .1()||f x x =D .1()12f x x =+ 【解析】 C对于A , 2231()32()24f x x x x =++=+-,()f x 的值域为1[,)4-+∞.对于B ,2211()()42f x x x x =++=+,()f x 的值域为[0,)+∞.对于C ,()f x 的值域为 (0)+∞,. 对于D ,()f x 的值域为 R . 5. 函数4y x=是( ) A .奇函数且在(0)-∞,上单调递增 B .奇函数且在(0)-∞,上单调递减 C .偶函数且在(0)+∞,上单调递增D .偶函数且在(0)+∞,上单调递减 【解析】 D()()4f x f x x-=-=-∴()f x 为偶函数,()f x 在()0+∞,上单调递减. 故选D6. 函数||2x y =的图象是( )【解析】 B||2x y =是偶函数,且在[0,)+∞上单调递增.故选B7. 若函数()f x 是偶函数,且在区间[02],上单调递减,则( ) A .(1)(2)(0.5)f f f ->> B .(0.5)(1)(2)f f f >-> C .(2)(1)(0.5)f f f >-> D .(0.5)(2)(1)f f f >>- 【解析】 B()()()()0.5112f f f f >=->8. 函数212log (4)y x x =-的单调增区间是( )A .(]2-∞,B .(]02,C .[)24,D .[)2+∞,【解析】 D12log y x =为减函数()22424x x x -=---的减区间为[)2+∞,∴()212log 4y x x =-的单调增区间为[)2+∞,9. ()f x 是(11)-,上的奇函数,且在[)01,上递减,则1(21)2f x f x ⎛⎫+<- ⎪⎝⎭的解集为( ) A .32⎛⎫+∞ ⎪⎝⎭, B .(01), C .102⎛⎫ ⎪⎝⎭, D .32⎛⎫-∞ ⎪⎝⎭,【解析】 C()f x 是(11)-,上的奇函数,且在[)01,上递减 ()f x ∴在(11)-,上递减 11121211x x ⎧-<+<⎪∴⎨⎪-<-<⎩ 312201x x ⎧-<<⎪∴⎨⎪<<⎩ 102x ∴<<DCB10.设()f x 为定义在R 上的奇函数,当0x ≥时,()22x f x x b =++(b 为常数),则(1)f -=( )A .3-B .1-C .1D .3【解析】 B(0)12f b =++,3b ∴=-()()11221f f b -=-=---=-二、填空题:本大题共6小题,每小题4分,共24分11.函数y =_____________. 【解析】 []13-,1030x x +⎧⎨-⎩≥≥ ∴13x x <-⎧⎨⎩≤ ∴13x -≤≤∴y []13-,12.函数2()log (31)x f x =+的值域为_____________. 【解析】 []0+∞,311x +> ∴()2log 310x +>∴2()log (31)x f x =+的值域为[)0+∞,13.若函数25y x ax =++在[)0+∞,上递增,则a 的取值范围是_____________. 【解析】 [)0+∞,02ax =-≤ ∴0a ≥∴a 的取值范围为[)0+∞,14.将20.3,2log 0.3,0.32按由大到小的顺序排序为_______________. 【解析】 0.32220.3log 0.3>> 0.321> 2l o g 0.30< 200.31<< ∴0.32220.3log 0.3>>15.4366312log 2log 9log 89+--=___________.【解析】 12-()44233366366312log 2log 9log 8log 4log 9log 329-+--=+--46log 3622=+- 2216=+- 12=-16.若函数2()lg(1)f x ax ax =++的值域为R ,则a 的取值范围是_____________. 【解析】 [)4+∞,∵()f x 的值域为R∴()291x ax ax =++的值域为[)0+∞, ①当0a =时,()1g x = ∴0a ≠ ②当0a ≠时,()21124a g x a x ⎛⎫=++- ⎪⎝⎭∴0104aa >-,≤ ∴4a ≥故a 的取值范围为[)4+∞,三、解答题:本大题共2小题,每小题13分,共26分 17.求下列函数的定义域和值域.⑴()f x ⑵ 21()43g x x x =-+【解析】 ⑴ 240x -≥ ∴24x ≤ ∴22x -≤≤∴()f x []22-,,值域为[)0+∞, ⑵ 2430x x -+≠∴()()310x x --≠ ∴31x x ≠≠∴21()43g x x x =-+的定义域为()()()1133-∞+∞ ,,,()2243211x x x -+=---≥ ∴21143x x --+≤或21043x x >-+∴21()43g x x x =-+的值域为(]()10-∞-+∞ ,,18.设函数20()log (1)0x ax f x ax x ⎧⎪=⎨-<⎪⎩,≥,,其中0a >且1a =.⑴ 若(1)2f -=,求a ;⑵ 若2a =,求不等式()2f x <的解集;⑶ 若()f x 在定义域内为增函数,求a 的取值范围. 【解析】 ⑴ ()()1log 12a f a -=+=∴21a a =+ ∴210a a --=∴a = ∵0a >∴a ⑵ 2a = ∴()()220log 120x x f x x x ⎧⎪=⎨-<⎪⎩≥()2f x <当0x >时,22x < ∴1x < 当0x <时,()2log 122x -<∴124x -< ∴32x >-∴()2f x <的解集为312⎛⎫- ⎪⎝⎭, ⑶ ()20xf x x =>时单调递增()()log 1a f x ax =-单调递增时 ∴01a <<又()002log 1log 1a a a >-= 综上,a 的取值范围为()01,卷(Ⅱ)一、选择题:本大题共3小题,每小题5分,共15分1. 给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间(01),上单调递减的函数序号是( ) A .①② B .②③ C .③④ D .①④【解析】 B对于①,12y x =在()01,上是单调递增的; 对于②,()12log 1y x =+在()01,上是单调递减的;对于③,1y x =-在()01,上是单调递减的; 对于④,12x y +=在()01,上是单调递增的.2. 若定义域在区间(10)-,内的函数2()log (1)a f x x =+,(0a >且12a ≠)满足()0f x >,则a 的取值范围是( )A .(1)+∞,B .112⎛⎫ ⎪⎝⎭,C .102⎛⎫ ⎪⎝⎭,D .12⎛⎫+∞ ⎪⎝⎭,【解析】 C∵()10x ∈-, ∴()101x +∈, ()0f x > ∴()2log 10a x +> ∴021a <<∴102a <<3. 函数()y f x =的定义域为(0)+∞,,且对于定义域内的任意x ,y 都有()()()f x y f x f y =+ ,且(2)1f =,则f ⎝⎭的值为( ) 【解析】 12-令2,1x y ==得,(2)(21)(2)(1)f f f f =⨯=+,(1)0f ∴=,令12,2x y ==得,11(1)(2)(2)()22f f f f =⨯=+,1()12f ∴=-令x y ==得,1()212f f f f f ==+==-,12f ∴=-二、填空题:本大题共3小题,每小题5分,共15分 4. 函数1()423x x f x +=-+的值域是______________. 【解析】 [)2+∞,()1423x x f x +=-+()22223x x =-⋅+ ()22122x =-+≥∴()f x 的值域为[)2+∞,5. 若函数212log 0()log ()0x x f x x x >⎧⎪=⎨-<⎪⎩,,,,若()()f a f a >-,则实数a 的取值范围是____________.【解析】 ①当0a >时,()2122log log log a a a >=- ∴2log 0a > ∴1a >②当0a <时,()()122log log a a ->-∴()2log 0a -< ∴01a <-< ∴10a -<< ∴a 的取值范围为()()101-+∞ ,,6. 若函数|1|12x y m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是______________.【解析】[1,0)- 如图.m 的取值范围是[1,0)-三、解答题:本大题共2小题,每小题10分,共20分 7. 给定函数()|1|(5)f x x x =---,⑴ 作出()f x 的草图; ⑵ 求()f x 的单调区间;⑶ 求()f x 在区间[04],上的值域. 【解析】 ⑴ 当1x >时,()()()15f x x x =---当1x <时,()()()15f x x x =-- 草图如右.⑵ 从图可知,单调递增区间为[]13,单调递减的区间为[)()13-∞+∞ ,, ⑶ ()()()051034f f f ===,,∴值域为[]05,8. 已知函数||1()22x x f x =-⑴ 判断此函数的奇偶性; ⑵ 若()2f x =,求x 值;⑶ 若2(2)()0t f t mf t +≥对于[12]t ∈,恒成立,求实数m 的取值范围.【解析】 ⑴ ()()122x x f x f x --=-≠± ∴()f x 是非奇非偶函数⑵ ()2f x = ∴1222x x -= 当0x >时()22210x x --=∴2x∴2x =∴log x = 当0x <时,1202x x--=∴log x = ⑶ ∵[][]12224t t ∈∈,,∴()1202tt f t =-≥ ∴2(2)()0tf t mf t +≥ ∴()()22t f t m f t -≥.令()()()22t f t g t f t =-∴()2211122212222222(2)1522222t t t t t t t t t t t t t g t ⎛⎫⎛⎫+--⎪⎪⎛⎫⎝⎭⎝⎭=-⋅=-⋅=-+--≤- ⎪⎝⎭--= 等号成立[]22112t t ==∈,故5m -≥.∴m 的取值范围为[)5-+∞,.。