第18届“华杯赛”笔试决赛小学高年级组试题B及参考答案
- 格式:pdf
- 大小:334.27 KB
- 文档页数:5
第十八届华罗庚金杯少年数学邀请赛初赛试题C (小学高年级组)(时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn =+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )4029解答:B 。
在考试中,选择恰当的方法很重要。
这道题,看到这道题后,我第一个想法就是归纳。
2222315=+、2231422=+、2244537=+、2255648=+、写完前三个,发现第二个算式很不和谐,又写出了第四个,仔细一想,原来第二个可以写成2233426=+,规律找到了,分子是原式中分子部分的一个因数,分母比分子大3!答案一定是20132016,很简单,第一题是很容易的年份题,等等,年份2013这个数是我们非常熟悉的,2013=3×11×61,是3的倍数,那么加3不还是3的倍数么?可以约分,所以最后的答案是20136712016672=所以选B ! 如果本题需要详细的过程,那么用规纳的方法是不合适的,因为这是不完全归纳法,你这么知道前几个适用的情况下,最后的2013也适用呢,所以最正确的方法是这样思考:如果这道题直接计算,分别算出分子分母,然后必然需要一个约分的过程(从选项可以看出),那么就太麻烦了,如果不计算出最后结果就可以约分,是件好事儿,那么转化分子还是转化分母呢?我们都知道,当分子分母都是乘法的形式,是比较好约分的,所以要转化分母,要在分母中“凑”出2013.具体过程是这样的:201320132014(20131)2012201320132014201320142012201320132014201320132201320132013671,2013(20142)2016672⨯=⨯++⨯=⨯++⨯=⨯+⨯⨯===⨯+原式 6716721343.m n +=+=这个题做完了,很容易得分的一道题,也是容易马虎的一个题,如果不仔细读题,忽略了“m 与n 为互质的自然数”,那么就容易把答案写成D 。
第十八届华罗庚金杯少年数学邀请赛决赛试题B参考答案(小学高年级组)一、填空题(每题10 分, 共80分)二、解答下列各题(每题10 分, 共40分, 要求写出简要过程)9.答案:106解答. 图中共有5条最长的水平线段和7条最长的垂直线段, 任意两条水平与任意两条垂直的就构成一个长方形, 一共有2102110)123456()1234(=⨯=+++++⨯+++(个).其中含“*”号有4×15+4×15-4×4=120-16=104 (个).所以不含含“*”号有210-104=106个.10.答案:9解答. 由于三角形AFC的面积和四边形DBEF的面积相等, 可得出三角形AEC 的面积等于三角形BDC的面积. 由BD:DA = 1:2, 得三角形BDC的面积等于三角形ABC面积的13, 即三角形AEC的面积等于三角形ABC面积的13. 那么EC等于BC的13, 得出EC = 6, 进而AD = 6, BD = 3, 最终AB = 9.11.答案:61解答. 设有n 个人, 每人植树x 棵, 则611132013⨯⨯==nx .可以说明:113⨯>n . 若33=n , 则每人植树61棵. 如果5人不参加植树, 则有305棵树, 其余28人每人多植3棵, 才种84棵树, 完不成任务. 可见, 113⨯>n .考虑n = 61. 此时, x = 33. 如果5人不参加植树, 则有165棵树要让56人多植树. 若每人多植2棵, 则56人多植了112256=⨯(棵)树, 完不成植树任务; 若每人多植3棵, 则56人多植了168356=⨯(棵), 完成了植树任务. 所以, n = 61符合要求.12. 答案:59解答.① 观察立体右面的正方体, 标有1个黑点的侧面到标有2个黑点的面, 再到标有4个黑点的面是以逆时针方向围绕这三个面的交点.② 观察中间上面的正方体, 既然从1个黑点到2个黑点, 再到4个黑点是逆时针, 则该正方体标有6个黑点的面的对面标有1个黑点.③ 观察立体左面的正方体, 正方体标有3个黑点的面紧邻标有2个黑点的面, 结合观察立体中间上面的正方体, 可知该正方体中, 标有4个黑点的侧面的对面的黑点有3个, 且底面标有5个黑点. 并且可知, 从1个黑点到2个黑点, 再到3个黑点是顺时针.所以, 四个完全相同的正方体, 黑点为1、2和3的三个侧面顺时针围绕公共顶点, 1对6, 2对5, 3对4. 所以, 立体中右面的正方体紧贴中间正方体的侧面有6个黑点; 立体中左面的正方体紧贴中间正方体的侧面有6个黑点; 立体中间上面的正方体紧邻下方正方体的侧面有5个黑点; 立体中间下面的正方体后面的侧面有2个黑点, 底面有可能是有1个黑点. 所以立体中间下面的正方体紧贴其他3个正方体的3个侧面黑点总数最少是8个.4个正方体黑点总数是84, 3对紧贴的侧面黑点总数最多是25, 所以, 立体的侧面(包括底面)所有黑点的总数最多是59.三、解答下列各题(每题15 分, 共30分, 要求写出详细过程)13.答案:4解答. 用右图代替题目中的12⨯小长方形. 对于拼成的正方形图形, 记过左上顶点的对角线为甲对角线, 另一条对角线为乙对角线.图A首先, 有如下观察:1) 当甲对角线是对称轴时,a)左上角的22⨯小正方形是图A的(1), (2), (3), (4) 中之一;b)右下角的22⨯小正方形是图A的(1), (2), (5), (6) 中之一;c)若右上角的22⨯小正方形是图A的(1), (2), (7), (8) 中的一个, 则左下角的22⨯小正方形分别是图A中的(1), (2), (9), (10);2) 当乙对角线是对称轴时,a)右上角的22⨯小正方形是图A的(1), (2), (7), (8) 中之一;b)左下角的22⨯小正方形是图A的(1), (2), (9), (10) 中之一;c)若左上角的22⨯小正方形是图A中的(1), (2), (3), (4) 之一, 则左下角的22⨯小正方形分别是图A中的(1), (2), (5), (6).根据上述观察, 注意到拼出的正方形中恰有八个星, 再去掉旋转重合的, 得到以下4种图形:14.解答. 记第一种、第二种和第三种分类分别分了i , j , k 类, 每类的盒子数目分别为i a a a ,,,21 , j b b b ,,,21 , k c c c ,,,21 ,令k j i n ++=.1) 因为i a a a ,,,21 , j b b b ,,,21 , k c c c ,,,21 包含了1到30的所有整数, 所以 30≥n . 另一方面,,15534652313030211553212121⨯==⨯=+++≥+++++++++++=⨯ kj i c c c b b b a a a所以 30=++=k j i n , 三种分类各自分类的类数之和是30.2) 不妨设301=a , 记这30个盒子的类为A 类. 因为30=++k j i , 必有14≤j 或14≤k , 不妨设14≤j . A 类的30个盒子分到这不超过14个类中去, 必有一类至少有三个盒子, 这三个盒子里的红球数相同并且黄球数也相同.。
第十八届华罗庚金杯少年数学邀请赛初赛试题C (小学高年级组)(时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn =+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )4029解答:B 。
在考试中,选择恰当的方法很重要。
这道题,看到这道题后,我第一个想法就是归纳。
2222315=+、2231422=+、2244537=+、2255648=+、写完前三个,发现第二个算式很不和谐,又写出了第四个,仔细一想,原来第二个可以写成2233426=+,规律找到了,分子是原式中分子部分的一个因数,分母比分子大3!答案一定是20132016,很简单,第一题是很容易的年份题,等等,年份2013这个数是我们非常熟悉的,2013=3×11×61,是3的倍数,那么加3不还是3的倍数么?可以约分,所以最后的答案是20136712016672=所以选B ! 如果本题需要详细的过程,那么用规纳的方法是不合适的,因为这是不完全归纳法,你这么知道前几个适用的情况下,最后的2013也适用呢,所以最正确的方法是这样思考:如果这道题直接计算,分别算出分子分母,然后必然需要一个约分的过程(从选项可以看出),那么就太麻烦了,如果不计算出最后结果就可以约分,是件好事儿,那么转化分子还是转化分母呢?我们都知道,当分子分母都是乘法的形式,是比较好约分的,所以要转化分母,要在分母中“凑”出2013.具体过程是这样的:201320132014(20131)2012201320132014201320142012201320132014201320132201320132013671,2013(20142)2016672⨯=⨯++⨯=⨯++⨯=⨯+⨯⨯===⨯+原式 6716721343.m n +=+=这个题做完了,很容易得分的一道题,也是容易马虎的一个题,如果不仔细读题,忽略了“m 与n 为互质的自然数”,那么就容易把答案写成D 。
第十八届华罗庚金杯少年数学邀请赛决赛试题 A 参考答案(小学高年级组)一、填空题(每题 10 分, 共 80 分)题号 1 2 3 4 5 6 7 8答案25 2, 3 316 12 62 74 94 54二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)9.解答.例如(4 + 4 + 4) ÷ 4 = 3 ,4 - (4 - 4) ⨯ 4 = 4 ,(4 ⨯ 4 + 4) ÷ 4 = 5 ,(4 + 4) ÷ 4 + 4 = 6 .10.答案:25解答. 设比小明小的学生为x人,比小华小的学生为y人.因为比小明大的学生为2x人,所以全班学生共 N =3x +1人;又因为比小华大的学生为3y人,所以全班学生共N=4y+1人. 这样, N-1既是 3 的倍数, 又是 4 的倍数, 因此N-1是3⨯4=12的倍数. 这个班学生人数大于 20 而小于 30, 所以N-1只可能是 24. 因此这个班共有学生N=24+1=25人.11.答案:1.375解答.小虎划船的全部时间为120分钟,他每划行30分钟,休息10分钟,周期为40分钟, “华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解所以一共可分为 3 个 30 分钟划行时间段, 有 3 个 10 分钟休息划船时, 顺水的船速与逆水的船速之比为 4.5:1.5=3:1. 因为小虎要把船划到离租船处尽可能远, 他在划船的过程中只能换一次划船的方向, 而且是在尽可能远处. 分两种情况讨论.1)开始向下游划船, 设最远离租船处x千米. 因为回到租船处是逆水, 所以小虎只有 110 分钟可用. 由于划船时顺流速度是逆流速度的 3 倍, 所以用在向下游划船的时间不能超过半小时. 另外两次休息时间只能用在返程, 在休息期间内船向下游漂流了13⨯1.5 , 所以⎛ 1 ⎫x ÷4.5+ x + ⨯1.5⎪ ÷1.5 = 1.5 .3⎝ ⎭整理上式得x +3x +1.5=6.75,4x= 5.25,x =1.3125(千米).2)开始向上游划, 设最远离租船处y千米. 小虎可用 120 分钟, 有两次休息时间用在向上游. 所以⎛ 1 ⎫ ⎛ 1 ⎫y + ⨯1.5⎪ ÷1.5 + y - ⨯1.5⎪ ÷ 4.5 = 1.5 .3 6⎝ ⎭ ⎝ ⎭整理上式得4 y+5 ⨯1.5 = 6.75 , 4 y= 5.5 , y =1.375(千米).6综合 1) 和 2) 的讨论, 小虎的船最多离租船处 1.375 千米.12.答案:不能解答. 设放的最小自然数为a,则放的最大自然数为a+23.于是这24个数的和为A= 12(2a+ 23).假设可能, 设每个正方形边上的数之和为S . 因为共有5个正方形, 这些和的和为5S . 因为每个数在这些和中出现两次, 所以有5S= 2A.“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解记最小的 16 个数的和为B , 则B=8(2a+15) . 下面分两种情形讨论:(1)若 B ≤ S ,则S = 2 A = 24 (2a+ 23) ≥ 8(2a+15) , 9.8a+110.4 ≥16a+120 ,5 5不存在自然数 a 使得不等式成立.(2)情形 B > S 也是不可能的,因为此时不可能选择最大正方形边上的16个数使得这16 个数的和等于S .三、解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程)13.答案:5解答. 用右图代替题目中的2⨯1小长方形.因为题目所给的小长方形上下不对称,所以同一个小长方形在拼成的上下对称的正方形中, 不会既在上半部分也在下半部分. 这样, 就可以只考虑上半部分的不同情形.1)相邻的空白格在第一行最左边或最右边. 因为要排除旋转相同的, 所以只考虑相邻空白格在最右边的情况, 有下图所示的 2 种图形,2)相邻的空白格在第一行中间. 去掉旋转重合的, 有下图所示的 3 种图形,所有不同的图形为 5 种.14.答案:6036“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解解答. 令n = a1+ a2++ a2010 = b1 + b2 + + b2012 = c1 + c2 ++ c2013 ,其中, 所有的a i数字和相同, 所有的b j数字和相同, 所有的c k数字和相同. 两个自然数数字的和相同, 则它们除以 9 的余数相同, 即a i = 9u i + r, i =1, 2, , 2010,bj = 9v j + s, j =1, 2, , 2012,c k = 9w k + t, k =1, 2, , 2013.则n= 9 ⨯ (u1+u2+ +u2010 ) + 2010⨯r= 9 ⨯ (v1+v2+ +v2012 ) + 2012⨯s (1)= 9 ⨯ (w1+w2+ +w2013 ) + 2013⨯t,由上面的等式可得,9 ⨯ (u1+u2++ u2010 + 223 ⨯ r) + 3r = 9 ⨯ (v1 + v2 ++ v2012 + 223 ⨯ s) + 5 ⨯ s ,(2)9 ⨯ (w1+w2++ w2013 + 223 ⨯ t) + 6 ⨯ t = 9 ⨯ (v1 + v2 ++ v2012 + 223 ⨯ s) + 5 ⨯ s ,(3) 由 (2) 可以得出s是 3 的倍数, 只能是 0, 3 或 6. 下面三种情况讨论:1)s =0.此时,对j=1, 2,, 2012 ,因为b j=9v j的数字和不为零,所以v j≥1. 则n =9⨯(v1+ v2++ v2012 ) ≥ 9 ⨯ 2012 = 18108 .2)s =6.此时“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解客服电话:400 650 0888 n =9(v1+ v2++ v2012 ) + 2012 ⨯ 6 ≥ 12072 .3)s =3,此时n= 9(v1+v2+ +v2012 ) + 2012 ⨯ 3 ≥ 6036 .可以取 r =2, t =1.而6036 = 3 + 3 + + 3 = 2 + 2 + + 2 +11 +11 + +112012 个x 个y 个=10 +10 + +10 +1 +1 + +1.=m 个n 个下面计算 x, y 与 m, n,⎧x + y =2010, ⎨ ⎧m + n =2013,⎨⎩10m+n= 6 0 3,6即6036 = 2⨯1786 +11⨯224 =10⨯447 +1566 = 3⨯2012.最终, 满足条件的最小自然数是 6036.“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解第 5 页共5页。
第十八届华罗庚金杯少年数学邀请赛初赛试题C (小学高年级组)(时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn =+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )4029解答:B 。
在考试中,选择恰当的方法很重要。
这道题,看到这道题后,我第一个想法就是归纳。
2222315=+、2231422=+、2244537=+、2255648=+、写完前三个,发现第二个算式很不和谐,又写出了第四个,仔细一想,原来第二个可以写成2233426=+,规律找到了,分子是原式中分子部分的一个因数,分母比分子大3!答案一定是20132016,很简单,第一题是很容易的年份题,等等,年份2013这个数是我们非常熟悉的,2013=3×11×61,是3的倍数,那么加3不还是3的倍数么?可以约分,所以最后的答案是20136712016672=所以选B ! 如果本题需要详细的过程,那么用规纳的方法是不合适的,因为这是不完全归纳法,你这么知道前几个适用的情况下,最后的2013也适用呢,所以最正确的方法是这样思考:如果这道题直接计算,分别算出分子分母,然后必然需要一个约分的过程(从选项可以看出),那么就太麻烦了,如果不计算出最后结果就可以约分,是件好事儿,那么转化分子还是转化分母呢?我们都知道,当分子分母都是乘法的形式,是比较好约分的,所以要转化分母,要在分母中“凑”出2013.具体过程是这样的:201320132014(20131)2012201320132014201320142012201320132014201320132201320132013671,2013(20142)2016672⨯=⨯++⨯=⨯++⨯=⨯+⨯⨯===⨯+原式 6716721343.m n +=+=这个题做完了,很容易得分的一道题,也是容易马虎的一个题,如果不仔细读题,忽略了“m 与n 为互质的自然数”,那么就容易把答案写成D 。
第十八届华罗庚金杯少年数学邀请赛初赛试卷B (小学高年级组)(时间: 2013 年3 月23 日10:00 ~ 11:00)一、选择题 (每小题 10 分, 满分60 分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 一个四位数, 各位数字互不相同, 所有数字之和等于6, 并且这个数是11 的倍数, 则满足这种要求的四位数共有( )个.(A )6 (B )7 (C )8 (D )9【答案】A【解析】四个数字互不相同,且和为6,只能是0、1、2、3;又知这个四位数是11的倍数,所以奇数位的数字和和偶数位的数字和都是3,只能是0+3=1+2;千位可能是1、2、3;确定千位后十位也随之确定。
每个对应的个位和百位有2种可能;共有6种。
2.932232332333+⨯+⨯⨯++⨯⨯⨯⨯个个位数字是( ).(A )2 (B )8 (C )4 (D )6【答案】B【解析】式子为10个数相加,这10个数的个位分别是2、6、8、4、2、6、8、4、2、6;易得和的个位是83. 在下面的阴影三角形中, 不能由右图中的阴影三角形经过旋转、平移得到的是图( )中的三角形.(A ) (B ) (C ) (D )【答案】B【解析】图中①、②、③三边应为顺时针关系,B 不合要求。
4. 某日, 甲学校买了56 千克水果糖, 每千克8.06 元. 过了几日, 乙学校也需要买同样的56 千克水果糖, 不过正好赶上促销活动, 每千克水果糖降价0.56 元, 而且只要买水果糖都会额外赠送5% 同样的水果糖. 那么乙学校将比甲学校少花( )元.(A )20 (B )51.36 (C )31.36 (D )10.36【答案】B【解析】甲花的钱是8.0656451.36⨯=元乙花的钱是568.060.56=4001+5%-⨯()元; 差是451.36-400=51.36元5. 甲、乙两仓的稻谷数量一样, 爸爸, 妈妈和阳阳单独运完一仓稻谷分别需要10 天, 12 天和15 天. 爸爸妈妈同时开始分别运甲、乙两仓的稻谷, 阳阳先帮妈妈, 后帮爸爸, 结果同时运完两仓稻谷, 那么阳阳帮妈妈运了( )天.(A6.中所有线段的长度的总和是((A 1×二、填空题(每小题 10 分, 满分7. 0.2430.325233⨯化为小数243325233-3927879371079110.2430.325233====0.079119999999903727999991099999⨯⨯⨯⨯⨯⨯⨯⨯8. , 下滑1 , 为229. . 如果a b b c c a a b ++++⨯④10. 九个同样的直角三角形卡片, 用卡片的锐角拼成一圈, 可以拼成类似右图所示的平面图形. 这种三角形卡片中的两个锐角中较小的一个的度数有________种不同的可能值. (右图只是其中一种可能的情况)【答案】4【解析】若某三角形符合条件,设它的两个锐角分别为a°,b°则a+b=90;且下面五个式子有且只有一个成立;9a+0b=360,8a+b=360,7a+2b=360,6a+3b=360,5a+4b=360;从下面的五个式子选出一个与a+b=90构成方程组,若解出的a、b符合0<a、b<90,且a≠b,则对应的三角形符合条件;这五组方程组中有4个的解满足条件。
学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。
可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
第十八届华罗庚金杯少年邀请赛初赛试题B(小学高年级组)(时间2013年3月23日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1.一个四位数, 各位数字互不相同, 所有数字之和等于6, 并且这个数是11的倍数, 则满足这种要求的四位数共有()个。
A.6 B.7 C.8 D.9解析:数论,整除特征、数字和。
四位数, 各位数字互不相同, 所有数字之和等于6, 所以,组成四位数的四个数字分别为0、1、2、3,这个数是11的倍数,则奇数位上的数字和等于偶数位上的数字和,等于3。
符合条件的四位数有3102、3201、1320、1023、2310、2013,共6个。
选A。
2. 2+2×3+2×3×3+2×3×3×3+…+2×3×…×3的个位数字是()。
9 3A.2 B.8 C.4 D.6解析:数论,周期位数问题。
原式=2×(1+3+32+33+…+39),3n的个位数按3、9、7、1呈周期出现,3+9+7+1=20,9÷4=2…1,所以原式的个位数为2×(1+20×2+3)≡2×4=8(mod10),所以答案为B.3.在下面的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形。
A .B .C .D .解析:图形旋转、平移问题。
第十八届华杯赛总决赛试题——必答题A 组试题组试题必答题A1 左下图是一个等腰梯形,左下图是一个等腰梯形,上底和两腰的长度是上底和两腰的长度是2,下底长度是4;右下图是一个正六角星形,面积和等腰梯形的面积相等,问:正六角星形的周长是多少?个正六角星形,面积和等腰梯形的面积相等,问:正六角星形的周长是多少?必答题A2 将1,2,3,4分别填入下面的方格中,使得等式分别填入下面的方格中,使得等式+2× +3× +4× =22 成立,那么第一个方格填的数与第四个方格填的数之积是多少?成立,那么第一个方格填的数与第四个方格填的数之积是多少?必答题A3 右图的三角形ABC 中,D ,E 分别是所在边的中点,BC=6MN ,三角形GMN 的面积等于3平方厘米。
求三角形ABC 的面积。
的面积。
等腰梯形正六角星形面积相等,五个地块栽种四种不同颜色不能同色,不相邻的地块可以同色。
问共有多少种不同的栽种方案?E D C B A A黑板上写有数字1到9.请你擦掉其中的几个数字,使得剩下的数字的两两相这十个数字,你从黑板上最多能擦掉几个数字?乘积中,个位出现由0到9这十个数字,你从黑板上最多能擦掉几个数字?第十八届华杯赛总决赛试题——必答题B组试题组试题 必答题B1 在100至200之间有三个连续的自然数,其中最小的能被3整除,中间的能整除。
写出这样的三个连续自然数。
被5整除,最大的能被7整除。
写出这样的三个连续自然数。
必答题B2 边长分别为6厘米和8厘米的两张正方形纸板,放在一个边长为10厘米的大正方形内,大正方形内未被两小正方形纸板盖住的部分的面积最小值是多少平方厘米?厘米?必答题B3 自然数n是两个质数的乘积,它的包含1但不包含n的所有因数的和等于100,那么n=? 必答题B4 如图,三角形ABC中,∠ACB=90°,AC=1cm,AB=2cm.以B为中心,将三角形ACB顺时针旋转,使得点A落在边CB的延长线上A1点,此时点C落在点C1的位置。
18~22届华杯赛决赛试题【小高组】目录计算篇 (1)计数篇 (6)几何篇 (16)数论篇 (30)应用题 (40)行程篇 (46)组合篇 (50)第一部分:计算篇1、【第18届华杯赛决赛B A 、卷第1题】 计算:______5.1281281125.019=-⨯+⨯.2、【第18届华杯赛决赛C 卷第1题】计算:______2785111111131322=÷⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛-⨯.3、【第19届华杯赛决赛D B A 、、卷第5题】 如果54□711○<<成立,则“○”与“□”中可以填入的非零自然数之和最大为______.4、【第19届华杯赛决赛C 卷第1题】 计算:______5213.23.0241225.095.22.3=-⨯++⨯-.5、【第20届华杯赛决赛B 卷第1题】 计算:______2110804.1451848.28586.57=+⨯-⨯+⨯.6、【第20届华杯赛决赛C 卷第1题】 计算:______528.11.03.0441225.175.01=-+⨯++-.7、【第20届华杯赛决赛D 卷第1题】 计算:______8.0195105375.119484=⨯+⨯.8、【第21届华杯赛决赛A 卷第1题】计算:______107143214.2317=÷⎪⎭⎫ ⎝⎛⨯+-.9、【第21届华杯赛决赛B 卷第1题】计算:_____4.213453611753971=-÷⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-.10、【第21届华杯赛决赛B 卷第8题】现有算式:甲数□乙数○1,其中□,○是符号+,-,×,÷中的某两个.李雷对四组甲数、乙数进行了计算,结果见右表,那么,A ○B =______.11、【第21届华杯赛决赛B 卷第9题】 计算:201620152016201420152014201635343201624232201613121+⎪⎭⎫ ⎝⎛++⋅⋅⋅+⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++12、【第21届华杯赛决赛C 卷第1题】计算:______525125.022143225.0412=-⨯+-+.13、【第21届华杯赛决赛C 卷第3题】 大于20161且小于20151的真分数有______个.14、【第22届华杯赛决赛A 卷第1题】用][x 表示不超过x 的最大整数,例如3]14.3[=,则⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯118201711720171162017115201711420171132017的值为_____.15、【第22届华杯赛决赛A 卷第2题】从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到4个数:8,12,3210和319,则原来给定的4个整数的和为______.16、【第22届华杯赛决赛B 卷第1题】______2017120161201512017120151514131513131211311=⨯⨯-+⋅⋅⋅+⨯⨯-+⨯⨯-.第二部分:计数篇1、【第18届华杯赛决赛B A 、卷第13题】用八个右图所示的2×1的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:在所有可能拼成的正方形图形中,上下对称、第一行有两个空白小方格且空白小方格相邻的图形有多少种?2、【第18届华杯赛决赛B 卷第9题】 右图中,不含“*”的长方形有多少个?3、【第18届华杯赛决赛C 卷第3题】 最简单分数b a 满足4151<<b a ,且b 不超过19,那么b a +的最大可能值与最小可能值之积为______.4、【第18届华杯赛决赛C 卷第12题】一次数学竞赛中,参赛各队每题的得分只有0分,3分和5分三种可能.比赛结束时,有三个队的总得分之和为32分.若任何一个队的总得分都可能达到32分,那么这三个队的总得分共有多少种不同的情况?5、【第18届华杯赛决赛C 卷第14题】用八个右图所示的1×2的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:有几种拼成的正方形图形仅以一条对角线为对称轴?6、【第19届华杯赛决赛D B A 、、卷第3题】从1~8这八个自然数中任取三个数,其中没有连续自然数的取法有______种.7、【第19届华杯赛决赛A 卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么9=n 时有多少种不同放置方法?8、【第19届华杯赛决赛D B 、卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么8=n 时有多少种不同放置方法?9、【第19届华杯赛决赛C卷第7题】1的小正方块堆成一立体,其俯视图如右图所示,问共有用八块棱长为cm种不同的堆法(经旋转能重合的算一种堆法).10、【第19届华杯赛决赛C卷第11题】a、和c.现有5块上面有一颗星、两颗星和三颗星的积木分别见下图的b一颗星,2块两颗星和1块三颗星的积木,如果用若干个这些积木组成一个五颗星的长条,那么一共有多少种不同的摆放方式?(下图d是其中一种摆放方式).(a)(b)(c)(d)11、【第20届华杯赛决赛B卷第5题】贝塔星球有7个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国,对于一种这样的星球局势,共可以组成______个两两都是友国的三国联盟.12、【第20届华杯赛决赛B卷第12题】两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是31分,一人赢了第一局且赢得比赛,那么第二局的比分共有多少种可能?13、【第20届华杯赛决赛C卷第2题】将自然数1至8分成两组,使两组的自然数各自之和的差等于16,共有______种不同的分法.14、【第20届华杯赛决赛C卷第5题】如图,3×4的长方形网格纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形,沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出______种不同类型的卡片.15、【第20届华杯赛决赛D 卷第7题】一次数学竞赛有C B A 、、三题,参赛的39个人中,每人至少答对了一道题,在答对A 的人中,只答对A 的比还答对其他题目的多5人,在没答对A 的人中,答对B 的是答对C 的2倍;又知道只答对A 的等于只答对B 的 与只答对C 的人数之和,那么答对A 的最多有______人.16、【第20届华杯赛决赛D 卷第8题】甲,乙两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是30分,在不计比分先后顺序时,三局的比分共有______种情况.17、【第21届华杯赛决赛A 卷第4题】在9×9的格子纸上,1×1小方格的顶点叫做格点.如右图,三角形ABC 的三个顶点都是格点.若一个格点P 使得三角形PAB 与三角形PAC 的面积相等,就称P 点为“好点”.那么在这张格子纸上共有______个“好点”.18、【第21届华杯赛决赛A 卷第5题】对于任意一个三位数n ,用 表示删掉n 中为0的数位得到的数,例如 102=n 时, 12=那么满足 n <,且 是n 的约数的三位数n 有 ______个.19、【第21届华杯赛决赛A 卷第9题】复活赛上,甲乙二人根据投票结果决出最后一个参加决赛的名额.投票人数 固定,每票必须投给甲乙二人之一.最后,乙的得票数为甲的得票数的2120,甲胜出.但是,若乙得票数至少增加4票,则可胜甲.请计算甲乙所得的票数.20、【第21届华杯赛决赛A 卷第13题】如右图,有一张由四个1×1的小方格组成的凸字形纸片和一张5×6的方格纸.现将凸字形纸片粘到方格纸上,要求凸字形纸片的每个小方格都要与方格纸的某个小方格重合,那么可以粘出多少种不同的图形?(两图形经旋转后相同看作相同图形)21、【第21届华杯赛决赛C 卷第11题】如图,是一个等边三角形,等分为4个小的等边三角形,用红和黄两种颜色涂染它们的顶点,要求每个顶点必须涂色,且只能涂一种颜色.涂完后,如果经过旋转,等边三角形的涂色相同,则认为是相同的涂色,则共有多少种不同的涂法?22、【第22届华杯赛决赛B A 、卷第3题】在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子最多放一枚棋子,共有______种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).23、【第22届华杯赛决赛A 卷第5题】某校开设了书法和朗诵两个兴趣小组,已知两个小组都参加的人数是只参加书法小组人数的72,是只参加朗诵小组人数的51,那么书法小组与朗诵小组的人数比是______.24、【第22届华杯赛决赛B A 、卷第8题】如右图,六边形的六个顶点分别标志为F E D C B A 、、、、、.开始的时候“华罗庚金杯赛”六个汉字分别位于F E D C B A 、、、、、顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有______种.25、【第22届华杯赛决赛A 卷第10题】某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选了香蕉,30%的学生选了梨.那么三种水果都选的学生数占学生总数至多是百分之几.26、【第22届华杯赛决赛B 卷第4题】小于1000的自然数中,有______个数的数字组成中最多有两个不同的数字.27、【第22届华杯赛决赛B卷第7题】一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有______个.28、【第22届华杯赛决赛B卷第11题】从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.第三部分:几何篇1、【第18届华杯赛决赛A卷第4题】如右图,在边长为12厘米的正方形ABCD中,以AB为底边作腰长为10厘米的等腰三角形PAB.则三角形PAC的面积等于______平方厘米.2、【第18届华杯赛决赛A卷第4题、B卷第6题】两个大小不同的正方体积木粘在一起,构成右图所示的立体图形,其中,小积木的粘贴面的四个顶点分别是大积木的粘贴面各边的一个三等分点.如果大积木的棱长为3,则这个立体图形的表面积为______.3、【第18届华杯赛决赛A卷第8题,B卷第12题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.4、【第18届华杯赛决赛B 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且4:1:=PD AP ,2:3:=QC AQ ,如果正方形ABCD 的面积为25,那么三角形PBQ 的面积是______.5、【第18届华杯赛决赛B 卷第10题】如右图,三角形ABC 中,BD AD 2=,EC AD =,18=BC ,三角形AFC 的面积和四边形DBEF 的面积相等,那么AB 的长度是多少?6、【第18届华杯赛决赛C 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且3:1:=PD AP ,1:4:=QC AQ ,如果正方形ABCD 的面积为100,那么三角形PBQ 的面积是______.7、【第18届华杯赛决赛C卷第6题】两个较小的正方体积木分别粘在一个大正方体积木的两个面上,构成右图所示的立体图形,其中,每个小积木粘贴面的四个顶点分别是大积木粘贴面各边的一个五等分点.如果三个积木的棱长互不相同且最大的棱长为5,那么这个立体图形的表面积是______.8、【第18届华杯赛决赛C卷第8题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.9、【第18届华杯赛决赛C卷第9题】右图中,大正方形的周长比小正方形的周长多80厘米,阴影部分的面积为880平方厘米.那么,大正方形的面积是多少平方厘米?10、【第18届华杯赛决赛C 卷第13题】在等腰直角三角形ABC 中,90=∠A 度,1==AC AB ,矩形EHGF 在三 角形ABC 内,且H G 、在边BC 上.求矩形EHGF 的最大面积.11、【第19届华杯赛决赛D B A 、、卷第1题】如右图,边长为12米的正方形池塘的周围是草地,池塘边D C B A 、、、处各有一根木桩,且3===CD BC AB 米.现用长4米的绳子将一头羊拴在其中的某根木桩上.为了使羊在草地上活动区域的面积最大,应将绳子拴在______处的木桩.12、【第19届华杯赛决赛A 卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上 画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.13、【第19届华杯赛决赛A 卷第8题】平面上的五个点E D C B A 、、、、满足:8=AB 厘米,4=BC 厘米, 5=AD 厘米,1=DE 厘米,12=AC 厘米,6=AE 厘米.如果三角形EAB 的面积为24平方厘米,则点A 到CD 的距离等于______厘米.14、【第19届华杯赛决赛A 卷第12题】如右图,在三角形ABC 中,D 为BC 的中点,BF AF 2=,AE CE 3=.连接CF 交DE 于P 点,求DPEP 的值.15、【第19届华杯赛决赛D B 、卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.16、【第19届华杯赛决赛B 卷第8题】平面上的五个点E D C B A 、、、、满足:16=AB 厘米,8=BC 厘米, 10=AD 厘米,2=DE 厘米,24=AC 厘米,12=AE 厘米.如果三角形EAB 的面积为96平方厘米,则点A 到CD 的距离等于______厘米.17、【第19届华杯赛决赛D B 、卷第12题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 2=.连接CF 交DE 于P 点,求DPEP 的值.18、【第19届华杯赛决赛C 卷第3题】如右图,在直角三角形ABC 中,点F 在AB 上且BF AF 2=,四边形EBCD 是平行四边形,那么EF FD :为______.19、【第19届华杯赛决赛C 卷第4题】右图是由若干块长12厘米、宽4厘米、高2厘米的积木搭成的立体的正视图,上面标出了若干个点.一只蚂蚁从立体的左侧地面经过所标出的点爬到右侧的地面.如果蚂蚁向上爬行的速度为每秒2厘米,向下爬行的速度为每秒3厘米,水平爬行的速度为每秒4厘米,则蚂蚁至少爬行了______秒.20、【第19届华杯赛决赛C 卷第8题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 4=.连接CF 交DE 于P 点,求DPEP 的值.21、【第19届华杯赛决赛D 卷第8题】长为4的线段AB 上有一动点C ,等腰三角形ACD 和等腰三角形BEC 在过AB 的直线同侧,DC AD =,EB CE =,则线段DE 的长度最小为______.22、【第20届华杯赛决赛B 卷第7题】如图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角 形DOE 的面积为______.23、【第20届华杯赛决赛B 卷第10题,D 卷第6题】如图,从长、宽、高为15,5,4的长方体中切割走一块长、宽、高为y , 5,x 的长方体(y x 、为整数),余下部分的体积为120,求x 和y 的值.24、【第20届华杯赛决赛B 卷第13题】如图,点M 是平行四边形ABCD 的边CD 上的一点,且2:1:=MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G ,若三角形FCG 的面积与三角形MED 的面积之差为13平方厘米,求平行四边形ABCD 的面积?25、【第20届华杯赛决赛C卷第4题】如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是直角,三角形EDH的是边长为9厘米的正方形,H在AB上,EDH面积是______.26、【第20届华杯赛决赛C卷第6题】一个长方体,棱长都是整数厘米,所有棱长之和是88厘米,问这个长方体总的侧面积最大是______平方厘米.27、【第20届华杯赛决赛C卷第13题】如图,ABCD是平行四边形,F在AD上,三角形AEF的面积是8平方厘米,三角形DEF的面积是12平方厘米,四边形BCDF的面积是72平方厘米,求三角形CDE的面积?28、【第20届华杯赛决赛D 卷第2题】如图,用六个正方形,六个三角形,一个正六边形组成的图案,正方形边 长都是cm 2,这个图案的周长是______.29、【第20届华杯赛决赛D 卷第11题】如图,长方形ABCD 的面积为2m 56,cm 3=BE ,cm 2=DF ,求:三角形AEF 的面积是多少?30、【第20届华杯赛决赛D 卷第13题】如图,ABCD 是平行四边形,MB AM =,CN DN =,FC EF BE ==四边形EFGH 的面积是1,求平行四边形ABCD 的面积.31、【第21届华杯赛决赛A 卷第3题】右图中,5=AB 厘米,85=∠ABC °,45=∠BCA °,20=∠DBC °, 则______=AD 厘米.32、【第21届华杯赛决赛A 卷第10题】如右图,三角形ABC 中,180=AB 厘米,204=AC 厘米,F D 、是AB 上的点,G E 、是AC 上的点,连结FG EF DE CD 、、、,将三角形ABC 分 成面积相等的五个小三角形.则AG AF +为多少厘米?33、【第21届华杯赛决赛B 卷第2题】如右图,30个棱长为1的正方体粘成一个四层的立体,这个立体的表面积等于______.34、【第21届华杯赛决赛B 卷第4题】如右图所示,将一个三角形纸片ABC 折叠,使得点C 落在三角形ABC 所在平面上,折痕为DE .已知74=∠ABE °,70=∠DAB °,20=∠CEB °,那么CDA ∠等于______.35、【第21届华杯赛决赛B 卷第1题】如右图,正方形ABCD 的边长为5,F E 、为正方形外两点,满足4==CF AE ,3==DF BE ,那么______2=EF .36、【第21届华杯赛决赛B 卷第11题】如右图,等腰直角三角形ABC 与等腰直角三角形DEF 之间的面积为20,2=BD ,4=EC ,求三角形ABC 的面积.37、【第21届华杯赛决赛B 卷第13题】如右图,正方形ABCD 的面积为1,M 是CD 边的中点,F E 、是BC 边上的两点,且FC EF BE ==.连接DF AE 、分别交BM 分别于G H 、.求四边形EFGH 的面积.38、【第21届华杯赛决赛卷第5题】如图,AD AB =,21=∠DBC °,39=∠ACB °,则______=∠ABC .39、【第21届华杯赛决赛C 卷第1题】如图,ABCD 是直角梯形,上底2=AD ,下底6=BC ,E 是DC 上一点,三角形ABE 的面积是15.6,三角形AED 的面积是4.8,则梯形ABCD 的面积是______.40、【第22届华杯赛决赛A 卷第6题、B 卷第5题】右图中,三角形ABC 的面积为100平方厘米,三角形ABD 的面积为72平方厘米.M 为CD 边的中点,90=∠MHB °.已知20=AB 厘米.则MH 的长度为______厘米.【几何天地】求阴影面积是正方形面积的几分之几?第四部分:数论篇1、【第18届华杯赛决赛B A 、卷第3题】 某些整数分别被119977553,,,除后,所得的商化作带分数时,分数部分分别是92725232,,,,则满足条件且大于1的最小整数是______.2、【第18届华杯赛决赛A 卷第3题】有一筐苹果,甲班分,每人3个还剩11个;乙班分,每人4个还剩10个;丙班分,每人5个还剩12个.那么这筐苹果至少有______个.3、【第18届华杯赛决赛A 卷第7题】设n 是小于50的自然数,那么使得54+n 和67+n 有大于1的公约数的所有n 的可能值之和为______.4、【第18届华杯赛决赛A 卷第14题】不为零的自然数n 既是2010个数字和相同的自然数之和,也是2012个数 字和相同的自然数之和,还是2013个数字和相同的自然数之和,那么n 最 小是多少?5、【第18届华杯赛决赛B卷第5题】有一箱苹果,甲班分,每人3个还剩10个;乙班分,每人4个还剩11个;丙班分,每人5个还剩12个.那么这箱苹果至少有______个.6、【第18届华杯赛决赛B卷第8题】用“学”和“习”代表两个不同的数字,四位数“学学学学”与“习习习习”的积是一个七位数,且它的个位和百万位数字与“学”所代表的数字相同,那么“学习”所能代表的两位数共有______个.7、【第18届华杯赛决赛B卷第14题】对于155个装有红、黄、蓝三种颜色球的盒子,有三种分类方法:对于每种颜色,将该颜色的球数目相同的盒子归为一类.若从1到30之间所有的自然数都是某种分类中一类的盒子数.1)求三种分类的类数之和?2)说明,可以找到三个盒子,其中至少有两种颜色的球,它们的数目分别相同.8、【第18届华杯赛决赛C卷第5题】四位数abcd与cdab的和为3333,差为693,那么四位数abcd为______.9、【第18届华杯赛决赛C 卷第7题】设c b a 、、分别是0~9中的数字,它们不同时都为0也不同时都为9.将循环小数⋅⋅⋅c b a .0化成最简分数后,分子有______不同情况.10、【第18届华杯赛决赛C 卷第11题】设n 是小于50的自然数,求使得53+n 和45+n 有大于1的公约数的所有n .11、【第19届华杯赛决赛A 卷第2题】在所有是20的倍数的正整数中,不超过2014并且是14的倍数的数之和是______.12、【第19届华杯赛决赛A 卷第13题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的5倍.求n 的最大值,并说明理由.13、【第19届华杯赛决赛D B 、卷第2题】在所有是20的倍数的正整数中,不超过3000并且是14的倍数的数之和是______.14、【第19届华杯赛决赛D B 、卷第14题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的7倍.求n 的最大值,并说明理由.15、【第19届华杯赛决赛C 卷第5题】设e d c b a 、、、、均是自然数,并且e d c b a <<<<,3005432=++++e d c b a ,则b a +的最大值为______.16、【第19届华杯赛决赛C 卷第10题】 把20142013201420122014220141,,,,⋅⋅⋅中的每个分数都化成最简分数,最后得到的以2014为分母的所有分数的和是多少?17、【第19届华杯赛决赛B 卷第12题】某自然数减去39是一个完全平方数,减去144也是一个完全平方数,求此自然数.18、【第19届华杯赛决赛B 卷第14题】 将每个最简分数m n (其中n m 、为互质的非零自然数)染成红色或蓝色,染色规则如下:1)将1染成红色;2)相差为1的两个数颜色不同;3)不为1的数与其倒数颜色不同.问:20142013和72分别染成什么颜色?19、【第20届华杯赛决赛B 卷第4题】某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小是______.20、【第20届华杯赛决赛B卷第6题】由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是______,最小的是______.21、【第20届华杯赛决赛B卷第8题】三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么3个数之积的末尾3位数有______种可能数值.22、【第20届华杯赛决赛B卷第9题】将1234567891011的某两位的数字交换能否得到一个完全平方数?请说明理由.23、【第20届华杯赛决赛B卷第14题】设“一家之言”,“言扬行举”,“举世皆知”,“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?24、【第20届华杯赛决赛C 卷第7题】5321-=⎥⎦⎤⎢⎣⎡-x x ,这里的[]x 表示不超过x 的最大整数,则______=x .25、【第20届华杯赛决赛C 卷第10题】将2015个分数2016120151413121,,,,,⋅⋅⋅化成小数,共有多少个有限小数?26、【第20届华杯赛决赛C 卷第11题】 b a 、为正整数,小数点后三位经四舍五入后,式子51.175≈+b a ,求 =+b a27、【第20届华杯赛决赛C 卷第12题】 已知原式e aad abcd ⨯=,式中不同字母代表不同的数字,问四位数abcd 的最大值是多少?28、【第20届华杯赛决赛D 卷第5题】由四个非零数字组成的没有重复数字的所有四位数的和为73326,则这些四位数中最大的是______.29、【第20届华杯赛决赛D 卷第9题】两个自然数之和为667,它的最小公倍数除以最大公约数所得的商等于120,求这两个数?30、【第20届华杯赛决赛D 卷第12题】当n 取遍1,2,3,…,2015中的所有的数时,形如33n n 的数中能够被7整除的有多少个?31、【第20届华杯赛决赛D 卷第14题】“虚有其表”,“表里如一”,“一见如故”,“故弄玄虚”四个成语中每个汉字代表11个非零连续自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,且“表”>“一”>“故”>“如”>“虚”,且 各个成语中四个汉字所代表的数的和都是21,则“弄”可以代表的数最大 是多少?32、【第21届华杯赛决赛B A 、卷第7题】如果832⨯能表示成k 个连续正整数的和,则k 的最大值为______.33、【第21届华杯赛决赛A 卷第14题】设n 是正整数.若从任意n 个非负整数中一定能找到四个不同的数d c b a 、、、使得d c b a --+能被20整除,则n 的最小值是多少?34、【第21届华杯赛决赛B 卷第12题】试找出这样的最大的五位正整数,它不是11的倍数,通过划去它的若干数字也不能得到可被11整除的数.35、【第21届华杯赛决赛C 卷第7题】n 为正整数,形式为12-n 的质数称为梅森数,例如:712,31232=-=-是梅森数.最近,美国学者刷新了最大梅森数,74207281=n ,这个梅森数也是目前已知的最大的质数,它的个位数字是______.36、【第22届华杯赛决赛B A 、卷第12题】 使1523++n n 不为最简分数的三位数n 之和等于多少.37、【第22届华杯赛决赛B 卷第10题】求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.第五部分:应用题篇1、【第18届华杯赛决赛A卷第10题】小明与小华同在小六(1)班,该班学生人数介于20和30之间,且每个人的出生日期均不相同.小明说:“本班比我大的人数是比我小的人数的两倍”,小华说:“本班比我大的人数是比我小的人数的三倍”问这个班的有多少名学生?2、【第18届华杯赛决赛B卷第11题】若干人完成了植树2013棵的任务,每人植树的棵数相同.如果有5人不参加植树,其余的人每人多植2棵不能完成任务,而每人多植3棵可以超额完成任务.问:共有多少人参加了植树?3、【第18届华杯赛决赛C卷第10题】某高中根据入学考试成绩确定了录取分数线,录取了四分之一的考生.所有被录取者的成绩平均分比录取分数线高10分,所有没有被录取的平均分比录取分数线低26分,所有考生的平均成绩是70分.求录取分数线是多少?4、【第19届华杯赛决赛A卷第7题】学校组织1511人去郊游,租用42座大巴和25座中巴两种汽车.如果要求恰好每人一座且每座一人,则有______种租车方案.5、【第19届华杯赛决赛A卷第10题】有一杯子装满了浓度为16%的盐水.有大、中、小铁球各一个,它们的体积比为10:4:3.首先将小球沉入盐水杯中,结果盐水溢出10%,取出小球;其次把中球沉入盐水杯中,又将它取出;接着将大球沉入盐水杯中后取出;最后在杯中倒入纯水至杯满为止.此时杯中盐水的浓度是多少?(保留一位小数)B、卷第7题】6、【第19届华杯赛决赛D学校组织482人去郊游,租用42座大巴和20座中巴两种汽车.如果要求每人一座且每座一人,则有______种租车方案.。
第十八届华罗庚金杯少年数学邀请赛初赛试题 C (小学高年级组) (时间: 2013 年 3 月 23 日)一、选择题 (每小题 10 分, 满分 60 分. 以下每题的四个选项中, 仅有一个是正确的, 请将 表示正确答案的英文字母写在每题的圆括号内.)20132013 n1. 如果(其中 m 与 n 为互质的自然数), 那么 m +n 的值是().20142014 2012 m(A )1243 (B )1343 (C )4025 (D )4029解答:B 。
在考试中,选择恰当的方法很重要。
这道题,看到这道题后,我第一个想法就是归纳。
2223 1 52、3 124 222442、5 372、5 526 482、写完前三个,发现第二个算式很不和 332谐,又写出了第四个,仔细一想,原来第二个可以写成,规律找到了,分子是原42 622013式中分子部分的一个因数,分母比分子大 3!答案一定是,很简单,第一题是很容易2016的年份题,等等,年份 2013 这个数是我们非常熟悉的,2013=3×11×61,是 3 的倍数,那2013 671么加 3 不还是 3 的倍数么?可以约分,所以最后的答案是所以选 B!2016 672 如果本题需要详细的过程,那么用规纳的方法是不合适的,因为这是不完全归纳法,你这么知道前几个适用的情况下,最后的 2013 也适用呢,所以最正确的方法是这样思考:如果这道题直接计算,分别算出分子分母,然后必然需要一个约分的过程(从选项可以看出),那么就太麻烦了,如果不计算出最后结果就可以约分,是件好事儿,那么转化分子还是转化分母呢?我们都知道,当分子分母都是乘法的形式,是比较好约分的,所以要转化分母,要在分母中“凑”出 2013.具体过程是这样的:20132013原式2014(20131) 20122013201320142013 2014201220132013201420132013 220132013 2013 671,2013(2014 2) 2016 672m n 671672 1343.这个题做完了,很容易得分的一道题,也是容易马虎的一个题,如果不仔细读题,忽略了“m 与n 为互质的自然数”,那么就容易把答案写成 D。
2012年第十七届华杯赛小高年级组初赛试题答案第1题:176第2题:865第3题:3721第4题:3第5题:120第6题:60第7题:75第8题:2012第9题:6第10题:40442013第十八届华杯赛决赛小学高年级组试题A卷2013-04-25 14:23:54 来源:华杯赛官网2013第十八届“华杯赛”笔试决赛已经结束,全国试卷小高组分A、B、C卷外,其余组别都是分A、B卷,杭州智康1对1整理了第十八届“华杯赛”决赛所有试题及答案解析。
•2014年第十八届华罗庚金杯少年数学邀请赛初赛试卷B (小学高年级组)(时间: 2013 年3 月23 日10:00 ~ 11:00)一、选择题 (每小题 10 分, 满分60 分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 一个四位数, 各位数字互不相同, 所有数字之和等于6, 并且这个数是11 的倍数, 则满足这种要求的四位数共有( )个.(A )6 (B )7 (C )8 (D )9【答案】A【解析】四个数字互不相同,且和为6,只能是0、1、2、3;又知这个四位数是11的倍数,所以奇数位的数字和和偶数位的数字和都是3,只能是0+3=1+2; 千位可能是1、2、3;确定千位后十位也随之确定。
每个对应的个位和百位有2种可能;共有6种。
2. 932232332333+⨯+⨯⨯++⨯⨯⨯⨯L L 14243个个位数字是( ). ?? ?????(A )2 (B )8 (C )4 (D )6【答案】B【解析】式子为10个数相加,这10个数的个位分别是2、6、8、4、2、6、8、4、2、6;易得和的个位是83. 在下面的阴影三角形中, 不能由右图中的阴影三角形经过旋转、平移得到的是图( )中的三角形.(A ) (B ) (C ) (D )【答案】B【解析】图中①、②、③三边应为顺时针关系,B 不合要求。
4. 某日, 甲学校买了56 千克水果糖, 每千克8.06 元. 过了几日, 乙学校也需要买同样的56 千克水果糖, 不过正好赶上促销活动, 每千克水果糖降价0.56 元, 而且只要买水果糖都会额外赠送5% 同样的水果糖. 那么乙学校将比甲学校少花( )元.(A )20 (B )51.36 (C )31.36 (D )10.36【答案】B【解析】甲花的钱是8.0656451.36⨯=元 乙花的钱是568.060.56=4001+5%-⨯()元;差是451.36-400=51.36元5. 甲、乙两仓的稻谷数量一样, 爸爸, 妈妈和阳阳单独运完一仓稻谷分别需要10 天, 12 天和15 天. 爸爸妈妈同时开始分别运甲、乙两仓的稻谷, 阳阳先帮妈妈, 后帮爸爸, 结果同时运完两仓稻谷, 那么阳阳帮妈妈运了( )天.(A )3 (B )4 (C )5 (D )6【答案】C【解析】三人的效率分别是111101215,,;共同运了2仓稻谷,需要1112++=8101215÷()天;妈妈运了1仓稻谷的812;小明帮妈妈运了412,需要5天; 6. 如图, 将长度为9 的线段AB 分成9 等份, 那么图中所有线段的长度的总和是( ).(A )132 (B )144 (C )156 (D )165【答案】D【解析】图中长度为1的线段有9条,长度为2的线段有8条,……1×9+2×8+3×7+…+9×1=165二、填空题(每小题 10 分, 满分40 分)7. 将乘积0.2430.325233⨯&&&&化为小数, 小数点后第2013 位的数字是________.【答案】9 【解析】243325233-3927879371079110.2430.325233====0.079119999999903727999991099999⨯⨯⨯⨯⨯⨯⨯⨯&&&&&& 循环节有5位,2013≡3(mod5),第2013位和第3位一样,是9.8. 一只青蛙8 点从深为12 米的井底向上爬, 它每向上爬3 米, 因为井壁打滑, 就会下滑1 米, 下滑1 米的时间是向上爬3 米所用时间的三分之一. 8 点17 分时, 青蛙第二次爬至离井口3 米之处, 那么青蛙从井底爬到井口时所花的时间为________分钟.【答案】22【解析】青蛙的运动状态如下图所示,从开始到第二次离井口3米的时间为17份,爬到井口的时间为22份。
一、选择题1.45与40的积的数字和是().(A)9 (B)11 (C)13 (D)152.在下面的阴影三角形中, 不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形.(A)(B)(C)(D)3.小东、小西、小南、小北四个小朋友在一起做游戏时, 捡到了一条红领巾, 交给了老师. 老师问是谁捡到的?小东说不是小西;小西说是小南;小南说小东说的不对;小北说小南说的也不对. 他们之中只有一个人说对了, 这个人是().(A)小东(B)小西(C)小南(D)小北4.2013年的钟声敲响了, 小明哥哥感慨地说:这是我有生以来遇到的第一个没有重复数字的年份。
已知小明哥哥出生的年份是19的倍数, 那么2013年小明哥哥的年龄是()岁。
(A)16 (B)18 (C)20 (D)225.如右图, 一张长方形的纸片, 长20厘米, 宽16厘米. 如果从这张纸上剪下一个长10厘米,宽5厘米的小长方形, 而且至少有一条边在原长方形的边上,那么剩下纸片的周长最大是()厘米.(A)72 (B)82 (C)92 (D)1026.张老师每周的周一、周六和周日都跑步锻炼20分钟, 而其余日期每日都跳绳20分钟. 某月他总共跑步5小时, 那么这个月的第10天是().(A)周日(B)周六(C)周二(D)周一二、填空题7.如右图, 一个正方形被分成了4个相同的长方形, 每个长方形的周长都是20厘米. 则这个正方形的面积是平方厘米。
8.九个同样的直角三角形卡片, 拼成了如右图所示的平面图形. 这种三角形卡片中的两个锐角较大的一个是度.9.幼儿园的老师给班里的小朋友送来55个苹果, 114块饼干, 83块巧克力. 每样都平均分发完毕后, 还剩3个苹果, 10块饼干, 5块巧克力. 这个班最多有位小朋友.10.如下图, 将长度为9的线段AB九等分, 那么图中所有线段的长度的总和是.1、【答案】A【解析】45×40=1800,1+8=9【难度】☆【知识点】两位数乘法计算2、【答案】B【解析】由观察可得:A、C、D都可通过旋转得到,而B是通过原图翻转得到。
第十八届 庚金杯少年邀 决 B (小学高年 )总分第十八届华罗庚金杯少年邀请赛决赛试题 B (小学高年级组)(时间 2013 年 4 月 20 日 10 :00 ~11 :30 )一、填空 (每小 10 分, 共 80分)1. 算 : 19 × 0.125+281 × 1+12.5=________.8解析:原式 =( 19+281+100)× 0.125=400×0.125 =502. ‘逢冬数九’ 的是 , 从冬至之日起 , 每九天分 一段 , 依次称之 一九 , 二九 , ⋯⋯ ,九九 , 冬至那天是一九的第一天 . 2012 年 12月21日是冬至 , 那么 2013年的 2月 10日是 ________九的第 ________天.解析: 31-21+1+31+10=52,52 ÷ 9=5⋯7, 2013年的元旦是六九的第 7天 .3.某些整数分 被5 7 9 11 所得的商化作 分数, 分数部分分 是2 2 227 , , , 除后 ,5 , ,, ,9 11 137 9 11足条件且大于 1的最小整数是 ________.解析: 整数A,分 被5 7 9 11所得的商分79 11 137, , , 除后 ,5A , A , A ,A ;9 11 1379 11 7 2 7 9 1 2 9 11 2 1113 2 A 15( A 1), A7 ( A 1), A 1( A 1),A 15577 99 91111 然,当 A-1 是 [5 , 7, 9,3] 的 候 足 意。
所以 A-1=3465 ,A=3466。
4.如 所示 , P, Q 分 是正方形 ABCD 的 AD 和 角 AC 上的点 , 且PD:AP =4:1, QC:AQ =2:3,如果正方形 ABCD 的面 25, 那么三角形 PBQ 的面 是. 解析: 接 QD,做QE ⊥ BC 于E, QF ⊥ AD 于 F, QG ⊥ CD 于 G, 正方形ABCD 的面 25, 所以 AD=EF=5, QC: AQ =2:3,根据正方形 称G性,所以 QE=QG=2, QF=3, PD:AP =4:1, AP=1 , PD=4。