安徽省安庆市2016-2017学年高一数学上学期期末考试试题
- 格式:doc
- 大小:570.50 KB
- 文档页数:7
安庆一中 2023-2024 学年度第二学期高一年级期末考试语文学科试卷注意事项:1.本试卷考试时间为 150 分钟,试卷满分 150 分,考试形式闭卷。
2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用 0.5 毫米黑色墨水签字笔填写在试卷及答题卡上。
一、现代文阅读 (35 分)(一)现代文阅读Ⅰ (本题共 5 小题,19 分) 阅读下面的文字,完成下面小题。
材料一:西方戏剧的观念与中国戏曲的观念,是迥然有别的。
古希腊亚里斯多德对戏剧进行了理论总结,写下了著名的《诗学》。
他说:“悲剧是对于一个严肃、完整、有一定长度的行动的摹仿。
”悲剧“最重要的是情节,即事件的安排……悲剧中没有行动,则不成为悲剧,但没有性格,仍然不失为悲剧。
”中国的戏曲理论,无论是明代的汤显祖还是清代的李渔,阐述的重点都是在演员的演技和唱腔方面,剧本的故事无不处于次要的位置。
这种理论上的差异,自然造就了舞台演出的分疆。
西方的戏剧注重情节,强调客观真实性。
演员的演出力图逼真。
苏联时期的斯坦尼斯拉夫斯基要求演员在演出中放弃自我本性完全投入到角色中去,以期最大程度地符合剧情的客观真实性。
他在排演莎士比亚的《奥赛罗》时,这样处理威尼斯的小船驶过舞台:“船下要装小轮子。
小轮子必须妥善地装上一层厚橡皮,使船能平稳地滑动……小船要十二个人推着走,用鼓风机向口袋里吹胀了气,以此形成翻滚的波浪……使用的槽是锡制的、空心的,在空心的槽里灌上一半水,摇槽时里面的水便会动荡,发出典型的威尼斯河水的冲击声。
”舞台上一切的安排就是要把一个不容怀疑和增减的情节让观众接受。
中国的戏曲注重的是演员的表演,对戏曲的情节并不十分苛求。
戏曲也强调逼真,但这种逼真不是在摹仿现实的细节摹仿得惟妙惟肖的基础上,而是通过演员的表演,把舞台上没有的东西“无中生有”地表现给观众看。
如布莱希特看了梅兰芳表演的《打渔杀家》后写道:“他表演一位渔家少女怎样驾驶一叶小舟,她站立着摇着一支长不过膝的小桨,这就是驾驶小舟,但舞台上并没有小舟……观众这种感情是由演员的姿势引起的,正是这种姿势使得这场行船的戏获得名声。
2023-2024学年安徽省安庆市高一上册期末数学试题一、单选题1.集合{}N 5215A x x =∈-<-<的子集个数为().A .4B .7C .8D .16【正确答案】C【分析】解出集合A ,再计算集合的子集个数.【详解】因为{}{}{}N |5215N|230,1,2A x x x x =∈-<-<=∈-<<=,所以该集合的子集的个数为328=,故选:C .2.命题“5x ∀>,5log 1x >”的否定是().A .5x ∀>,5log 1x ≤B .05x ∃>,50log 1x ≤C .5x ∀≤,5log 1x ≤D .05x ∃≤,50log 1x ≤【正确答案】B【分析】根据命题的否定的定义判断.【详解】含全称量词的命题的否定是含存在量词的命题,命题“5x ∀>,5log 1x >”的否定是05x ∃>,50log 1x ≤.故选:B .3.下列各式中,与5πsin 3的值相等的是().A .πcos6B .2πsin3C .4πsin3D .7πsin3【正确答案】C【分析】结合诱导公式求出各三角函数值后可得.【详解】因5ππsin sin 33=-=πcos 6=,2πsin 3=4ππsin sin 33=-=-7ππsinsin 332==,故选:C .4.“角α是第三象限角”是“sin tan 0αα⋅<”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【正确答案】A【分析】结合角所在象限的性质及充分不必要条件进行判断即可.【详解】当角α是第三象限角时,sin 0α<,tan 0α>,于是sin tan 0αα⋅<,所以充分性成立;当2sin sin tan 0cos αααα⋅=<,即cos 0α<时,角α是第二或第三象限角,所以必要性不成立,故选:A .5.已知函数()11cos 33xf x x ⎛⎫=+ ⎪⎝⎭,则其图象可能是()A .B .C .D .【正确答案】A【分析】计算函数值(π)f 后可得.【详解】由条件知()ππ1111πcos π03333f ⎛⎫⎛⎫=+=-< ⎪ ⎪⎝⎭⎝⎭,A 符合,其它均不符合,故选:A .6.已知tan 2a =,31log 3b =,20.99c =-,则a ,b ,c 的大小关系为()A .a b c <<B .b a c <<C .a c b <<D .b<c<a【正确答案】A【分析】结合正切函数性质、指数函数性质,借助中间值1-比较可得.【详解】因23πtan 2tan 10.990.98014a b c =<=-=<=-=-,故选:A .7.大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速v (单位:m/s )与3log 100x成正比,其中x 表示鲑鱼的耗氧量的单位数.当一条鲑鱼的耗氧量是2700个单位时,它的游速为1.5m/s .若一条鲑鱼的游速提高了1m/s ,则它的耗氧量的单位数是原来的()倍.A .4B .8C .9D .27【正确答案】C【分析】根据初始值求得比例系数k ,然后设原来的耗氧量的单位数为1x ,提速后的耗氧量的单位数为2x ,由速度差列等式求解.【详解】根据条件设3log 100x v k =,当2700x =时, 1.5v =,代入得327001.5log 3100k k ==,解得12k =,所以31log 2100x v =,设原来的耗氧量的单位数为1x ,提速后的耗氧量的单位数为2x ,则2123331111log log log 1210021002x x xx -==,所以22139x x ==,故选:C .8.已知函数()ln 2f x x x =+-的零点为0x ,则下列说法错误的是().A .()01,2x ∈B .020e ex x =C .()0021xx -<D .0201x x -<【正确答案】D【分析】由零点存在定理及单调性确定零点0(1,2)x ∈,再利用零点的性质结合对数函数与指数函数性质判断各选项.【详解】由条件知函数()f x 在其定义域内单调递增,所以其最多有一个零点,又()110f =-<,()2ln 20f =>,于是()01,2x ∈,A 正确;所以000l 2n x x +-=,整理得()0000ln ln e ln e 2x x x x +==,所以020e e x x =,B 正确;因()01,2x ∈,所以()020,1-∈x ,于是()0021xx -<,0201x x ->,C 正确,D 错误,故选:D .二、多选题9.下列各式中,其中运算结果正确的是().A π4=-B .()233log 937⨯=C .lg 4lg 252+=D .42log 9log 3=【正确答案】BCD【分析】利用开偶次方的性质以及对数的运算性质逐项分析即可.【详解】A π44π=-=-,A 错误;B 选项:()23733log 93log 37⨯==,B 正确;C 选项:2lg 4lg 25lg100lg102+===,C 正确;D 选项:22422log 9log 3log 3==,D 正确.故选:BCD .10.已知函数()πtan 4f x x ⎛⎫=+ ⎪⎝⎭,则下列叙述中,正确的是().A .函数()f x 的图象关于点π,04⎛⎫⎪⎝⎭对称B .函数()f x 在ππ,44⎛⎫- ⎪⎝⎭上单调递增C .函数()y f x =的最小正周期为π2D .函数()y f x =是偶函数【正确答案】AB【分析】由正切函数性质判断AB ,利用特殊值及周期性、奇偶性的定义判断CD .【详解】π()tan 004f -==,A 正确;ππ(,44x ∈-时,ππ(0,)42x +∈,因此此时()f x 递增,B 正确;π(04f -=,但π()4f 不存在,C ,D 均不正确,故选:AB .11.已知函数()()sin f x A x =+ωϕ(0A >,0ω>,π2ϕ<)的部分图象如图所示,下列说法正确的是()A .函数()f x 的最小正周期为πB .函数()f x 的图象关于直线5π12x =-对称C .函数()f x 图象向右平移π6个单位可得函数2sin y x =的图象D .若方程()()R f x m m =∈在ππ,63⎡⎤-⎢⎣⎦上有两个不等实数根1x ,2x ,则()121cos 2x x +=.【正确答案】AB【分析】根据图象确定函数的解析式,然后由正弦函数性质判断各选项.【详解】由图可知2A =,πππ43124T =-=,所以2ππT ω==,于是A 正确,所以2ω=,则()()2sin 2f x x ϕ=+,将点π,212⎛⎫ ⎪⎝⎭代入得:π2sin 26ϕ⎛⎫+= ⎪⎝⎭,所以ππ2π62k ϕ+=+,Z k ∈,又2πϕ<,所以π3ϕ=,所以()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,对于B ,因为5π5ππ2sin 21263f ⎛⎫⎛⎫-=-+=- ⎪ ⎪⎝⎭⎝⎭,为最小值,所以函数()f x 的图象关于直线5π12x =-对称,故B 正确;对于C ,将函数()f x 图象向右平移π6个单位,可得函数ππ2sin 22sin 263y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,故C 错误;对于D ,由条件结合图象可知12π212x x +=,于是12π6x x +=,所以()12πcos cos 6x x +==故D 错误.故选:AB .12.已知函数()y f x =是定义在R 上的奇函数,()()11f x f x +=-,且当[]0,1x ∈时,()2f x x =,则下列关于函数()y f x =的判断中,其中正确的判断是().A .函数()y f x =的最小正周期为4B .11124f ⎛⎫=⎪⎝⎭C .函数()y f x =在[]2,4上单调递增D .不等式()0f x ≥的解集为[]()4,42Z k k k +∈.【正确答案】ABD【分析】由奇函数的性质与对称性得出函数的周期性,结合周期性、奇偶性、对称性及函数在[0,1]上的解析式可得函数的性质,从而判断各选项.【详解】由()()11f x f x +=-得()()2f x f x +=-,于是()()()()()422f x f x f x f x f x +=--=-+=--=,所以函数()y f x =的最小正周期为4,A 正确;211311122224f f f ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,B 正确;()f x 在[0,1]上递增,由()f x 是奇函数得()f x 在[1,0]-上递增,即在[1,1]-上递增,又()f x 图象关于直线1x =对称(∵(1)(1)f x f x +=-),因此()f x 在[1,3]上递减,而()f x 是周期为4的周期函数,因此()f x 在[3,5]上递增,C 错误;由选项C 的讨论,可得到不等式()0f x ≥的解集为[]()4,42Z k k k +∈,D 正确.故选:ABD .三、填空题13.已知23x =,则2222x x -+=________.【正确答案】829##199【分析】根据指数幂的运算法则计算即可.【详解】由已知得()()22221822222999x x xx --+=+=+=.故829.14.已知函数11x y a +=+(0a >且1a ≠)的图象经过定点P ,且点P 在角α的终边上,则sin cos αα=________.【正确答案】25-【分析】先由指数型函数过定点的性质求得P 的坐标,再利用三角函数的定义即可求得sin ,cos αα,从而得解.【详解】因为函数11x y a +=+(0a >且1a ≠)的图象经过定点P ,令10x +=,则1,2x y =-=,所以()1,2P -,于是sin α===cos α=-所以2sin cos 555αα⎛==- ⎝⎭.故答案为.25-四、双空题15.已知幂函数()23my m x =-在()0,∞+上单调递增,则实数m =________;函数()212log y x mx =-+的单调递增区间为________.【正确答案】2[)1,2(或()1,2)【分析】先利用幂函数的定义与单调性求得m 的值,再利用对数函数与复合函数的单调性即可求得()212log y x mx =-+的单调递增区间.【详解】因为()23my m x =-是幂函数,所以231m -=,解得2m =±,又()23my m x =-在()0,∞+上单调递增,所以0m >,则2m =;于是()()221122log log 2y x mx x x =-+=-+,由220x x -+>,解得02x <<,则()212log 2y x x =-+的定义域为()0,2,又()2221x x x μ=-+=--,其开口向下,对称轴为1x =,所以22x x μ=-+在(]0,1(或()0,1)上单调递增,在[)1,2(或()1,2)上单调递减,又12log y μ=在其定义域内单调递减,所以()212log y x mx =-+的单调递增区间为[)1,2(或()1,2).故2;[)1,2(或()1,2).五、填空题16.已知a ,b ,c 均为正实数,且1a b +=,则3241ac c b ab c +++的最小值为________.【正确答案】18【分析】先化简提公因式再应用1a b +=,a ,b 应用基本不等式,()246161c c ++-+再应用基本不等式,确定取等条件成立取得最小值即可.【详解】由条件知()232432411a b ac c a c b ab c b ab c ⎡⎤+++=++⎢⎥++⎢⎥⎣⎦()4242424242266161111a b c c c c b a c c c c ⎛⎫⎛⎫=+++≥+=+=++- ⎪ ⎪++++⎝⎭⎝⎭618≥-=,当且仅当4a b b a =,()24611c c +=+,又因为1a b +=,即13a =,23b =,1c =时,3241ac c b ab c +++的最小值为18.故18.六、解答题17.已知集合{}25,R A x x x a a =-≤∈,集合{}2log 1B x x =≤.(1)当4a =-时,求A B ⋂;(2)若A B A ⋃=,求实数a 的取值范围.【正确答案】(1)[]1,2A B = (2)[)0,a ∈+∞.【分析】(1)解不等式确定集合,A B ,然后由交集定义计算;(2)由并集的结论得B A ⊆,转化为25a x x ≥-对(]0,2x ∀∈恒成立,求出25x x -在2(]0,x ∈时的取值范围后可得参数范围.【详解】(1)当4a =-时,2540x x -+≤,解得14x ≤≤,所以[]1,4A =,{}(]2log 10,2B x x =≤=,所以[]1,2A B = .(2)由A B A ⋃=得B A ⊆,又(]0,2B =,所以25a x x ≥-对(]0,2x ∀∈恒成立,当(]0,2x ∈时,[)2252556,024x x x ⎛⎫-=--∈- ⎪⎝⎭.所以0a ≥,于是实数a 的取值范围为[)0,a ∈+∞.18.已知函数()2f x x bx c =++(b ,c ∈R )是定义在R 上的偶函数,且满足()104f f ⎡⎤=-⎣⎦.(1)求函数()f x 的解析式;(2)试判断函数()()()023axg x a f x =>+在[)1,+∞上的单调性并证明.【正确答案】(1)()212f x x =-(2)函数()g x 在[)1,+∞上单调递减,证明见解析【分析】(1)由偶函数的定义,利用恒等式知识求解;(2)根据单调性的定义证明.【详解】(1)由条件可知()()f x f x -=,即()()22x b x c x bx c -+-+=++对任意的x ∈R 恒成立,所以0b =.于是()2f x x c =+,所以()()2104f f f c c c ⎡⎤==+=-⎣⎦,解得12c =-,所以函数()f x 的解析式为()212f x x =-.(2)由(1)可知()()22322ax axg x f x x ==++,当0a >时,函数()g x 在[)1,+∞上单调递减.证明如下:设1x ∀,[)21,x ∈+∞且12x x <,所以()()()()()()()()()()221221211212122222221212121112222211211a x x x x a x x x x ax ax g x g x x x x x x x ⎡⎤+-+--⎣⎦-=-==++++++,因121x x ≤<,所以210x x ->,1210x x ->,()()2212110x x ++>,又0a >,所以()()120g x g x ->即()()12g x g x >,因此当0a >时,函数()g x 在[)1,+∞上单调递减.19.在△ABC 中,3tan 4A =-.(1)求()sin B C +,()cos B C +的值;(2)求sincos 22sin cos22AAAA +-的值.【正确答案】(1)()3sin 5B C +=,()4cos 5B C +=(2)2【分析】(1)由同角间的三角函数关系求得sin ,cos A A ,再由诱导公式可得结论;(2)由正切的二倍角公式求得tan 2A,然后由弦化切求值.【详解】(1)由3tan 04A =-<知角A 为钝角,所以sin 0A >,cos 0A <因sin 3tan cos 4A A A ==-,22sin cos 1A A +=,解得3sin 5A =,4cos 5A =-,于是()()3sin sin πsin 5B C A A +=-==,()()4cos cos πcos 5B C A A +=-=-=.(2)由22tan32tan 41tan 2AA A ==--,整理得23tan 8tan 3022A A --=,解得tan 32A =或1tan 23A =-,因ππ422A <<,所以tan 32A =.所以sin cos tan 131222231sin cos tan 1222A A A A A A +++===---.20.已知函数()e e 2x x f x --=,()e e 2x x g x -+=,其中e 是自然对数的底数.(1)求证:()()()222g x f x g x =+⎡⎤⎡⎤⎣⎦⎣⎦;(2)求函数()()()722h x g x g x =-的零点.【正确答案】(1)证明见解析(2)零点为(ln 2,(ln 2-.【分析】(1)分别计算(2)g x 和22[()][()]f x g x +可证;(2)用换元法解方程()0h x =可得.【详解】(1)由条件知()22e e 22x xg x -+=,()()2222222222e e e e e 2e e 2e e e 22442x x x x x x x x x xf xg x -----⎛⎫⎛⎫-+-++++⎡⎤⎡⎤+=+=+= ⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭,所以()()()222g x f x g x =+⎡⎤⎡⎤⎣⎦⎣⎦.(2)因()()()()22222e e 222e e221222x xx x g x g x g x --+-⎡⎤-+⎣⎦⎡⎤====-⎣⎦,令()0h x =,则()()272102g x g x ⎡⎤--=⎣⎦即()()24720g x g x ⎡⎤--=⎣⎦,即()()2410g x g x ⎡⎤⎡⎤-⋅+=⎣⎦⎣⎦,解得()2g x =或()14g x =-,又()e e 12x xg x -+==,当且仅当e e x x -=,即0x =时取等号,所以()2g x =,于是e e 22x x-+=整理得2e 4e 10x x -+=,于是e 2x =+e 2x =-,解得(ln 2x =或(ln 2x =,所以函数()()()722h x g x g x =-的零点为(ln 2,(ln 2.21.2022年11月20日,备受全球球迷关注的第22届世界杯足球赛如期开幕,全球32支参赛队伍,将在64场比赛中争夺世界足球的最高荣誉大力神杯!某体育用品商店借此良机展开促销活动,据统计,该店每天的销售收入不低于2万元时,其纯利润y(单位:万元)随销售收入x(单位:万元)的变化情况如下表所示:x(万元)235y(万元)145494(1)根据表中数据,分别用模型()logay x m b=++(0a>且1a≠)与y d=建立y 关于x的函数解析式;(2)已知当9x=时, 3.3y=,你认为(1)中哪个函数模型更合理?请说明理由.(参考数据:7.55≈)【正确答案】(1)()()21log124y x x=-+≥,()124y x=-≥(2)选用模型()()21log124y x x=-+≥更合理,理由见解析【分析】(1)根据已知数据列方程组求解即得;(2)9x=代入两个模型计算后比较可得.【详解】(1)若选用()logay x m b=++,则依题意可得()()()1log245log349log54aaam bm bm b⎧++=⎪⎪⎪++=⎨⎪⎪++=⎪⎩,解得2a=,1m=-,14b=,则()()21log124y x x=-+≥.若选用yd=+,则依题意可得145494ddd⎧+=⎪⎪⎪+=⎨⎪⎪=⎪⎩,解得c=158n=-,14d=-,则()124y x =≥.(2)对于函数()21log 14y x =-+,当9x =时,13 3.254y ==(万元);对于函数14y =,当9x =时,1 3.5254y =≈(万元);因3.525 3.3 3.25 3.3->-,所以选用模型()()21log 124y x x =-+≥更合理.22.已知函数()()2sin 2cos R f x x x a a =-+∈,且满足________.从①函数()f x 的图象关于点π,06⎛⎫ ⎪⎝⎭对称;②函数()f x 的最大值为2;③函数()f x 的图象经过点π3⎛ ⎝.这三个条件中任选一个补充到上面的横线上,并解答下面的问题:(1)求实数a 的值并求函数()f x 的单调递增区间;(2)已知函数()()22lg lg R g x x m x m m =--∈,若对任意的1ππ,64x ⎡⎤∈-⎢⎥⎣⎦,总存在[]21,100x ∈,使得()()12f x g x ≤,求实数m 的取值范围.【正确答案】(1)a =()π5ππ,πZ 1212k k k ⎡⎤-+∈⎢⎥⎣⎦;(2)[]3,1-.【分析】(1)由二倍角公式、两角差的正弦公式化函数为一个角的一个三角函数形式,选①,由π(06f =求得a ,再由正弦函数性质得单调增区间;选②,由结合正弦函数的最大值求得a ,再由正弦函数的单调性求得增区间;选③,由π()3f =a ,再由正弦函数的单调性得增区间;(2)求出(),()f x g x 的最大值,由()()max max f x g x ≤⎡⎤⎡⎤⎣⎦⎣⎦可得参数范围.【详解】(1)由条件知())2sin 22cos 1f x x x a=--sin 22x x a =--π2sin 23x a ⎛⎫=-+- ⎪⎝⎭若选①,则π06f a ⎛⎫== ⎪⎝⎭,解得a =()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,由πππ2π22π232k x k -≤-≤+,解得π5πππ1212k x k -≤≤+,Z k ∈,所以函数()f x 的单调递增区间为()π5ππ,πZ 1212k k k ⎡⎤-+∈⎢⎥⎣⎦.若选②,则函数()f x 的最大值为22a +=,解得a =()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,由πππ2π22π232k x k -≤-≤+,解得π5πππ1212k x k -≤≤+,Z k ∈,所以函数()f x 的单调递增区间为()π5ππ,πZ 1212k k k ⎡⎤-+∈⎢⎥⎣⎦.若选③,则πππ2sin 2333f a a ⎛⎫⎛⎫=⨯-+== ⎪ ⎪⎝⎭⎝⎭所以a =()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,由πππ2π22π232k x k -≤-≤+,解得π5πππ1212k x k -≤≤+,Z k ∈,所以函数()f x 的单调递增区间为()π5ππ,πZ 1212k k k ⎡⎤-+∈⎢⎥⎣⎦.(2)由题意可知只需()()max max f x g x ≤⎡⎤⎡⎤⎣⎦⎣⎦即可.当ππ,64x ⎡⎤∈-⎢⎥⎣⎦时,π2ππ2,336x ⎡⎤-∈-⎢⎥⎣⎦,所以π1sin 21,32x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,因此函数()f x 的最大值为1.令lg x t =,则[]0,2t ∈,则()22g x t mt m=--当12m ≤即2m ≤时,函数()g x 的最大值为242m m --,于是2421m m --≥,整理得2230m m +-≤,解得31m -≤≤,均满足2m ≤,所以31m -≤≤;当12m >即>2m 时,函数()g x 的最大值为2m -,于是21m -≥,无实解;综上所述,实数m 的取值范围为[]3,1-.。
2016-2017学年安徽省安庆市桐城中学高三(上)第三次月考数学试卷(文科)一、选择题:(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0 D.∃n0∈N*,f(n0)∉N*或f(n0)>n02.(5分)下列各命题①方程+|y+1|=0的解集是{,﹣1},②集合{x∈Z|x3=x}用列举法表示为{﹣1,0,1},③集合M={y|y=x2+1}与集合P={(x,y)|y=x2+1}表示同一集合,④集合A=,B={x|log2x<1},则A∩B=(﹣1,2).其中真命题的个数为()A.1 B.2 C.3 D.43.(5分)奇函数f(x)满足f(x+2)=﹣f(x),当x∈(0,1)时,f(x)=3x+,则f(log354)=()A.﹣2 B.﹣ C.D.24.(5分)已知f(x)=是定义在R上的减函数,则a的取值范围是()A.B.C.D.5.(5分)设函数f(x)=﹣(x∈R),集合N={y丨y=f(x),x∈M},其中M=[a,b](a<b),则使M=N成立的实数对(a,b)有()A.0个 B.1个 C.2个 D.无数多个6.(5分)函数f(x)=cosπx与函数g(x)=|log2|x﹣1||的图象所有交点的横坐标之和为()A.2 B.4 C.6 D.87.(5分)定义域为R的函数f(x)对任意x都有f(2+x)=f(2﹣x),且其导函数f′(x)满足>0,则当2<a<4,有()A.f(2a)<f(log2a)<f(2) B.f(log2a)<f(2)<f(2a)C.f(2a)<f(2)<f(log2a) D.f(log2a)<f(2a)<f(2)8.(5分)已知函数y=f(x﹣1)的图象关于点(1,0)对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(logπ3)•f (logπ3),c=(log3)•f(log3),则a,b,c的大小关系是()A.a>b>c B.c>a>b C.c>b>a D.a>c>b9.(5分)若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是()A.f(x)为奇函数B.f(x)为偶函数C.f(x)+1为奇函数D.f(x)+1为偶函数10.(5分)若定义域为D的函数f(x)满足:①f(x)在D内是单调函数;②存在[a,b]⊆D,使得f(x)在[a,b]上的值域为[,],则称函数f(x)为“半值函数”.已知函h(x)=log c(c x+t)(c>0,c≠1)是“半值函数”则实数t的取值范围为()A.(0,+∞)B.(﹣∞,) C.(,+∞)D.(0,)11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]12.(5分)若函数,且0<x1<x2<1,设,则a,b的大小关系是()A.a>b B.a<bC.a=b D.b的大小关系不能确定二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)若函数f(x)=的定义域为R,则a的取值范围是.14.(5分)设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=c,这时,a的取值的集合为.15.(5分)已知函数f(x)满足f(x)=f(π﹣x),且当时,f(x)=x+sinx,设a=f(1),b=f(2),c=f(3),则a、b、c的大小关系是.16.(5分)如图放置的边长为2的正方形PABC沿x轴正半轴滚动.设顶点P(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设命题p:函数f(x)=lg[(a2﹣1)x2+(a+1)x+1]的值域为R;命题q:函数y=的图象与函数y=ax﹣2的图象恰有两个交点;如果命题“p∨q”为真命题,且“p∧q”为假命题,求实数a的取值范围.18.(12分)定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,对任意的a,b ∈R都有f(a+b)=f(a)•f(b)且对任意的x∈R,恒有f(x)>0;(1)求f(0);(2)证明:函数y=f(x)在R上是增函数;(3)若f(x)•f(2x﹣x2)>1,求x的取值范围.19.(12分)定义在正整数集上的函数f(x)对任意m,n∈N*,都有f(m+n)=f(m)+f(n)+4(m+n)﹣2,且f(1)=1.(1)求函数f(x)的表达式;(2)若m2﹣tm﹣1≤f(x)对于任意的m∈[﹣1,1],x∈N*恒成立,求实数t的取值范围.20.(12分)已知函数f(x)=(1)求函数f(x)在[﹣2,4]上的解析式;(2)若方程f(x)=x+a在区间[﹣2,4]内有3个不等实根,求实数a的取值范围.21.(12分)设函数f(x)=(a∈R)(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.22.(12分)已知f(x)是二次函数,不等式f(x)<0的解集为(0,5)且f(x)在[﹣1,4]上的最大值为12,①求f(x)的解析式;②是否存在自然数m,使方程f(x)+=0在区间(m,m+1)内有且只有两个不等的实根?若不存在,说明理由;若存在,求m的值.2016-2017学年安徽省安庆市桐城中学高三(上)第三次月考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2015•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0 D.∃n0∈N*,f(n0)∉N*或f(n0)>n0【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.2.(5分)(2015•上饶一模)下列各命题①方程+|y+1|=0的解集是{,﹣1},②集合{x∈Z|x3=x}用列举法表示为{﹣1,0,1},③集合M={y|y=x2+1}与集合P={(x,y)|y=x2+1}表示同一集合,④集合A=,B={x|log2x<1},则A∩B=(﹣1,2).其中真命题的个数为()A.1 B.2 C.3 D.4【分析】①,方程+|y+1|=0的解集是{(,﹣1)},可判断①;②,集合{x∈Z|x3=x}={x|x(x+1)(x﹣1)=0},可判断②;③,分析知集合M={y|y=x2+1}为数的集合,集合P={(x,y)|y=x2+1}表示点集,可判断③;④,分别求出集合A=={x|x>﹣1}与集合B={x|log2x<1}={x|0<x<2},继而可求得A∩B,可判断④.【解答】解:对于①,由+|y+1|=0得:x=且y=﹣1,所以方程+|y+1|=0的解集是{(,﹣1)},故①错误;对于②,集合{x∈Z|x3=x}={x|x(x+1)(x﹣1)=0},用列举法表示为{﹣1,0,1},故②正确;对于③,集合M={y|y=x2+1}为数集,集合P={(x,y)|y=x2+1}为点集,二者不表示同一集合,故③错误;对于④,集合A=={x|x>﹣1},B={x|log2x<1}={x|0<x<2},则A∩B=(0,2),故④错误.综上所述,真命题的个数为1个,故选:A.【点评】本题考查集合的概念与表示方法,考查集合的运算,属于中档题.3.(5分)(2015•乌鲁木齐模拟)奇函数f(x)满足f(x+2)=﹣f(x),当x∈(0,1)时,f (x)=3x+,则f(log354)=()A.﹣2 B.﹣ C.D.2【分析】由f(x+2)=﹣f(x)得f(x+4)=f(x),可得到函数f(x)的周期是4,利用对数的运算性质、函数的周期性和奇偶性,将f(log354)转化为﹣,代入函数解析式求出的值,即可得到f(log354)的值.【解答】解:∵f[(x+2)+2]=﹣f(x+2)=f(x),∴f(x)是以4为周期的奇函数,又∵,∵,∴,∴f(log354)=﹣2,故选:A.【点评】本题考查函数的周期性和奇偶性的综合应用,以及对数的运算性质,考查转化思想,属于中档题.4.(5分)(2016秋•桐城市校级月考)已知f(x)=是定义在R上的减函数,则a的取值范围是()A.B.C.D.【分析】根据一次函数的单调性及减函数的定义便可得出,解该不等式组便可得出a的取值范围.【解答】解:f(x)为定义在R上的减函数;∴;解得;∴a的取值范围为.故选:A.【点评】考查一次函数的单调性,以及减函数的定义,分段函数单调性的判断.5.(5分)(2014•鄂尔多斯模拟)设函数f(x)=﹣(x∈R),集合N={y丨y=f(x),x∈M},其中M=[a,b](a<b),则使M=N成立的实数对(a,b)有()A.0个 B.1个 C.2个 D.无数多个【分析】由已知条件推导出f(x)是一个奇函数,且f(x)在R上是减函数,所以a=﹣,b=﹣,解得a=b=0,与已知条件a<b矛盾,故使M=N成立的实数对(a,b)不存在.【解答】解:∵f(x)=﹣,∴f(﹣x)===﹣f(x),∴f(x)是一个奇函数,x≥0时,f(x)=﹣==﹣1+,是减函数∴f(x)在R上是减函数,∵x∈[a,b]∴值域是[f(b),f(a)],即a=f(b),b=f(a)∴a=﹣,b=﹣,解得a=b=0,与已知条件a<b矛盾,∴使M=N成立的实数对(a,b)不存在.故选:A.【点评】本题考查集合相等的应用,解题时要认真审题,是基础题.6.(5分)(2014•河南模拟)函数f(x)=cosπx与函数g(x)=|log2|x﹣1||的图象所有交点的横坐标之和为()A.2 B.4 C.6 D.8【分析】由图象变化的法则和余弦函数的特点作出函数的图象,由对称性可得答案.【解答】解:由图象变化的法则可知:y=log2x的图象作关于y轴的对称后和原来的一起构成y=log2|x|的图象,在向右平移1个单位得到y=log2|x﹣1|的图象,再把x轴上方的不动,下方的对折上去可得g(x)=|log2|x﹣1||的图象;又f(x)=co sπx的周期为=2,如图所示:两图象都关于直线x=1对称,且共有ABCD4个交点,由中点坐标公式可得:x A+x D=2,x B+x C=2故所有交点的横坐标之和为4,故选B【点评】本题考查函数图象的作法,熟练作出函数的图象是解决问题的关键,属中档题.7.(5分)(2016•岳阳二模)定义域为R的函数f(x)对任意x都有f(2+x)=f(2﹣x),且其导函数f′(x)满足>0,则当2<a<4,有()A.f(2a)<f(log2a)<f(2) B.f(log2a)<f(2)<f(2a)C.f(2a)<f(2)<f(log2a) D.f(log2a)<f(2a)<f(2)【分析】先根据条件求出函数的对称轴,再求出函数的单调区间,然后判定2、log2a、2a的大小关系,根据单调性比较f(2)、f(log2a)、f(2a)的大小即可.【解答】解:∵函数f(x)对任意x都有f(2+x)=f(2﹣x),∴函数f(x)的对称轴为x=2∵导函数f′(x)满足,∴函数f(x)在(2,+∞)上单调递减,(﹣∞,2)上单调递增,∵2<a<4∴1<log2a<2<4<2a又函数f(x)的对称轴为x=2∴f(2)>f(log2a)>f(2a),故选A.【点评】本题主要考查了导数的运算,以及奇偶函数图象的对称性和比较大小,根据函数导函数的符号确定函数的单调区间是解决此题的关键,根据函数的单调性比较函数值的大小,属于基础题.8.(5分)(2016•河南模拟)已知函数y=f(x﹣1)的图象关于点(1,0)对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3)•f(log3),则a,b,c的大小关系是()A.a>b>c B.c>a>b C.c>b>a D.a>c>b【分析】由函数y=f(x﹣1)的图象关于点(1,0)对称,知f(x)为奇函数,当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立,所以xf(x)为减函数,由此能判断a,b,c的大小关系.【解答】解:∵当x∈(﹣∞,0)时不等式f(x)+xf′(x)<0成立,即:(xf(x))′<0,∴xf(x)在(﹣∞,0)上是减函数.又∵函数y=f(x﹣1)的图象关于点(1,0)对称,∴函数y=f(x)的图象关于点(0,0)对称,∴函数y=f(x)是定义在R上的奇函数∴xf(x)是定义在R上的偶函数∴xf(x)在(0,+∞)上是增函数.又∵30.3>1>log23>0>=﹣2,2=﹣,∴(﹣)f(﹣)>30.3•f(30.3)>(logπ3)•f(logπ3),即()f()>30.3•f(30.3)>(logπ3)•f(logπ3)即:c>a>b故选B.【点评】本题考查函数的奇偶性和单调性的应用,解题时要认真审题,仔细解答,注意对数函数性质的合理运用.9.(5分)(2008•重庆)若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f (x1)+f(x2)+1,则下列说法一定正确的是()A.f(x)为奇函数B.f(x)为偶函数C.f(x)+1为奇函数D.f(x)+1为偶函数【分析】对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,考察四个选项,本题要研究函数的奇偶性,故对所给的x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1进行赋值研究即可【解答】解:∵对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,∴令x1=x2=0,得f(0)=﹣1∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],∴f(x)+1为奇函数.故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.10.(5分)(2015•安庆三模)若定义域为D的函数f(x)满足:①f(x)在D内是单调函数;②存在[a,b]⊆D,使得f(x)在[a,b]上的值域为[,],则称函数f(x)为“半值函数”.已知函h(x)=log c(c x+t)(c>0,c≠1)是“半值函数”则实数t的取值范围为()A.(0,+∞)B.(﹣∞,) C.(,+∞)D.(0,)【分析】根据指数函数和对数函数的图象和性质以及复合函数的单调性可知h(x)都是R上的增函数,再根据“半值函数”的定义得到log c(c x+t)=,构造关于m的方程,根据根与系数的关系,即可得到结论.【解答】解:∵h(x)=log c(c x+t)(c>0,c≠1),c>1或0<c<1,h(x)都是R上的增函数,∴,即log c(c x+t)=,即c x+t=有两不等实根,令=m(m>0)∴t=m﹣m2有两不等正根,∴解得0<t<.故选:D.【点评】本题考查了新定义,以及对数函数指数函数的图象和性质,复合函数的单调性,方程根的问题,属于中档题.11.(5分)(2013•新课标Ⅰ)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l 为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)(2010•城区校级二模)若函数,且0<x1<x2<1,设,则a,b的大小关系是()A.a>b B.a<bC.a=b D.b的大小关系不能确定【分析】求出函数的导函数,根据x的范围和正切函数的图象判断出导函数的正负即可单调函数的单调性,利用函数的单调性即可判断出a与b的大小.【解答】解:f′(x)==∵0<x≤1<时,x<tanx∴f′(x)<0,故函数单调递减,所以当0<x1<x2<1时,f(x1)>f(x2)即a>b;另外:y==,所以f(x)表示(0,0)与(x,sinx)连线的割线斜率.由图象显然a>b.故选A【点评】此题考查学生会利用导函数的正负得到函数的单调性,会根据函数的单调性由自变量的大小判断出其对应的函数值的大小,是一道中档题.二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)(2016秋•桐城市校级月考)若函数f(x)=的定义域为R,则a的取值范围是[0,4] .【分析】根据函数成立的条件,转化为不等式ax2﹣3ax+a+5≥0恒成立,对a讨论,即可得到结论.【解答】解:∵函数f(x)的定义域为R,则等价为不等式ax2﹣3ax+a+5≥0恒成立,若a=0,不等式等价为5>0,满足条件,若a≠0,则不等式满足条件,即有,解得0<a≤4,综上0≤a≤4,即a的取值范围是[0,4].故答案为:[0,4].【点评】本题主要考查函数的定义域的应用,根据条件转化为不等式恒成立是解决本题的关键.14.(5分)(2014•河南校级模拟)设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=c,这时,a的取值的集合为{2} .【分析】由方程log a x+log a y=c,可得xy=a c(x,y>0).已知2a>a>0,a2﹣a>0,解得a>1.利用函数y=在x∈[a,2a]上单调递减,可得,解出即可.【解答】解:由方程log a x+log a y=c,可得xy=a c(x,y>0).∵a>1,∵函数y=在x∈[a,2a]上单调递减,∴,化为2a2=a3,a>1解得a=2.∴a的取值的集合为{2}.故答案为:{2}.【点评】本题考查了对数的运算性质、函数的单调性,属于基础题.15.(5分)(2016春•沈丘县期中)已知函数f(x)满足f(x)=f(π﹣x),且当时,f(x)=x+sinx,设a=f(1),b=f(2),c=f(3),则a、b、c的大小关系是b>a>c.【分析】f(x)=f(π﹣x)将1,2,3转化到函数f(x)=x+sinx的同一个单调区间内再比较.【解答】解:由f(x)=f(π﹣x)知,f(x)的图象关于x=对称,又当时,f(x)=x+sinx是增函数,所以x∈(,),f(x)是减函数,又f(1)=f(π﹣1),<2<π﹣1<3,所以f(2)>f(π﹣1)>f(3),即b>a>c.故答案为:b>a>c.【点评】本题考查函数的单调性、对称性,考查学生灵活运用函数性质解决相关问题的能力.16.(5分)(2016秋•桐城市校级月考)如图放置的边长为2的正方形PABC沿x轴正半轴滚动.设顶点P(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为8;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为4π+4.【分析】P点的运动轨迹为若干个圆周拼接而成,作出P点轨迹图象,即可得出答案.【解答】解:P点从x轴上开始运动的时候,首先是围绕A点运动个圆,该圆半径为2,然后以B点为中心,滚动到C点落地,其间是以BP为半径,旋转90°,再以C为圆心,再旋转90°,这时候以CP为半径,因此最终构成图象如下:由轨迹可知f(x)的最小正周期为8,S=2×π•22+2××2×2+×π•(2)2=4π+4.故答案为:8;4π+4.【点评】本题考查的知识点是函数图象的变化,其中根据已知画出正方形转动过程中的一个周期内的图象,利用数形结合的思想对本题进行分析是解答本题的关键.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)(2016秋•桐城市校级月考)设命题p:函数f(x)=lg[(a2﹣1)x2+(a+1)x+1]的值域为R;命题q:函数y=的图象与函数y=ax﹣2的图象恰有两个交点;如果命题“p∨q”为真命题,且“p∧q”为假命题,求实数a的取值范围.【分析】考虑p真,讨论a=1与当a2﹣1>0时△≥0,解不等式求并集;q真时,讨论x>1,x=0和0<x<1,x<0函数图象的关系和转化为方程,求得a的范围,再由题意可得p,q中一真一假,解不等式即可到所求范围.【解答】解:命题p:函数f(x)=lg[(a2﹣1)x2+(a+1)x+1]的值域为R,p真时①当a=1时f(x)=lg(2x+1)值域为R,符合.②当a2﹣1>0时△≥0,即(a+1)2﹣4(a2﹣1)≥0,解得1≤a≤,命题q:函数y=的图象与函数y=ax﹣2的图象恰有两个交点,q真时,x>1时,y=x+1与函数y=ax﹣2的图象有一个交点,可得a=1+<4,即有0<a<4且a≠1;x=0时函数y=﹣1,不成立,当0<x<1时,y=﹣x﹣1与函数y=ax﹣2的图象有一个交点,可得a=﹣1+,即有a>0;当x<0时,y=﹣x﹣1与函数y=ax﹣2的图象有一个交点,可得a=﹣1+,即有a<﹣1.则q真时,0<a<1或1<a<4.依命题“p∨q”为真命题,且“p∧q”为假命题,可得p,q一真一假,当p真q假时,,得a=1;当p假q真时,,得0<a<1或<a<4综上0<a≤1或<a<4.【点评】本题考查命题的真假判断,考查函数的值域为R的问题解法,注意分类讨论和结合二次函数的图象,考查函数图象的交点问题解法,注意运用分类讨论思想,考查运算能力,属于中档题.18.(12分)(2015秋•凯里市校级期末)定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,对任意的a,b∈R都有f(a+b)=f(a)•f(b)且对任意的x∈R,恒有f(x)>0;(1)求f(0);(2)证明:函数y=f(x)在R上是增函数;(3)若f(x)•f(2x﹣x2)>1,求x的取值范围.【分析】(1)利用a=b=0,直接求解函数值即可.(2)结合已知条件,利用函数的单调性的定义直接证明即可.(3)利用已知条件转化为二次不等式求解即可.【解答】解:(1)令a=b=0,f(0)=[f(0)]2,又∵f(0)≠0,∴f(0)=1(2分)(2)证明:设任意x1<x2,则x2﹣x1>0,∴f(x2﹣x1)>1,f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)•f(x1),∵f(x1)>0,∴,∴f(x2)>f(x1),∴函数y=f(x)在R上是增函数;(7分)(3)f(x)f(2x﹣x2)=f(3x﹣x2)>f(0),∵f(x)是R上增函数,∴3x﹣x2>0,∴0<x<3(12分)【点评】本题考查抽象函数的应用,赋值法以及转化思想的应用,考查计算能力.19.(12分)(2016秋•桐城市校级月考)定义在正整数集上的函数f(x)对任意m,n∈N*,都有f(m+n)=f(m)+f(n)+4(m+n)﹣2,且f(1)=1.(1)求函数f(x)的表达式;(2)若m2﹣tm﹣1≤f(x)对于任意的m∈[﹣1,1],x∈N*恒成立,求实数t的取值范围.【分析】(1)令m=1得到关于f(n)的递推关系,利用累加法即可求f(x)的表达式;(2)利用参数分离法将不等式恒成立进行转化,结合基本不等式进行求解即可.【解答】解:(1)∵f(m+n)=f(m)+f(n)+4(m+n)﹣2,且f(1)=1,∴令m=1,则f(n+1)=f(1)+f(n)+4(1+n)﹣2=f(n)+4n+3,即f(n+1)﹣f(n)=4n+3,则f(2)﹣f(1)=7f(3)﹣f(2)=11,…f(n)﹣f(n﹣1)=4(n﹣1)+3=4n﹣1,等式两边同时相加得f(n)﹣f(1)=7+11+…+(4n﹣1)==2n2+n﹣3,则f(n)=2n2+n﹣3+f(1)=2n2+n﹣2.即f(x)=2x2+x﹣2.x∈N*.(2)∵f(x)=2x2+x﹣2的对称轴为x=﹣,∴当x∈N*时,函数f(x)的最小值为f(1)=2+1﹣2=1,若m2﹣tm﹣1≤f(x)对于任意的m∈[﹣1,1],x∈N*恒成立,则等价为m2﹣tm﹣1≤1对于任意的m∈[﹣1,1],x∈N*恒成立,即m2﹣tm﹣2≤0对于任意的m∈[﹣1,1],x∈N*恒成立,当m=0时,﹣2≤0,恒成立,当m<0时,原式等价于t≤在m∈[﹣1,0)恒成立,而函数y=m﹣在[﹣1,0)上为增函数,则此时y=m﹣的最小值为﹣1+2=1,∴t≤1;当m>0时,原式等价于t≥在m∈(0,1]恒成立,而函数y=m﹣在(0,1]上为增函数,此时y=m﹣的最大值为1﹣2=﹣1,∴t≥﹣1综上可得,﹣1≤m<0时,t≤1,m=0时,t∈R,0<m≤1时,t≥﹣1.【点评】本题主要考查抽象函数的应用,利用赋值法是解决本题的关键.利用参数分离法结合函数的单调性是求恒成立问题的基本方法.20.(12分)(2016秋•桐城市校级月考)已知函数f(x)=(1)求函数f(x)在[﹣2,4]上的解析式;(2)若方程f(x)=x+a在区间[﹣2,4]内有3个不等实根,求实数a的取值范围.【分析】(1)利用函数的递推关系式,求解分段函数的解析式即可.(2)画出函数的图象,利用函数的零点的个数推出a 的范围即可.【解答】解:(1)函数f(x)=,x∈(0,2]时,x﹣2∈(﹣2,0),可得f(x)=2(1﹣|x﹣1|)=2﹣2|x﹣1|.x∈(2,4]时,x﹣2∈(0,2),可得f(x)=2(2﹣2|x﹣3|)=4﹣4|x﹣3|,,∴当﹣2≤x≤4时,f(x)=.(2)作出函数f(x)在区间[﹣2,4]上的图象,如图所示.设y=x+a,由图象可知要使方程f(x)=x+a在区间[﹣2,4]内有3个不等实根,则直线y=x+a应位于l1与l2之间或直线l3的位置,所以实数a的取值范围是﹣2<a<0或a=1.【点评】本题考查函数的图象的应用,函数的零点与方程根的关系,函数的解析式的求法,考查数形结合以及只好思想的应用.21.(12分)(2015•重庆)设函数f(x)=(a∈R)(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.【分析】(I)f′(x)=,由f(x)在x=0处取得极值,可得f′(0)=0,解得a.可得f(1),f′(1),即可得出曲线y=f(x)在点(1,f(1))处的切线方程;(II)解法一:由(I)可得:f′(x)=,令g(x)=﹣3x2+(6﹣a)x+a,由g (x)=0,解得x1=,x2=.对x分类讨论:当x<x1时;当x1<x<x2时;当x>x2时.由f(x)在[3,+∞)上为减函数,可知:x2=≤3,解得即可.解法二:“分离参数法”:由f(x)在[3,+∞)上为减函数,可得f′(x)≤0,可得a≥,在[3,+∞)上恒成立.令u(x)=,利用导数研究其最大值即可.【解答】解:(I)f′(x)==,∵f(x)在x=0处取得极值,∴f′(0)=0,解得a=0.当a=0时,f(x)=,f′(x)=,∴f(1)=,f′(1)=,∴曲线y=f(x)在点(1,f(1))处的切线方程为,化为:3x﹣ey=0;(II)解法一:由(I)可得:f′(x)=,令g(x)=﹣3x2+(6﹣a)x+a,由g(x)=0,解得x1=,x2=.当x<x1时,g(x)<0,即f′(x)<0,此时函数f(x)为减函数;当x1<x<x2时,g(x)>0,即f′(x)>0,此时函数f(x)为增函数;当x>x2时,g(x)<0,即f′(x)<0,此时函数f(x)为减函数.由f(x)在[3,+∞)上为减函数,可知:x2=≤3,解得a≥﹣.因此a的取值范围为:.解法二:由f(x)在[3,+∞)上为减函数,∴f′(x)≤0,可得a≥,在[3,+∞)上恒成立.令u(x)=,u′(x)=<0,∴u(x)在[3,+∞)上单调递减,∴a≥u(3)=﹣.因此a的取值范围为:.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、“分离参数法”、推理能力与计算能力,属于难题.22.(12分)(2006•福建)已知f(x)是二次函数,不等式f(x)<0的解集为(0,5)且f (x)在[﹣1,4]上的最大值为12,①求f(x)的解析式;②是否存在自然数m,使方程f(x)+=0在区间(m,m+1)内有且只有两个不等的实根?若不存在,说明理由;若存在,求m的值.【分析】(1)根据二次函数小于0的解集,设出解析式,利用单调性求得最大值,解出待定系数.(2)将方程等价转化h(x)=0,利用h(x)的导数判断其单调性,利用单调性判断h(x)=0的根的情况.【解答】解:(1)∵f(x)是二次函数,且f(x)<0的解集是(0,5),∴可设f(x)=ax(x ﹣5)(a>0).∴f(x)在区间[﹣1,4]上的最大值是f(﹣1)=6a.由已知得6a=12,∴a=2,∴f(x)=2x(x﹣5)=2x2﹣10x(x∈R).(2)方程等价于方程2x3﹣10x2+37=0.设h(x)=2x3﹣10x2+37,则h'(x)=6x2﹣20x=2x(3x﹣10).在区间时,h'(x)<0,h(x)是减函数;在区间(﹣∞,0),或上,h'(x)>0,h(x)是增函数,故h(0)是极大值,h ()是极小值.∵,∴方程h(x)=0在区间内分别有惟一实数根,故函数h(x)在(3,4)内有2个零点.而在区间(0,3),(4,+∞)内没有零点,在(﹣∞,0)上有唯一的零点.画出函数h(x)的单调性和零点情况的简图,如图所示.所以存在惟一的自然数m=3,使得方程在区间(m,m+1)内有且只有两个不同的实数根.【点评】本小题主要考查函数的单调性、极值等基本知识,考查运用导数研究函数的性质的方法,考查函数与方程、数形结合等数学思想方法和分析问题、解决问题的能力,属于中档题.21页。
2016-2017学年某某省某某市高一(下)期末数学试卷一、选择题(共12小题,每小题5分,满分60分)1.△ABC的内角A,B,C的对边分别为a,b,c.若c=,b=,B=120°,则a等于()A.B.C.D.22.在△ABC中,内角A,B,C的对边分别是a,b,c.若c=2a,bsinB﹣asinA=asinC,则sinB等于()A.B.C.D.3.各项均为正数的等比数列{a n},其前n项和为S n,若a2﹣a5=﹣78,S3=13,则数列{a n}的通项公式a n=()A.2n B.B、2n﹣1C.3n D.3n﹣14.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()A.98 B.99 C.100 D.1015.设S n是公差不为零的等差数列{a n}的前n项和,且a1>0,若S5=S9,则当S n最大时,n=()A.6 B.7 C.10 D.96.某空间组合体的三视图如图所示,则该组合体的体积为()A.48 B.56 C.64 D.727.设a>0,b>0,若2是4a和2b的等比中项,则+的最小值为()A.B.4 C.D.58.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50…,则此数列第20项为()A.180 B.200 C.128 D.1629.已知等差数列{a n}的前n项和为S n,若M,N,P三点共线,O为坐标原点,且=a15+a6(直线MP不过点O),则S20=()A.10 B.15 C.20 D.4010.已知a>b,一元二次不等式ax2+2x+b≥0对于一切实数x恒成立,又∃x0∈R,使ax02+2x0+b=0成立,则2a2+b2的最小值为()A.1 B.C.2 D.211.(理)若实数a、b∈(0,1),且满足,则a、b的大小关系是()A.a<b B.a≤b C.a>b D.a≥b12.已知向量,,(m>0,n>0),若m+n∈,则的取值X围是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.已知向量、满足•(+)=5,且||=2,||=1,则向量与夹角余弦值为.14.在△ABC中,角A、B、C的对边分别为a、b、c,若2ccosB=2a+b,△ABC的面积为S=c,则ab的最小值为.15.半径为的球的体积与一个长、宽分别为6、4的长方体的体积相等,则长方体的表面积为.16.设等比数列{a n}满足公比q∈N*,a n∈N*,且{a n}中的任意两项之积也是该数列中的一项,若a1=281,则q的所有可能取值的集合为.三、解答题(共6小题,满分70分)17.叙述并推导等比数列的前n项和公式.18.已知二次函数f(x)的二次项系数为a,且不等式f(x)>﹣2x的解集为(1,3).(Ⅰ)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;(Ⅱ)若f(x)的最大值为正数,求a的取值X围.19.已知函数f(x)=.(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},则k的值等于;(2)对任意x>0,f(x)≤t恒成立,则t的取值X围是.20.设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.21.已知一四面体的三组对边分别相等,且长度依次为5、、.(1)求该四面体的体积;(2)求该四面体外接球的表面积.22.设数列{a n}的前n项和为S n,已知=a n﹣2n(n∈N*).(1)求a1的值,若a n=2n,证明数列{}是等差数列;(2)设b n=log2a n﹣log2(n+1),数列{}的前n项和为B n,若存在整数m,使对任意n ∈N*且n≥2,都有B3n﹣B n>成立,求m的最大值.2016-2017学年某某省某某市高一(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.△ABC的内角A,B,C的对边分别为a,b,c.若c=,b=,B=120°,则a等于()A.B.C.D.2【考点】HP:正弦定理.【分析】由题意和正弦定理求出sinC,由内角的X围和条件求出C,由内角和定理求出A,利用边角关系求出a.【解答】解:∵c=,b=,B=120°,∴由正弦定理得,,则sinC===,∵0°<C<120°,∴C=30°,∴A=180°﹣B﹣C=30°,即A=C,a=c=,故选B.2.在△ABC中,内角A,B,C的对边分别是a,b,c.若c=2a,bsinB﹣asinA=asinC,则sinB等于()A.B.C.D.【考点】HP:正弦定理.【分析】由正弦定理化简已知可得:b2﹣a2=,又c=2a,可解得a2+c2﹣b2=3a2,利用余弦定理可得cosB,结合X围0<B<π,即可解得sinB.【解答】解:∵bsinB﹣asinA=asinC,∴由正弦定理可得:b2﹣a2=,又∵c=2a,∴a2+c2﹣b2=4a2﹣=3a2,∴利用余弦定理可得:cosB===,∴由于0<B<π,解得:sinB===.故选:A.3.各项均为正数的等比数列{a n},其前n项和为S n,若a2﹣a5=﹣78,S3=13,则数列{a n}的通项公式a n=()A.2n B.B、2n﹣1C.3n D.3n﹣1【考点】89:等比数列的前n项和.【分析】设公比为q的等比数列{a n},运用等比数列的通项公式,列方程,解方程即可得到首项和公比,即可得到所求通项公式.【解答】解:各项均为正数,公比为q的等比数列{a n},a2﹣a5=﹣78,S3=13,可得a1q﹣a1q4=﹣78,a1+a1q+a1q2=13,解得a1=1,q=3,则a n=a1q n﹣1=3n﹣1,n∈N*,故选:D.4.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()A.98 B.99 C.100 D.101【考点】8E:数列的求和.【分析】由数列的通项公式,可得前50项和T50=﹣1+5﹣9+13﹣17+…+197=(﹣1+5)+(﹣9+13)+(﹣17+21)+…+(﹣193+197),计算即可得到所求和.【解答】解:数列{a n}的通项为a n=(﹣1)n(4n﹣3),前50项和T50=﹣1+5﹣9+13﹣17+…+197=(﹣1+5)+(﹣9+13)+(﹣17+21)+…+(﹣193+197)=4+4+4+…+4=4×25=100.5.设S n是公差不为零的等差数列{a n}的前n项和,且a1>0,若S5=S9,则当S n最大时,n=()A.6 B.7 C.10 D.9【考点】85:等差数列的前n项和.【分析】由题意可得a7+a8=0,从而可得数列的前7项为正数,从第8项开始为负数,可得结论.【解答】解:由题意可得S9﹣S5=a6+a7+a8+a9=0,∴2(a7+a8)=0,∴a7+a8=0,又a1>0,∴该等差数列的前7项为正数,从第8项开始为负数,∴当S n最大时,n=7故选:B6.某空间组合体的三视图如图所示,则该组合体的体积为()A.48 B.56 C.64 D.72【考点】LF:棱柱、棱锥、棱台的体积.【分析】由题意,组合体的下方是三个长为2,宽为4,高为1的长方体,上方为长为2,宽为4,高为5的长方体,利用长方体的体积公式,可求组合体的体积.【解答】解:由题意,组合体的下方是三个长为2,宽为4,高为1的长方体,上方为长为2,宽为4,高为5的长方体.所以组合体的体积为3×2×4×1+2×4×5=64.7.设a>0,b>0,若2是4a和2b的等比中项,则+的最小值为()A.B.4 C.D.5【考点】7F:基本不等式.【分析】根据题意,由等比数列的性质可得4a×2b=22,分析可得2a+b=2,分析可得+=(+)(2a+b)=,由基本不等式的性质分析可得答案.【解答】解:根据题意,若2是4a和2b的等比中项,则有4a×2b=22,即22a+b=22,则有2a+b=2,+=(+)(2a+b)=≥(5+2)=,当且仅当a=b=时,等号成立;故选:C.8.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50…,则此数列第20项为()A.180 B.200 C.128 D.162【考点】81:数列的概念及简单表示法.【分析】0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:a2n=2n2.即可得出.【解答】解:由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:a2n=2n2.则此数列第20项=2×102=200.故选:B.9.已知等差数列{a n}的前n项和为S n,若M,N,P三点共线,O为坐标原点,且=a15+a6(直线MP不过点O),则S20=()A.10 B.15 C.20 D.40【考点】9H:平面向量的基本定理及其意义.【分析】利用向量共线定理可得:a15+a6=1,再利用等差数列的前n项和公式及其性质即可得出.【解答】解:∵M,N,P三点共线,O为坐标原点,且=a15+a16(直线MP不过点O),∴a15+a6=1,∴S20==10(a15+a6)=10,故选A.10.已知a>b,一元二次不等式ax2+2x+b≥0对于一切实数x恒成立,又∃x0∈R,使ax02+2x0+b=0成立,则2a2+b2的最小值为()A.1 B.C.2 D.2【考点】3W:二次函数的性质.【分析】根据二次函数的性质求出ab=1,根据基本不等式的性质求出2a2+b2的最小值即可.【解答】解:∵已知a>b,二次不等式ax2+2x+b≥0对于一切实数x恒成立,∴a>0,且△=4﹣4ab≤0,∴ab≥1.再由∃x0∈R,使ax02+2x0+b=0成立,可得△=0,∴ab=1,∴2a2+b2≥2=2,当且仅当2a2=b2即b=a时“=”成立,故选:D.11.(理)若实数a、b∈(0,1),且满足,则a、b的大小关系是()A.a<b B.a≤b C.a>b D.a≥b【考点】72:不等式比较大小.【分析】可根据条件,利用不等式的性质将化为即可得到答案.【解答】解:∵a、b∈(0,1),且满足,∴,又,∴,∴b>a.故选A.12.已知向量,,(m>0,n>0),若m+n∈,则的取值X围是()A.B.C.D.【考点】7C:简单线性规划;7D:简单线性规划的应用;9R:平面向量数量积的运算.【分析】根据题意,由向量的坐标运算公式可得=(3m+n,m﹣3n),再由向量模的计算公式可得=,可以令t=,将m+n∈的关系在直角坐标系表示出来,分析可得t=表示区域中任意一点与原点(0,0)的距离,进而可得t的取值X围,又由=t,分析可得答案.【解答】解:根据题意,向量,,=(3m+n,m﹣3n),则==,令t=,则=t,而m+n∈,即1≤m+n≤2,在直角坐标系表示如图,t=表示区域中任意一点与原点(0,0)的距离,分析可得:≤t<2,又由=t,故≤<2;故选:B.二、填空题(共4小题,每小题5分,满分20分)13.已知向量、满足•(+)=5,且||=2,||=1,则向量与夹角余弦值为.【考点】9R:平面向量数量积的运算.【分析】由||=2,||=1,•(+)=5,利用平面向量数量积的运算公式可求得向量与夹角余弦值.【解答】解:∵||=2,||=1,•(+)=5,∴+||•||cos<,>=4+2cos<,>=5∴cos<,>=,即向量与夹角余弦值为:,故答案为:.14.在△ABC中,角A、B、C的对边分别为a、b、c,若2ccosB=2a+b,△ABC的面积为S=c,则ab的最小值为.【考点】HR:余弦定理;HP:正弦定理.【分析】由条件里用正弦定理、两角和的正弦公式求得cosC=﹣,C=.根据△ABC 的面积为S=ab•sinC=ab=c,求得c=3ab.再由余弦定理化简可得9a2b2=a2+b2+ab≥3ab,由此求得ab的最小值.【解答】解:在△ABC中,由条件用正弦定理可得2sinCcosB=2sinA+sinB=2sin(B+C)+sinB,即2sinCcosB=2sinBcosC+2sinCcosB+sinB,∴2sinBcosC+sinB=0,∴cosC=﹣,C=.由于△ABC的面积为S=ab•sinC=ab=c,∴c=3ab.再由余弦定理可得c2=a2+b2﹣2ab•cosC,整理可得9a2b2=a2+b2+ab≥3ab,当且仅当a=b时,取等号,∴ab≥,故答案为:.15.半径为的球的体积与一个长、宽分别为6、4的长方体的体积相等,则长方体的表面积为88 .【考点】LE:棱柱、棱锥、棱台的侧面积和表面积.【分析】由题意,长、宽分别为6、4的长方体的体积与球的体积相等,求出长方体的高,再求长方体的表面积.【解答】解:由题意,长、宽分别为6、4的长方体的体积与球的体积相等,球的半径为.则有:⇔解得h=2长方体的表面积S=2×4×6+2×2×4+2×2×6=88故答案为88.16.设等比数列{a n}满足公比q∈N*,a n∈N*,且{a n}中的任意两项之积也是该数列中的一项,若a1=281,则q的所有可能取值的集合为{281,227,29,23,2}.【考点】88:等比数列的通项公式.【分析】依题意可求得该等比数列的通项公式a n,设该数列中的任意两项为a m,a t,它们的积为a p,求得q=,分析即可.【解答】解:由题意,a n=281q n﹣1,设该数列中的任意两项为a m,a t,它们的积为a p,则为a m•a t=a p,即281q m﹣1•281q t﹣1=281•q p﹣1,(q,m,t,p∈N*),∴q=,故p﹣m﹣t+1必是81的正约数,即p﹣m﹣t+1的可能取值为1,3,9,27,81,即的可能取值为1,3,9,27,81,所以q的所有可能取值的集合为{281,227,29,23,2}三、解答题(共6小题,满分70分)17.叙述并推导等比数列的前n项和公式.【考点】88:等比数列的通项公式.【分析】写出等比数列的求和公式,可由错位相减法证明.【解答】解:若数列{a n}为公比为q的等比数列,则其前n项和公式S n=,(q≠1),当q=1时,S n=na1.下面证明:∵S n=a1+a2+a3+…+a n=a1+a1q+a1q2+…+a1q n﹣1,①∴qS n=a1q+a1q2+a1q3+…+a1q n,②①﹣②可得(1﹣q)S n=a1﹣a1q n,当q≠1时,上式两边同除以1﹣q可得S n=,当q=1时,数列各项均为a1,故S n=na1.18.已知二次函数f(x)的二次项系数为a,且不等式f(x)>﹣2x的解集为(1,3).(Ⅰ)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;(Ⅱ)若f(x)的最大值为正数,求a的取值X围.【考点】57:函数与方程的综合运用;3H:函数的最值及其几何意义;75:一元二次不等式的应用.【分析】(Ⅰ)f(x)为二次函数且二次项系数为a,把不等式f(x)>﹣2x变形为f(x)+2x>0因为它的解集为(1,3),则可设f(x)+2x=a(x﹣1)(x﹣3)且a<0,解出f(x);又因为方程f(x)+6a=0有两个相等的根,利用根的判别式解出a的值得出f(x)即可;(Ⅱ)因为f(x)为开口向下的抛物线,利用公式当x=时,最大值为=.和a<0联立组成不等式组,求出解集即可.【解答】解:(Ⅰ)∵f(x)+2x>0的解集为(1,3).f(x)+2x=a(x﹣1)(x﹣3),且a<0.因而f(x)=a(x﹣1)(x﹣3)﹣2x=ax2﹣(2+4a)x+3a.①由方程f(x)+6a=0得ax2﹣(2+4a)x+9a=0.②因为方程②有两个相等的根,所以△=2﹣4a•9a=0,即5a2﹣4a﹣1=0.解得a=1或a=﹣.由于a<0,a=﹣,舍去,故a=﹣.将a=﹣代入①得f(x)的解析式.(Ⅱ)由及a<0,可得f(x)的最大值为.就由解得a<﹣2﹣或﹣2+<a<0.故当f(x)的最大值为正数时,实数a的取值X围是.19.已知函数f(x)=.(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},则k的值等于﹣;(2)对任意x>0,f(x)≤t恒成立,则t的取值X围是[,+∞).【考点】7E:其他不等式的解法;3R:函数恒成立问题.【分析】(1)根据不等式和方程之间的关系,转化为方程进行求解即可.(2)任意x>0,f(x)≤t恒成立,等等价于t≥=恒成立,根据基本不等式即可求出.【解答】解:(1):f(x)>k⇔kx2﹣2x+6k<0.由已知{x|x<﹣3,或x>﹣2}是其解集,得kx2﹣2x+6k=0的两根是﹣3,﹣2.由根与系数的关系可知(﹣2)+(﹣3)=,解得k=﹣,(2)任意x>0,f(x)≤t恒成立,等价于t≥=恒成立,∵x+≥2=2,当且仅当x=时取等号,∴t≥,故答案为:(1):﹣,(2):[,+∞)20.设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.【考点】HR:余弦定理;GQ:两角和与差的正弦函数.【分析】(I)已知等式左边利用多项式乘多项式法则计算,整理后得到关系式,利用余弦定理表示出cosB,将关系式代入求出cosB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(II)由(I)得到A+C的度数,利用两角和与差的余弦函数公式化简cos(A﹣C),变形后将cos(A+C)及2sinAsinC的值代入求出cos(A﹣C)的值,利用特殊角的三角函数值求出A﹣C的值,与A+C的值联立即可求出C的度数.【解答】解:(I)∵(a+b+c)(a﹣b+c)=(a+c)2﹣b2=ac,∴a2+c2﹣b2=﹣ac,∴cosB==﹣,又B为三角形的内角,则B=120°;(II)由(I)得:A+C=60°,∵sinAsinC=,cos(A+C)=,∴cos(A﹣C)=cosAcosC+sinAsinC=cosAcosC﹣sinAsinC+2sinAsinC=cos(A+C)+2sinAsinC=+2×=,∴A﹣C=30°或A﹣C=﹣30°,则C=15°或C=45°.21.已知一四面体的三组对边分别相等,且长度依次为5、、.(1)求该四面体的体积;(2)求该四面体外接球的表面积.【考点】LE:棱柱、棱锥、棱台的侧面积和表面积;LF:棱柱、棱锥、棱台的体积.【分析】由棱锥的对边相等可知四面体为长方体切去4个小棱锥得到的,求出长方体的棱长即可得出四面体的体积和外接球的表面积.【解答】解:(1)∵四面体的三组对边分别相等,∴四面体为某一长方体的六条面对角线组成的三棱锥,设长方体的棱长为a,b,c,则,解得,∴四面体的体积V=abc﹣abc×4=abc=20.(2)由(1)可知四面体的外接球为长方体的外接球,外接球直径为长方体的体对角线长=5,∴外接球的半径为r=,∴外接球的表面积为S=4πr2=50π.22.设数列{a n}的前n项和为S n,已知=a n﹣2n(n∈N*).(1)求a1的值,若a n=2n,证明数列{}是等差数列;(2)设b n=log2a n﹣log2(n+1),数列{}的前n项和为B n,若存在整数m,使对任意n ∈N*且n≥2,都有B3n﹣B n>成立,求m的最大值.【考点】8K:数列与不等式的综合;8C:等差关系的确定.【分析】(1)由=,得,从而,由此能求出a1=4;当n≥2时,a n=S n﹣S n﹣=,从而得到=1,由此能证明数列{} 1是首项为2,公差为1的等差数列.(2)求出=2+(n﹣1)×1=n+1,从而,进而b n=log2a n﹣log2(n+1)=n,由此得到,B3n﹣B n=,令f(n)=,则f(n+1)﹣f(n)==>=0,从而数列{f(n)}为递增数列,当n≥2时,f(n)的最小值为f(2)=,从而<,由此能求了出m的最大值.【解答】证明:(1)由=,得,∴,解得a1=4,当n≥2时,a n=S n﹣S n﹣1=(2a n﹣2n+1)﹣(2a n﹣1﹣2n)=,∴,n≥2,∴ =1,∵a n=2n,∴=,∴,﹣﹣1=1,∴数列{}是首项为2,公差为1的等差数列.(2)∵=1, =2,∴ =2+(n﹣1)×1=n+1,∴,∴b n=log2a n﹣log2(n+1)=n,∵数列{}的前n项和为B n,∴,∴B3n﹣B n=,令f(n)=,则,∴f(n+1)﹣f(n)==>=0,∴f(n+1)>f(n),∴数列{f(n)}为递增数列,∴当n≥2时,f(n)的最小值为f(2)==,据题意,<,得m<19,又m为整数,∴m的最大值为18.。
2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。
答案:A={(-∞,1]}。
B={2}。
A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。
答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。
3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。
答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。
答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。
答案:选项A是正确的。
因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。
6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。
答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。
根据题意,πrl=6π,所以l=6/r。
而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。
将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。
我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。
答案:点P的坐标为(1,2)。
因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。
安徽省安庆市2022-2021学年高一下学期期末数学试卷(A卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在面的表格内.1.(5分)直线的倾斜角为()A.B.C.D .2.(5分)数列1,2,1,2,…的通项公式不行能为()A.B.C.D.3.(5分)已知a、b为非零实数,且a<b,则下列不等式成立的是()A.a2<b2B.C.D .4.(5分)在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a5=()A.33 B.72 C.84 D.1895.(5分)一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的表面积是()A.16πB.14πC.12πD.8π6.(5分)直线y=kx+1与圆x2+y2﹣2y=0的位置关系是()A.相交B.相切C.相离D.取决于k的值7.(5分)若点P(x,y)的坐标x,y 满足约束条件:,则的最大值为()A.B.﹣1 C.D.118.(5分)已知两个平面垂直,下列命题①一个平面内的已知直线必垂直于另一个平面的任意一条直线;②一个平面内的已知直线必垂直于另一个平面的很多条直线;③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.其中正确的个数是()A.3B.2C.1D.09.(5分)在正方体ABCD﹣A1B1C1D1中,异面直线BC1与CD1所成角的余弦值为()A.B.C.D .10.(5分)若点和都在直线l:x+y=1上,又点P 和点,则()A.点P和Q都不在直线l上B.点P和Q都在直线l上C.点P在直线l上且Q不在直线l上D.点P不在直线l上且Q在直线l上11.(5分)△ABC中,角A,B,C所对的边分别为a,b,c 若<cosA,则△ABC为()A.钝角三角形B .直角三角形C.锐角三角形D.等边三角形12.(5分)若数列{a n},{b n}的通项公式分别是,,且a n<b n对任意n∈N*恒成立,则实数a的取值范围是()A.考点:直线的倾斜角.专题:计算题.分析:直线的斜率等于﹣,设它的倾斜角等于θ,则0≤θ<π,且tanθ=﹣,求得θ值,即为所求.解答:解:直线的斜率等于﹣,设它的倾斜角等于θ,则0≤θ<π,且tanθ=﹣,∴θ=,故选C.点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小,得到tanθ=﹣,是解题的关键.2.(5分)数列1,2,1,2,…的通项公式不行能为()A.B.C.D.考点:梅涅劳斯定理;数列的函数特性.专题:点列、递归数列与数学归纳法.分析:对n分为奇数偶数争辩即可推断出.解答:解:A.当n 为奇数时,=1,当n为偶数时,a n ==2,因此正确;B.当n为奇数时,a n ==2,因此不正确;C.当n为奇数时,a n ==1,当n为偶数时,a n ==2,因此正确;D.当n为奇数时,a n ==1,当n为偶数时,a n ==2,因此正确.故选:B.点评:本题考查了数列的通项公式,考查了分类争辩与计算力量,属于基础题.3.(5分)已知a、b为非零实数,且a<b,则下列不等式成立的是()A.a2<b2B.C.D .考点:不等关系与不等式.专题:计算题.分析:给实数a,b 在其取值范围内任取2个值a=﹣3,b=1,代入各个选项进行验证,A、B、D都不成立.解答:解:∵实数a,b满足a<0<b,若a=﹣3,b=1,则A、B、D都不成立,只有C成立,故选C.点评:此题是基础题.通过给变量取特殊值,举反例来说明某个命题不正确,是一种简洁有效的方法.4.(5分)在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a5=()A.33 B.72 C.84 D.189考点:等比数列的性质.专题:计算题.分析:依据等比数列{a n}中,首项a1=3,前三项和为21,可求得q,依据等比数列的通项公式,分别求得a3,a4和a5代入a3+a4+a5,即可得到答案.解答:解:在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21故3+3q+3q2=21,∴q=2,∴a3+a4+a5=(a1+a2+a3)q2=21×22=84 故选C.点评:本题主要考查了等比数列的性质.要理解和记忆好等比数列的通项公式,并能娴熟机敏的应用.5.(5分)一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的表面积是()A.16πB.14πC.12πD.8π考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图可知该几何体为一个球体的,缺口部分为挖去的,据此可得出这个几何体的表面积.解答:解:由三视图可知该几何体为一个球体的,缺口部分为挖去球体的.球的半径R=2,这个几何体的表面积等于球的表面积的加上大圆的面积.S=×4πR2+πR2=16π故选A.点评:本题考查三视图求几何体的表面积,考查计算力量,空间想象力量,三视图复原几何体是解题的关键.6.(5分)直线y=kx+1与圆x2+y2﹣2y=0的位置关系是()A.相交B.相切C.相离D.取决于k的值考点:直线与圆的位置关系.专题:直线与圆.分析:依据圆的方程,先求出圆的圆心和半径,求出圆心到直线y=kx+1的距离,再和半径作比较,可得直线与圆的位置关系.解答:解:圆x2+y2﹣2y=0 即x2+(y﹣1)2=1,表示以(0,1)为圆心,半径等于1的圆.圆心到直线y=kx+1的距离为=0,故圆心(0,1)在直线上,故直线和圆相交,故选A.点评:本题主要考查求圆的标准方程的特征,直线和圆的位置关系,点到直线的距离公式,属于中档题.7.(5分)若点P(x,y)的坐标x,y 满足约束条件:,则的最大值为()A.B.﹣1 C.D.11考点:简洁线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的学问,通过平移即可求z 的最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分).设z=,得y=x ﹣z,平移直线y=x ﹣z,由图象可知当直线y=x ﹣z,经过C时,直线y=x的截距最小,此时z最大.由,得,即C(5,1)将C代入目标函数z=得z==.即z 的最大值为.故选:C.点评:本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.8.(5分)已知两个平面垂直,下列命题①一个平面内的已知直线必垂直于另一个平面的任意一条直线;②一个平面内的已知直线必垂直于另一个平面的很多条直线;③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.其中正确的个数是()A.3B.2C.1D.0考点:平面与平面垂直的性质.专题:阅读型.分析:为了对各个选项进行甄别,不必每个选项分别构造一个图形,只须考查正方体中相互垂直的两个平面:A1ABB1,ABCD即可.解答:解:考察正方体中相互垂直的两个平面:A1ABB1,ABCD.对于①:一个平面内的已知直线不肯定垂直于另一个平面的任意一条直线;如图中A1B与AB不垂直;对于②:一个平面内的已知直线必垂直于另一个平面的很多条直线;这肯定是正确的,如图中,已知直线A1B,在平面ABCD中,全部与BC平行直线都与它垂直;对于③:一个平面内的任一条直线不肯定垂直于另一个平面;如图中:A1B;对于④:过一个平面内任意一点作交线的垂线,则垂线不肯定垂直于另一个平面,如图中A1D,它垂直于AB,但不垂直于平面ABCD.故选C.点评:本题主要考查了平面与平面垂直的性质,线面垂直的选择题可以在一个正方体模型中甄别,而不必每个选项分别构造一个图形,广东卷07文6、08文7理5、09文6理5等莫不如此.9.(5分)在正方体ABCD﹣A1B1C1D1中,异面直线BC1与CD1所成角的余弦值为()A.B.C.D .考点:异面直线及其所成的角.专题:空间位置关系与距离.分析:如图所示,建立空间直角坐标系.利用向量夹角公式即可得出.解答:解:如图所示,建立空间直角坐标系.D1(0,0,1),B(1,1,0),C(0,1,0),C1(0,1,1).∴=(0,﹣1,1),=(﹣1,0,1).∴===.∴直线A1D与C1E 所成角的余弦值是.故选:D.点评:本题考查了利用向量夹角公式求异面直线所成的夹角方法,考查了推理力量与计算力量,属于基础题.10.(5分)若点和都在直线l:x+y=1上,又点P 和点,则()A.点P和Q都不在直线l上B.点P和Q都在直线l上C.点P在直线l上且Q不在直线l上D.点P不在直线l上且Q在直线l上考点:直线的一般式方程.专题:直线与圆.分析:点和都在直线l:x+y=1上,可得,b+=1,可得c+=1,即可推断出点P,Q与l的位置关系.解答:解:∵点和都在直线l:x+y=1上,∴,b+=1,∴=1,化为c+=1,∴点P 和点都在直线l上.故选:B.点评:本题考查了点与直线的位置关系,考查了推理力量与计算力量,属于基础题.11.(5分)△ABC中,角A,B,C所对的边分别为a,b,c 若<cosA,则△ABC为()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形考点:三角形的外形推断.专题:计算题.分析:由已知结合正弦定理可得sinC<sinBcosA利用三角形的内角和及诱导公式可得,sin(A+B)<sinBcosA整理可得sinAcosB+sinBcosA<0从而有sinAcosB<0结合三角形的性质可求解答:解:∵<cosA,由正弦定理可得,sinC<si nBcosA∴sin(A+B)<sinBcosA∴sinAcosB+sinBcosA<sinBcosA∴sinAcosB<0 又sinA>0∴cosB<0 即B为钝角故选:A点评:本题主要考查了正弦定理,三角形的内角和及诱导公式,两角和的正弦公式,属于基础试题.12.(5分)若数列{a n},{b n}的通项公式分别是,,且a n<b n对任意n∈N*恒成立,则实数a的取值范围是()A.14.(5分)已知等差数列{a n},满足a3=1,a8=6,则此数列的前10项的和S10=35.考点:等差数列的前n项和.专题:计算题.分析:由已知条件可得数列的首项和公差,代入求和公式可得.解答:解:由题意可得数列{a n}的公差d==1,故可得a1=a3﹣2d=1﹣2×1=﹣1,代入求和公式可得S10=10×(﹣1)+=35故答案为:35点评:本题考查等差数列的前n项和,求出数列的首项和公差是解决问题的关键,属基础题.15.(5分)直线x+y=1与直线2x+2y+m2+2=0间距离的最小值为.考点:两条平行直线间的距离.专题:直线与圆.分析:利用两平行线之间的距离公式、二次函数的单调性即可得出.解答:解:直线2x+2y+m2+2=0化为x+y+=0,∴两平行线之间的距离d===.当m=0时取等号.故最小值为:.故答案为:.点评:本题考查了两平行线之间的距离公式、二次函数的单调性,属于基础题.16.(5分)在正四周体ABCD中,有如下四个命题:①AB⊥CD;②该四周体外接球的半径与内切球半径之比为2:1;③分别取AB,BC,CD,DA的中点E,F,G,H并顺次连结所得四边形是正方形;④三组对棱中点的连线段交于一点并被该点平分.则其中为真命题的序号为①③④.(填上你认为是真命题的全部序号).考点:命题的真假推断与应用.专题:空间位置关系与距离.分析:①利用正四周体的定义和三垂线定理推断正误即可;②设正四周体ABCD的边长为a,其外接球的半径为R,内切切的半径为r,由正四周体放到正方体中,正方体的体对角线即为外接球的直径,以及通过体积分割,运用棱锥的体积公式可得内切球的条件,求出结果推断正误即可;③由中位线定理和正四周体的性质:对角线相互垂直,即可推断;④利用③的结论和正方形的对角线垂直平分,推断正误即可.解答:解:对于①,由正四周体的定义可得,A在底面BCD的射影为底面的中心,由三垂线定理可得AB⊥CD ,所以①正确;对于②,设正四周体ABCD的边长为a ,其外接球的半径为R ,内切切的半径为r,则正四周体的边长可看成是正方体的面对角线,外接球的直径即为体对角线的长,即有2R=a=a;由内切球的球心与正四周体的表面构成四个三棱锥,由体积分割可得•a2•a=4••a2•r,解得r=a,即有R:r=3:1,所以②不正确;对于③,由中位线定理可得EF∥AC,EF=AC,且GH∥AC,GH=AC,即有四边形EFGH为平行四边形,又由正四周体的性质可得AC⊥BD,即有四边形EFGH为正方形,所以③正确;对于④,由③可得正方形EFGH对角线交于一点且平分,同理对棱AC,BD和对棱AB,CD的中点连线也相互平分,则三组对棱中点的连线段交于一点并被该点平分,所以④正确.故答案为:①③④点评:本题考查正四周体的性质和内切球与外接球的半径的关系,考查直线与直线的位置关系,考查推理和推断力量,属于中档题和易错题.三、解答题:本大题共6小题,共70分.解答过程有必要的文字说明、演算步骤及推理过程.17.(10分)已知点A(﹣3,﹣1)和点B(5,5).(Ⅰ)求过点A且与直线AB垂直的直线l的一般式方程;(Ⅱ)求以线段AB为直径的圆C的标准方程.考点:圆的标准方程.专题:计算题;直线与圆.分析:(Ⅰ)求出过点A且与直线AB 垂直的直线l的斜率,依据点斜式得直线l的方程,整理得直线l 的一般式方程;(Ⅱ)确定圆心坐标与半径,即可求以线段AB为直径的圆C的标准方程.解答:解:(Ⅰ)由条件知,则依据点斜式得直线l 的方程为,整理得直线l的一般式方程为4x+3y+15=0.…(5分)(Ⅱ)由题意得C(1,2),故以线段AB为直径的圆C的标准方程为(x﹣1)2+(y﹣2)2=25.…(10分)点评:本题考查直线与圆的方程,考查同学的计算力量,比较基础.18.(12分)在△ABC中,角A,B,C对的边分别为a,b,c,且c=2,C=60°.(1)求的值;(2)若a+b=ab,求△ABC的面积S△ABC.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)依据正弦定理求出,然后代入所求的式子即可;(2)由余弦定理求出ab=4,然后依据三角形的面积公式求出答案.解答:解:(1)由正弦定理可设,所以,所以.…(6分)(2)由余弦定理得c2=a2+b2﹣2abcosC,即4=a2+b2﹣ab=(a+b)2﹣3ab ,又a+b=ab,所以(ab)2﹣3ab﹣4=0,解得ab=4或ab=﹣1(舍去)所以.…(14分)点评:本题考查了正弦定理、余弦定理等学问.在解三角形问题中常涉及正弦定理、余弦定理、三角形面积公式及同角三角函数基本关系等问题,故应综合把握.19.(12分)已知直线ax﹣y+5=0与圆C:x2+y2=9相较于不同两点A,B(1)求实数a的取值范围;(2)是否存在是实数a,使得过点P(﹣2,1)的直线l垂直平分弦AB?若存在,求出a的值,若不存在,请说明理由.考点:直线与圆的位置关系.专题:直线与圆.分析:(1)由已知得圆心C(0,0)到直线ax﹣y+5=0的距离d==<r=3,由此能求出a>或a <﹣.(2)AB的垂直平分线过圆心,直线PC与直线ax﹣y+5=0垂直,由此能求出存在a=2,使得过P(﹣2,1)的直线l垂直平分弦AB.解答:解:(1)圆C:x2+y2=9的圆心C(0,0),半径r=3,圆心C(0,0)到直线a x﹣y+5=0的距离d==,∵线ax﹣y+5=0与圆C:x2+y2=9相较于不同两点A,B,∴d<r,∴,解得a >或a <﹣.(2)∵A,B为圆上的点,∴AB的垂直平分线过圆心,∴直线PC与直线ax﹣y+5=0垂直,∵k PC=﹣,∴﹣,解得a=2,∵a=2符合a >或a <﹣,∴存在a=2,使得过P(﹣2,1)的直线l垂直平分弦AB.点评:本题考查实数的取值范围的求法,考查满足条件的实数值是否存在的推断与求法,解题时要留意直线与圆的位置关系的合理运用.20.(12分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过C点,已知AB=3米,AD=2米.(Ⅰ)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(Ⅱ)当DN的长度是多少时,矩形花坛AMPN的面积最小?并求出最小值.考点:函数模型的选择与应用.专题:函数的性质及应用;不等式的解法及应用.分析:(Ⅰ)设DN的长为x(x>0)米,则AN=(x+2)米,表示出矩形的面积,利用矩形AMPN的面积大于32平方米,即可求得DN的取值范围.(Ⅱ)化简矩形的面积,利用基本不等式,即可求得结论.解答:解:(Ⅰ)设DN的长为x(x>0)米,则AN=(x+2)米∵DN:AN=DC:AM,∴AM=,…(2分)∴S AMPN=AN•AM=.由S AMPN>32,得>32,又x>0,得3x2﹣20x+12>0,解得:0<x<1或x>4,即DN长的取值范围是(0,1)∪(4,+∞).…(6分)(Ⅱ)矩形花坛AMPN的面积为y==3x++12≥2+12=24…(10分)当且仅当3x=,即x=2时,矩形花坛AMPN的面积取得最小值24.故DN的长为2米时,矩形AMPN的面积最小,最小值为24平方米.…(12分)点评:本题考查依据题设关系列出函数关系式,并求出处变量的取值范围;考查利用基本不等式求最值,解题的关键是确定矩形的面积.21.(12分)某家居装饰设计的外形是如图所示的直三棱柱ABC﹣A1B1C1,其中,∠ACB=90°,BCC1B1是边长为2(单位:米)的正方形,AC=1,点D为棱AA1上的动点.(Ⅰ)现需要对该装饰品的表面进行涂漆处理,假设每平方米的油漆费是40元,则需油漆费多少元?(提示:,结果保留到整数位)(Ⅱ)当点D为何位置时,CD⊥平面B1C1D?考点:直线与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)证明AC⊥BC.AA1⊥BC.然后证明BC⊥平面ACC1A1.求出直三棱柱ABC﹣A1B1C1的表面积,即可求解需油漆费.(Ⅱ)当点D为AA1的中点时,CD⊥平面B1C1D.当CD⊥C1D时,有CD⊥平面B1C1D,求出AD,推出结果即可.解答:(本题满分12分)解:(Ⅰ)由于BCC1B1是边长为2的正方形,所以BC=CC1=AA1=2.由于∠ACB=90°,所以AC⊥BC.又易知AA1⊥平面ABC,所以AA1⊥BC.又AC∩AA1=A,所以BC⊥平面ACC1A1.又AC=1,所以直三棱柱ABC﹣A1B1C1的表面积为(平方米).则需油漆费(元).…(6分)(Ⅱ)当点D为AA1的中点时,CD⊥平面B1C1D.证明如下:由(Ⅰ)得BC⊥平面ACC1A1.又BC∥B1C1,所以B1C1⊥平面ACC1A1.所以B1C1⊥CD.故当CD⊥C1D时,有CD⊥平面B1C1D,且此时有△C1A1D∽△DAC.设AD=x ,则,即,解得x=1.此时,即当点D为AA1的中点时,CD⊥平面B1C1D.…(12分)点评:本题考查直线与平面垂直推断的应用,几何体的表面积的求法,考查计算力量.22.(12分)已知等差数列{a n}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.(1)求数列{a n}的通项公式;(2)设数列{}的前n项和为S n,求证:S n<6.考点:数列的求和;等差数列的通项公式.专题:等差数列与等比数列.分析:(1)利用已知条件建立关系式,进一步求出数列的通项公式.(2)利用(1)的结论,使用乘公比错位相减法求出数列的和,进一步利用放缩法求得结果解答:解:(1)数列{a n}为等差数列,所以:a2=a1+d=a1+2,a4=a1+3d=a1+6a1,a1+a2,2(a1+a4)成等比数列.所以:解得:a1=1所以:a n=1+2(n﹣1)=2n﹣1证明:(2)已知①②①﹣②得:==所以:由于n≥1所以:<6点评:本题考查的学问要点:数列通项公式的应用,错位相减法的应用,放缩法的应用,属于中等题型.。
河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若$\{1,2\}\subset A\subset\{1,2,3,4,5\}$,则满足条件的集合$A$的个数是()A。
6B。
8C。
7D。
92.设$a,b\in\mathbb{R}$,集合$A=\{1,a+b,a\},B=\{0,\frac{b}{a},b\}$,若$A=B$,则$b-a=$()A。
2B。
$-1$C。
1D。
$-2$3.下列各组函数中$f(x)$与$g(x)$的图象相同的是()A。
$f(x)=x,g(x)=|x|$B。
$f(x)=x^2,g(x)=\begin{cases}x,&(x\geq 0)\\-x,&(x<0)\end{cases}$C。
$f(x)=1,g(x)=x$D。
$f(x)=x,g(x)=\begin{cases}x,&(x\geq0)\\0,&(x<0)\end{cases}$4.下列函数中,既是偶函数又在$(-\infty,0)$内为增函数的是()A。
$y=-\frac{1}{2}$B。
$y=x^2$C。
$y=x+1$D。
$y=\log_3(-x)^2$5.三个数$a=0.32,b=\log_2 0.3,c=2^0.3$之间的大小关系为()A。
$a<c<b$B。
$a<b<c$C。
$b<a<c$D。
$b<c<a$6.下列叙述中错误的是()A。
若点$P\in\alpha,P\in\beta$且$\alpha\cap\beta=l$,则$P\in l$B。
三点$A,B,C$能确定一个平面C。
若直线$a\parallel b$,则直线$a$与$b$能够确定一个平面D。
若点$A\in l,B\in l$且$A\in\alpha,B\in\alpha$,则$l\subset\alpha$7.方程$\log_3 x+x=3$的解所在区间是()A。
2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。
安庆市2016—2017学年度第一学期期末教学质量调研检测高一数学试题(A 卷)(必修一、四)(考试时间:120分钟,满分:150分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合{}1,3,4,6B =,则()U A C B ⋃=( ) A .{}2,5 B . {}2,5,7,8 C .{}2,3,5,6,7,8 D .{}1,2,3,4,5,62.下列说法正确的是( ) A .三角形的内角必是第一、二象限角 B .第一象限角必是锐角 C .不相等的角终边一定不相同D .若角,αβ满足()360k k Z βα=+⋅︒∈,则α和β终边相同 3. 下列函数中,与函数()f x =的定义域相同的函数是( )A .()xy x x e =⋅ B .sin x y x =C .sin x y x =D .ln xy x= 4.点()sin 2017,cos 2017A ︒︒位于( )A .第一象限B .第二象限 C.第三象限 D .第四象限5.已知函数()f x 满足()()22f x f x =,且当12x ≤<时,()2f x x =,则()3f =( )A .92 B .94 C.98D .9 6.已知,,,O A B C 为同一半面内的四个点,若20AC CB +=,则向量OC 等于( ) A . 2133OA OB - B .1233OA OB -+ C. 2OA OB - D .2OA OB -+7. 已知()2f x ax bx =+是定义在[]1,2a a -上的偶函数,那么a b +的值是( )A .13-B .13 C. 12 D .12-8.若1sin cos 2θθ=,则cos tan sin θθθ-的值是( )A .2-B .2π C. 2± D .129.幂函数()y f x =的图像过点()4,2,则幂函数()y f x =的图像是( )A .B . C. D . 10.计算22sin110sin 20cos 155sin 155︒︒︒-︒的值为( )A .12-B .12 D .11.函数2312sin 4y x π⎛⎫=-- ⎪⎝⎭是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数 C.最小正周期为2π的奇函数 D.最小正周期为2π的偶函数12.已知函数()()123,1ln ,1a x a x f x x x ⎧-+<⎪=⎨≥⎪⎩的值域为R ,则实数a 的取值范围是( )A .11,2⎡⎫-⎪⎢⎣⎭B .11,2⎛⎫- ⎪⎝⎭ C. 10,2⎛⎫⎪⎝⎭D .(],1-∞-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知平面向量a 与b 满足()2,1a =,()3,4b =-,则34a b += .14. 如图,函数()f x 的图像是曲线OAB ,其中点,,O A B 的坐标分别为()()()0,0,1,2,3,1,则()13f f ⎡⎤⎢⎥⎢⎥⎣⎦的值等于 .15. 若锐角,αβ满足tan tan tan αβαβ+=,则αβ+= .16.定义新运算⊕:当a b ≥时,2a b b ⊕=,则函数()()()12f x x x x =⊕-⊕,[]2,2x ∈-的最大值等于 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分10分)已知4,8,a b ==a 与b 的夹角是120︒. (1)计算a b +;(2)当k 为何值时,()()2a b ka b +⊥-? 18. (本小题满分12分)已知集合{}8A x a x a =≤≤+,{}15B x x x =<->或. (1)当0a =时,求A B ⋂,()R A C B ⋃; (2)若A B B =∪,求实数a 的取值范围. 19. (本小题满分12分) 已知函数()2121,1log ,1x x f x x x ⎧-<⎪=⎨≥⎪⎩.(1)在所给的平面直角坐标系中画出该函数的图像; (2)直接写出函数()y f x =的值域、单调增区间及零点. 20. (本小题满分12分)已知函数()()sin f x x ωϕ=+(其中20,03πωϕ><<)的最小正周期为π (1)求当()f x 为偶函数时ϕ的值;(2)若()f x 的图像过点6π⎛ ⎝,求()f x 的单调递增区间21. (本小题满分12分)已知函数()21f x ax bx =++(,a b 为实数,0,a x R ≠∈)(1)若函数()f x 的图像过点()2,1-,且函数()f x 有且只有一个零点,求()f x 的表达式; (2)在(1)的条件下,当()1,2x ∈-时,()()g x f x kx =-是单调函数,求实数k 的取值范围 22. (本小题满分12分)已知角a 的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(P -. (1)求sin 2tan αα-的值;(2)若函数()()()cos cos sin sin f x x a a x a a =---,求函数()()2222g x x f x π⎛⎫-- ⎪⎝⎭在区间20,3π⎡⎤⎢⎥⎣⎦上的值域安庆市2016—2017学年度第一学期期末教学质量调研检测 高一数学试题(A 卷)(必修一、四)参考答案及评分标准一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分) 13. ()6,19- 14.2 15.3π16.6三、解答题17.(本题满分10分)解:由已知得,148162a b ⎛⎫⋅=⨯⨯=- ⎪⎝⎭(1)()2222162166448a b a a b b +=+⋅+=+⨯-+=,a b ∴+= (5)分 (2)()()()()2,20a b ka b a b ka b +⊥-∴+⋅-=,()222120ka k a b b ∴+-⋅-=即()16162126407k k k ---⨯=∴=-即7k =-时,2a b +与ka b -垂直 ········10分 18.(本题满分12分)解:(1)当0a =时,[]0,8A =,(]5,8A B ⋂=,[]()[]1,5,1,8R R C B A C B =-⋃=-,·········6分(2)由A B B ⋃=得A B ⊆于是81a +<-或5a >,解得9a <-或5a >故实数a 的取值范围是()(),95,-∞-⋃+∞··········12分 19. (本题满分12分)解:(1)函数草图(略):·······6分得分要点()()211f x x x =-<过点()1,0-()()211f x x x =-<过点()0,1-()()211f x x x =-<与()()12log 1f x x x =≥都过点()1,0()()12log 1f x x x =≥过点()2,1-(2)()y f x =的值域:R()y f x =的单调增区间:[]0,1(或()0,1、[)0,1、(]0,1) ()y f x =的零点为1,1-·········12分20.(本小题满分12分)解:()f x 的最小正周期为π,则2,2T ππωω==∴= (2)分()()sin 2f x x ϕ∴=+(1)当()f x 为偶函数时,()()f x f x -=,()()sin 2sin 2x x ϕϕ∴+=-+, 将上式展开整理得sin 2cos 0x ϕ=,由已知上式对x R ∀∈都成立,2cos 0,0,32ππϕϕϕ∴=<<∴=····6分(2)由()f x 的图像过点6π⎛ ⎝时,sin 26πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 3πϕ⎛⎫+= ⎪⎝⎭又320,,,233333ππππππϕϕπϕϕ<<∴<+<∴+==,()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭令222,232k x k k Z πππππ-≤+≤+∈,得5,1212k x k k Z ππππ-≤≤+∈ ∴()f x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦·······12分 21.(本题满分12分)(1)因为()21f -=,即4211a b -+=,所以2b a = 因为函数()f x 有且只有一个零点,所以240b a =-=, 所以2440a a -=,所以1,2a b ==. 所以()()21f x x =+······6分(2)()()()()2222222121124k k g x f x kx x x kx x k x x --⎛⎫=-=++-=--+=-+-⎪⎝⎭ 由()g x 的图像知,要满足题意,则222k -≥或212k -≤-,即6k ≥或0k ≤,∴所求实数k 的取值范围为(][),06,-∞⋃+∞,······12分 22.(本题满分12分)解:(1)角a 的终边经过点(P -,1sin ,cos tan 2a a a ∴===sin 2tan 2sin cos tan a a a a a ∴-=-==··········6分 (2)()()()cos cos sin sin cos ,f x x a a x a a x x R =---=∈()222cos 21cos 22sin 2126g x x x x x x ππ⎛⎫⎛⎫∴=--=--=-- ⎪ ⎪⎝⎭⎝⎭270,23666x x ππππ≤≤∴-≤-≤1sin 21,22sin 211266x x ππ⎛⎫⎛⎫∴-≤-≤∴-≤--≤ ⎪ ⎪⎝⎭⎝⎭故函数()()2222g x x f x π⎛⎫=-- ⎪⎝⎭在区间20,3π⎡⎤⎢⎥⎣⎦上的值域是[]2,1-, ·······12分。