梯形的面积练习课
- 格式:ppt
- 大小:6.81 MB
- 文档页数:17
教学设计课程基本信息课例编号学科数学年级五学期上课题梯形的面积(第2课时)教学人员姓名单位授课教师指导教师学习目标学习目标:1.通过练习,加深对梯形面积计算公式的理解,进一步沟通图形之间的联系,提高解决问题的能力。
2.在解决问题的过程中,体会方法的多样性,进一步培养灵活解题的意识和能力。
3.在解题过程中发展探究思考和解决实际问题的意识。
学习重点:运用梯形面积计算公式解决图形问题。
学习难点:培养学生灵活解决实际问题的能力。
教学过程时间教学环节主要师生活动30秒一、谈话引入在前面的学习中,我们学习了梯形的面积计算方法。
今天就让我们一起来运用所学的知识解决一些问题。
(一)解决梯形的面积问题(单位:cm)1.第一幅图。
质疑:梯形的高在哪里?预设:9厘米就是隐蔽的高,可以把它叫做形外高,用梯形面积公式18分钟二、运用知识,解决问题计算,列式:(18+12)×9÷2=135(平方厘米)。
2.第二幅图。
质疑:梯形的下底是7.2厘米,高是4.8厘米,它的上底是多少呢?预设:可以把这个梯形看成是长方形的一部分,长方形的对边相等,都是7.2厘米,梯形的上底可以用7.2-1.6-2.2求出来,是3.4厘米,之后用梯形的面积公式计算:(3.4+7.2)×4.8÷2=25.44(平方厘米)。
3. 第三幅图。
预设:梯形的上底是5厘米,高是3.4厘米,下底没有直接给出来,可以把这个梯形看成是平行四边形的一部分,平行四边形的对边相等,都是5厘米,用5-2.3=2.7(厘米),计算出梯形的下底是2.7厘米。
之后用梯形的面积公式计算:(5+2.7)×3.4÷2=13.09(平方厘米)。
4. 总结方法。
预设1:在运用梯形面积计算公式求面积时,要选择正确的数据,有些条件是隐蔽条件,需要转化才能找到。
预设2:有些条件不是直接给的,是间接给的,比如第二个图形中的上底和第三个图形中的下底,要找到所给数据之间的联系,将间接条件转化成我们需要的条件,才能计算梯形的面积。
第49课时梯形的面积练习课学习内容课本第97~98页练习二十一第5~11题。
学习目标进一步认识梯形的面积计算方法,会正确地计算其面积。
习题解析第5题,变式练习。
根据图形特征,找条件,再计算面积。
第6题,变式练习。
培养孩子灵活解决问题的能力。
第7题,巩固练习。
运用计算公式解决问题。
第8题,变式练习。
等差数列求和,运用梯形面积公式的原理解决实际问题。
第9题,巩固练习。
开放题,培养孩子运用知识解决实际问题的能力。
第10题,解决问题。
在计算面积的基础上,求果树的棵数。
第11题,选学内容。
分解图形,为学习组合图形作准备。
辅导精要第5题,读题,批注加虚线的图形名称及其特征:(1)长方形对边相等,a⊥b;(2)平行四边形对边相等,a⊥h;(3)长方形对边相等,a⊥b。
找条件,用公式计算。
答案:(1)S=(a+b)h÷2=(18+12)×9÷2=15×9=135(cm2)。
(2)5-2.3=2.7(cm),S=(a+b)h÷2=(5+2.7)×3.4÷2=7.7×1.7=13.09(cm2)。
(3)7.2-1.6-2.2=3.4,S=(a+b)h÷2=(3.4+7.2)×4.8÷2=10.6×2.4=25.44(cm2)。
第6题,读题,在插图中指出“围花坛的篱笆”,在“花坛的面积”批注“S=(a+b)h÷2”。
用(46-20)m表示梯形上底与下底的和。
答案:S=(a+b)h÷2 =(46-20)×20÷2 =26×10 =260(m2)。
第7题,读题,结合插图理解题意,在“梯形的面积”下划线。
运用公式,列方程。
答案:解:设下底是x㎝。
(4.5+x)×3÷2=15,(4.5+x)×3=30,4.5+x=10,x=5.5。
五年级上数学教案梯形的面积(练习课)人教新课标作为一名经验丰富的教师,我深知教案的重要性,下面是我为五年级上数学教案梯形的面积(练习课)人教新课标所准备的教学内容、教学目标、教学难点与重点、教具与学具准备、教学过程、板书设计、作业设计以及课后反思及拓展延伸。
一、教学内容今天我们要学习的章节是《梯形的面积》。
我们将深入理解梯形的定义,掌握梯形面积的计算方法,并能够运用到实际问题中。
二、教学目标通过本节课的学习,我希望学生们能够掌握梯形的面积公式,并能够灵活运用这个公式解决实际问题。
三、教学难点与重点本节课的重点是梯形面积公式的理解和运用,难点是理解梯形面积公式的推导过程。
四、教具与学具准备我已经准备好了PPT和一些实际生活中的梯形物品,如滑梯、梯子等,以便学生们更好地理解梯形的概念。
五、教学过程1. 实践情景引入:我会让学生们观察教室里的梯子,引导他们发现梯子的形状就是梯形。
2. 讲解梯形的定义:我会用PPT展示梯形的图片,并详细讲解梯形的定义和特点。
3. 梯形面积公式的推导:我会用PPT展示梯形面积公式的推导过程,并引导学生们一起理解和记忆。
4. 例题讲解:我会用PPT展示一些梯形面积的例题,并详细讲解解题步骤和方法。
5. 随堂练习:我会给学生们发放一些梯形面积的练习题,让他们在课堂上完成。
6. 作业布置:我会给学生们布置一些梯形面积的作业,让他们能够在课后巩固所学知识。
六、板书设计我会在黑板上写出梯形的面积公式,并标注出各个变量的含义,以便学生们能够清晰地理解和记忆。
七、作业设计1. 题目:计算下面梯形的面积。
答案:梯形的面积=(上底+下底)×高÷22. 题目:一个梯形的上底是10cm,下底是20cm,高是15cm,求这个梯形的面积。
答案:这个梯形的面积=(10+20)×15÷2=225cm²八、课后反思及拓展延伸通过本节课的学习,我发现学生们对梯形的面积公式掌握得比较好,但在解决实际问题时,有些学生可能会忽略梯形的形状特点,导致计算错误。
2021年人教版小学数学五年级上册梯形的面积练习卷(带解析)1.一个梯形的上底、下底都不变,高扩大为原来的2倍,它的面积()A.不变 B.扩大为原来的2倍 C.缩小为原来的4倍2.一个梯形的上底增加2厘米,下底减少2厘米,高不变,它的面积与原面积相比()A.变大了 B.变小了 C.不变 D.高不知道,所以无法比较3.一个梯形的上底是8米,下底是3米,高是下底的2倍,这个梯形的面积()A. 22平方米 B. 33 平方米 C. 66平方米4.如果一个梯形的面积是80平方厘米,高是20厘米,则上、下底之和为()A.40厘米 B.8厘米 C.4厘米5.一个梯形的上底是6米,下底是7.2米,高是5米,它的面积是()A.33平方米 B.66平方米 C.21平方米6.一个梯形的面积是240平方米,高是80米,这个梯形的上、下底之和是()A.6米 B.3米 C.12米7.一个梯形的上底是9米,下底是12米,高是8米,求这个梯形的面积。
列式正确的是()A.9+12×8÷2 B.(9+12)×8÷2 C.(9+12)×88.某梯形上底是5分米,下底是7分米,高是4分米,它的面积是()A.24平方分米 B.36平方分米 C.48平方分米 D.96平方分米9.一个梯形的高是10分米,上底和下底都增加5分米,面积就增加了()A.10平方分米 B.12平方分米 C.50平方分米 D.25平方分米10.一个梯形的下底是上底的1.5倍,高是18厘米,面积是540平方厘米,则这个梯形的上底是()A.24厘米 B.4厘米 C.36厘米11.一个梯形的上底是9分米,下底是10分米,高是4分米,面积是()A.38平方分米 B.23平方分米 C.76平方分米12.两个面积相等的梯形,形状是()A.相同的 B.不同的 C.可能相同,也可能不同13.一个梯形的面积是6.3平方米,高是1.5m,上底是2. 4m,下底是()A.6m B.1.8m C.4.2m14.求下面梯形的面积,列式正确的是()A.(3+4)×8÷2 B.(8+10)×4÷2 C.(8+10)×3÷215.一块梯形土地的上底是32米,比下底短18米,高14米,计算它的面积,列式是()A.(32+18)×14÷2 B.(32×2+18)×14÷2 C.(32+18+18)×14÷2 16.梯形上、下底的和是3.6厘米,面积是10.8平方厘米,它的高是()A.6厘米 B.7.2厘米 C.14.4厘米17.一块梯形铁板面积是1.08平方米,上底长0.4米,下底长0.8米,那么这块梯形铁板的高是()A.1.8米B.0.9米C.0.45米18.若梯形的面积为40平方米,高为5米,则梯形上底和下底的和为()A.8米 B.16米 C.4米19.某梯形上底是5分米,下底是7分米,高是4分米,它的面积是()A.24平方分米 B.36平方分米 C.48平方分米 D.96平方分米20.一个梯形的下底是上底的2倍,高是6厘米,面积是54平方厘米,则这个梯形的上底是()A.6厘米 B.4厘米 C.36厘米21.一个梯形的上底是9分米,下底是10分米,高是4分米,面积是()A.38平方分米 B.23平方分米 C.76平方分米22.一个梯形的面积是6平方米,高是1.5m,上底是2m,下底是()A.6m B.1.8m C.4.2m23.一块梯形铁板面积是108平方米,上底长4米,下底长6米,那么这块梯形铁板的高是()A.21.6米B.9米C.45米24.若梯形的面积为35平方米,高为5米,则梯形上底和下底的和为()A.8米 B.14米 C.4米25.一个梯形的高与上、下底的乘积分别是25和30,这个梯形的面积是多少平方厘米?()A.27.5 B.55 C.110 D.1526.一个梯形的高与上、下底的乘积分别是24平方厘米和36平方厘米,这个梯形的面积是()A.30平方厘米 B.55平方厘米 C.110平方厘米 D.15平方厘米27.如图梯形的上底与下底长度的和是______厘米,高是______厘米。
梯形的面积第2课时⏹教学内容教材74-75页,梯形的面积练习课。
⏹教学提示上节课学生经过自主探究,利用转化的方法,推导出了梯形的面积公式,体验到了感受知识的形成过程的快乐。
数学源于生活,又服务于生活,这节课就在巩固上节课所学的知识的基础上,引导学生经过学习,体验数学知识在生活中的应用。
通过练习,使学生进一步理解和掌握梯形的面积计算公式,并能熟练运用公式正确地计算梯形的面积,在此基础上,进一步提高学生的综合运用所学知识解决问题的能力和实践操作能力,并引导学有余力的学生进行适当的拓展,使全班各层次的学生都能在原有的基础上有所提高。
⏹教学目标知识与能力复习梯形面积及求底求高的计算,通过练习使学生能较为熟练地运用梯形的相关知识去解决问题。
过程与方法在练习中,促进知识的巩固,同时整理、分析、解决问题的能力得到提高。
情感、态度与价值观培养小组的互助合作精神,以及体验在这种互助中取得成功的愉悦感受。
⏹重点、难点重点通过练习使学生能较为熟练地运用梯形的相关知识去解决问题。
难点促进知识的巩固,同时整理、分析、解决问题的能力得到提高。
⏹教学准备教师准备:多媒体课件学生准备:直尺、练习本⏹教学过程(一)新课导入:复习导入1.复习梯形的有关知识。
师:我们已经学过了梯形,什么是梯形?梯形各部分的名称谁来说一说。
在梯形中比较特殊的梯形是什么?(贴出直角和等腰梯形)2.你能求出下面图形的面积吗?要求面积你需要先测量什么?学生独立练习。
全班交流。
师:同学们不仅掌握了有关梯形的基本知识,也掌握了梯形面积计算的相关知识。
我们能不能运用这些知识去解决问题呢?设计意图:通过开门见山、简短有效的知识回顾,为练习课的有效实施做好准备。
(二)探究新知:1.基础练习师:老师先出道题考考你,看看你们对这部分知识掌握得怎么样?(课件出示)计算下列每个梯形的面积:(1)上底3厘米,下底9厘米,高6厘米。
(2)上底12分米。
下底18分米,高3米。
(3)上底和下底的和是40米,高25米。
第二单元多边形的面积梯形面积的计算练习教学内容:课本第18页。
教学目标:1、进一步加深学生对梯形面积计算公式的理解,熟练应用公式计算面积。
2.使学生能灵活应用公式解决简单的实际问题,提高应用公式的能力。
3.让学生进一步积累解决问题的经验,获得成功体验,提高学习自信心。
教学重点:巩固和应用梯形的面积公式。
教学难点:应用梯形的面积公式。
教学准备:课件教学过程:一、揭示课题。
(1分钟)昨天学习了,梯形的面积计算,今天我们利用它解决实际问题。
板书课题。
企业宣传片拍摄详细问题了解下!二、复习铺垫。
(4分钟)回忆并口述梯形面积公式的推导过程。
导学要点:两个完全一样的梯形拼成一个平行四边形,平行四边形的底相当于梯形的上、下底的和,高相当于梯形的高,平行四边形的面积=(上底+下底)×高,所以梯形的面积=(上底+下底)×高÷2三、整体练习。
(25分钟)学生自主练习时,教师巡视了解学生的练习情况,收集错题。
1、完成数学书本18页第4题。
2、完成数学书本18页第5题。
注意:测量结果一般取整厘米数。
3、完成数学书本18、19页第6、7、题。
求多少棵白菜的思维过程是总面积÷每棵白菜的面积。
丙年有庆猪辞岁,子夜无声鼠报春。
买只老鼠,一起过年,看它上蹿下跳,看它日成硕鼠,却逃不出牢笼。
或者,买幅鼠画挂在家里,买只老鼠玩具拿在手上。
子时春意闹,鼠岁笑声甜,都将给这个鼠年,增添一份乐趣。
不到六点,王大妈就起床了。
晚上失眠,好不容易等到天亮,觉得又是全新的一天。
她换上运动服、运动鞋,想到附近的公园去散散步。
走出家门时,东方天空泛着鱼肚白,旁边几块乌云蓄势得发。
太阳还在睡懒觉,她想这太阳也和自己的小孙孙一样贪睡。
道路两旁的玉兰树已经开了,一大朵一大朵,如同一只只白色的巨碗,争先恐后抢占高枝。
这花不接地气,都是攀龙附凤的主。
王大妈仰头看着这些花吐槽。
王大妈边走边做扩胸运动。
经过天天平价超市时,发现门口排队的人山人海。
第6单元第3课时《梯形的面积》同步练习一、选择题。
1、一个梯形的上、下底的和是42cm,高是5cm.这个梯形的面积是()cm2.A.210 B.105 C.47 D.无法确定2、一个梯形上底与下底的和是40cm,高2dm,面积是().A.40cm2 B.400cm2 C.8dm23、一个梯形的面积是49平方厘米,高是7厘米,上底是4厘米,下底是()厘米.A.10 B.5 C.74、一堆圆木,堆成梯形状,下层12根,上层7根,共堆有6层,这堆圆木共有()根.A.57 B.50 C.76 D.455、求如图梯形的面积,下面算式中,正确的是().A.(5+7)×8÷2 B.(6+8)×7÷2 C.(5+7)×6÷2 D.(6+8)×6÷2 6、已知梯形的面积是45dm2,上底是4dm,下底是6dm,它的高是()dm.A.9 B.4.5 C.2.25 D.457、一个长方形的面积是48平方米,把它分成两个完全一样的梯形,如果这个梯形的上下底之和是12米,那么梯形的高是()米.A.6 B.12 C.48、图中,梯形的上底是6cm,下底4cm,阴影部分的面积是10cm2,空白部分的面积是()cm2.A.12.5 B.25 C.50 D.159、梯形的上底扩大到原来的2倍,下底也扩大到原来的2倍,高不变,那么它的面积().A.扩大到原来的2倍 B.扩大到原来的4倍C.扩大到原来的8倍 D.不变10、一堆木料,最上层有2根,最下层有6根,相邻的两层都相差一根,这堆木料共有().A.10根 B.12根 C.20根 D.8根二、填空题。
1、直角梯形的下底是8厘米,如果把上底增加4cm,它就变成了一个正方形.这个直角梯形的面积是 cm22、在梯形面积公式S=(a+b)h÷2中,当a=0时,可以用来计算的面积.3、一个梯形的上底乘高的积与下底乘高的积的和是100,则梯形的面积是 .4、已知梯形面积为S,上底为a,下底为b,则它的高是 .5、王大爷在自家墙外围成一个养鸡场(如图),围鸡场的篱笆的总长是22m,其中一条边是8m,养鸡场的面积是 m2.三、求下面梯形的面积。
xx中心小学集体备课数学教案教学内容多边形的面积—梯形的面积执教时间年月日第_ _课时总第_ _课时课型新授教学目标知识与技能:在平行四边形、三角形的面积计算公式推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。
正确、较熟练地运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力。
过程与方法:通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,进一步发展学生的空间观念。
情感、态度与价值观:渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系.提高学生学习数学的兴趣。
重点难点重点:理解并掌握梯形的面积公式.会计算梯形的面积。
难点:自主探究梯形的面积公式。
教具准备多媒体课件﹑剪刀、两个完全一样的梯形纸片(如等腰梯形、直角梯形等)、练习本共性教案个性教案一、复习导入1.导入:这一单元我们已经学习了三角形和平行四边形的面积计算,谁来说一说它们的计算公式?(平行四边形的面积=底×高,用字母表示是S=ah;三角形面积=底×高÷2,用字母表示是S=ah÷2。
)让学生回忆它们的面积的计算方法是怎么推导出来的?(把它转化成已经学过的图形来研究面积的。
)2.揭题:生活中的图形除了三角形和平行四边形外,还有梯形,这节课我们就利用转化的方法来研究梯形的面积计算公式。
(板书课题:梯形的面积)二、互动新授1.出示教材第95页情境图。
引导学生观察:车窗玻璃是什么形状的?(梯形)思考:怎样求出它的面积呢?你能用学过的方法推导出梯形的面积计算公式吗?小组讨论,学生可能会猜测到把梯形转化成平行四边形、三角形、长方形等,来推导它的面积计算公式。
2.让学生利用梯形学具验证自己的猜测。
小组活动,教师深入各小组进行指导。
可提醒学生用剪刀剪一剪,再拼一拼。
3.交流汇报自己的推导过程,指学生到黑板边演示边讲解。
学生以梯形面积计算的公式推导有多种方法,可能会这样做:(1)用两个一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的(上底+下底),这个平行四边形的高等于梯形的高。