第18届“华杯赛”笔试决赛小学高年级组试题B及参考答案
- 格式:pdf
- 大小:334.27 KB
- 文档页数:5
第十八届华罗庚金杯少年数学邀请赛初赛试题C (小学高年级组)(时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn =+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )4029解答:B 。
在考试中,选择恰当的方法很重要。
这道题,看到这道题后,我第一个想法就是归纳。
2222315=+、2231422=+、2244537=+、2255648=+、写完前三个,发现第二个算式很不和谐,又写出了第四个,仔细一想,原来第二个可以写成2233426=+,规律找到了,分子是原式中分子部分的一个因数,分母比分子大3!答案一定是20132016,很简单,第一题是很容易的年份题,等等,年份2013这个数是我们非常熟悉的,2013=3×11×61,是3的倍数,那么加3不还是3的倍数么?可以约分,所以最后的答案是20136712016672=所以选B ! 如果本题需要详细的过程,那么用规纳的方法是不合适的,因为这是不完全归纳法,你这么知道前几个适用的情况下,最后的2013也适用呢,所以最正确的方法是这样思考:如果这道题直接计算,分别算出分子分母,然后必然需要一个约分的过程(从选项可以看出),那么就太麻烦了,如果不计算出最后结果就可以约分,是件好事儿,那么转化分子还是转化分母呢?我们都知道,当分子分母都是乘法的形式,是比较好约分的,所以要转化分母,要在分母中“凑”出2013.具体过程是这样的:201320132014(20131)2012201320132014201320142012201320132014201320132201320132013671,2013(20142)2016672⨯=⨯++⨯=⨯++⨯=⨯+⨯⨯===⨯+原式 6716721343.m n +=+=这个题做完了,很容易得分的一道题,也是容易马虎的一个题,如果不仔细读题,忽略了“m 与n 为互质的自然数”,那么就容易把答案写成D 。
第十八届华罗庚金杯少年数学邀请赛决赛试题B参考答案(小学高年级组)一、填空题(每题10 分, 共80分)二、解答下列各题(每题10 分, 共40分, 要求写出简要过程)9.答案:106解答. 图中共有5条最长的水平线段和7条最长的垂直线段, 任意两条水平与任意两条垂直的就构成一个长方形, 一共有2102110)123456()1234(=⨯=+++++⨯+++(个).其中含“*”号有4×15+4×15-4×4=120-16=104 (个).所以不含含“*”号有210-104=106个.10.答案:9解答. 由于三角形AFC的面积和四边形DBEF的面积相等, 可得出三角形AEC 的面积等于三角形BDC的面积. 由BD:DA = 1:2, 得三角形BDC的面积等于三角形ABC面积的13, 即三角形AEC的面积等于三角形ABC面积的13. 那么EC等于BC的13, 得出EC = 6, 进而AD = 6, BD = 3, 最终AB = 9.11.答案:61解答. 设有n 个人, 每人植树x 棵, 则611132013⨯⨯==nx .可以说明:113⨯>n . 若33=n , 则每人植树61棵. 如果5人不参加植树, 则有305棵树, 其余28人每人多植3棵, 才种84棵树, 完不成任务. 可见, 113⨯>n .考虑n = 61. 此时, x = 33. 如果5人不参加植树, 则有165棵树要让56人多植树. 若每人多植2棵, 则56人多植了112256=⨯(棵)树, 完不成植树任务; 若每人多植3棵, 则56人多植了168356=⨯(棵), 完成了植树任务. 所以, n = 61符合要求.12. 答案:59解答.① 观察立体右面的正方体, 标有1个黑点的侧面到标有2个黑点的面, 再到标有4个黑点的面是以逆时针方向围绕这三个面的交点.② 观察中间上面的正方体, 既然从1个黑点到2个黑点, 再到4个黑点是逆时针, 则该正方体标有6个黑点的面的对面标有1个黑点.③ 观察立体左面的正方体, 正方体标有3个黑点的面紧邻标有2个黑点的面, 结合观察立体中间上面的正方体, 可知该正方体中, 标有4个黑点的侧面的对面的黑点有3个, 且底面标有5个黑点. 并且可知, 从1个黑点到2个黑点, 再到3个黑点是顺时针.所以, 四个完全相同的正方体, 黑点为1、2和3的三个侧面顺时针围绕公共顶点, 1对6, 2对5, 3对4. 所以, 立体中右面的正方体紧贴中间正方体的侧面有6个黑点; 立体中左面的正方体紧贴中间正方体的侧面有6个黑点; 立体中间上面的正方体紧邻下方正方体的侧面有5个黑点; 立体中间下面的正方体后面的侧面有2个黑点, 底面有可能是有1个黑点. 所以立体中间下面的正方体紧贴其他3个正方体的3个侧面黑点总数最少是8个.4个正方体黑点总数是84, 3对紧贴的侧面黑点总数最多是25, 所以, 立体的侧面(包括底面)所有黑点的总数最多是59.三、解答下列各题(每题15 分, 共30分, 要求写出详细过程)13.答案:4解答. 用右图代替题目中的12⨯小长方形. 对于拼成的正方形图形, 记过左上顶点的对角线为甲对角线, 另一条对角线为乙对角线.图A首先, 有如下观察:1) 当甲对角线是对称轴时,a)左上角的22⨯小正方形是图A的(1), (2), (3), (4) 中之一;b)右下角的22⨯小正方形是图A的(1), (2), (5), (6) 中之一;c)若右上角的22⨯小正方形是图A的(1), (2), (7), (8) 中的一个, 则左下角的22⨯小正方形分别是图A中的(1), (2), (9), (10);2) 当乙对角线是对称轴时,a)右上角的22⨯小正方形是图A的(1), (2), (7), (8) 中之一;b)左下角的22⨯小正方形是图A的(1), (2), (9), (10) 中之一;c)若左上角的22⨯小正方形是图A中的(1), (2), (3), (4) 之一, 则左下角的22⨯小正方形分别是图A中的(1), (2), (5), (6).根据上述观察, 注意到拼出的正方形中恰有八个星, 再去掉旋转重合的, 得到以下4种图形:14.解答. 记第一种、第二种和第三种分类分别分了i , j , k 类, 每类的盒子数目分别为i a a a ,,,21 , j b b b ,,,21 , k c c c ,,,21 ,令k j i n ++=.1) 因为i a a a ,,,21 , j b b b ,,,21 , k c c c ,,,21 包含了1到30的所有整数, 所以 30≥n . 另一方面,,15534652313030211553212121⨯==⨯=+++≥+++++++++++=⨯ kj i c c c b b b a a a所以 30=++=k j i n , 三种分类各自分类的类数之和是30.2) 不妨设301=a , 记这30个盒子的类为A 类. 因为30=++k j i , 必有14≤j 或14≤k , 不妨设14≤j . A 类的30个盒子分到这不超过14个类中去, 必有一类至少有三个盒子, 这三个盒子里的红球数相同并且黄球数也相同.。
第十八届华罗庚金杯少年数学邀请赛初赛试题C (小学高年级组)(时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn =+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )4029解答:B 。
在考试中,选择恰当的方法很重要。
这道题,看到这道题后,我第一个想法就是归纳。
2222315=+、2231422=+、2244537=+、2255648=+、写完前三个,发现第二个算式很不和谐,又写出了第四个,仔细一想,原来第二个可以写成2233426=+,规律找到了,分子是原式中分子部分的一个因数,分母比分子大3!答案一定是20132016,很简单,第一题是很容易的年份题,等等,年份2013这个数是我们非常熟悉的,2013=3×11×61,是3的倍数,那么加3不还是3的倍数么?可以约分,所以最后的答案是20136712016672=所以选B ! 如果本题需要详细的过程,那么用规纳的方法是不合适的,因为这是不完全归纳法,你这么知道前几个适用的情况下,最后的2013也适用呢,所以最正确的方法是这样思考:如果这道题直接计算,分别算出分子分母,然后必然需要一个约分的过程(从选项可以看出),那么就太麻烦了,如果不计算出最后结果就可以约分,是件好事儿,那么转化分子还是转化分母呢?我们都知道,当分子分母都是乘法的形式,是比较好约分的,所以要转化分母,要在分母中“凑”出2013.具体过程是这样的:201320132014(20131)2012201320132014201320142012201320132014201320132201320132013671,2013(20142)2016672⨯=⨯++⨯=⨯++⨯=⨯+⨯⨯===⨯+原式 6716721343.m n +=+=这个题做完了,很容易得分的一道题,也是容易马虎的一个题,如果不仔细读题,忽略了“m 与n 为互质的自然数”,那么就容易把答案写成D 。
第十八届华罗庚金杯少年数学邀请赛决赛试题 A 参考答案(小学高年级组)一、填空题(每题 10 分, 共 80 分)题号 1 2 3 4 5 6 7 8答案25 2, 3 316 12 62 74 94 54二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)9.解答.例如(4 + 4 + 4) ÷ 4 = 3 ,4 - (4 - 4) ⨯ 4 = 4 ,(4 ⨯ 4 + 4) ÷ 4 = 5 ,(4 + 4) ÷ 4 + 4 = 6 .10.答案:25解答. 设比小明小的学生为x人,比小华小的学生为y人.因为比小明大的学生为2x人,所以全班学生共 N =3x +1人;又因为比小华大的学生为3y人,所以全班学生共N=4y+1人. 这样, N-1既是 3 的倍数, 又是 4 的倍数, 因此N-1是3⨯4=12的倍数. 这个班学生人数大于 20 而小于 30, 所以N-1只可能是 24. 因此这个班共有学生N=24+1=25人.11.答案:1.375解答.小虎划船的全部时间为120分钟,他每划行30分钟,休息10分钟,周期为40分钟, “华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解所以一共可分为 3 个 30 分钟划行时间段, 有 3 个 10 分钟休息划船时, 顺水的船速与逆水的船速之比为 4.5:1.5=3:1. 因为小虎要把船划到离租船处尽可能远, 他在划船的过程中只能换一次划船的方向, 而且是在尽可能远处. 分两种情况讨论.1)开始向下游划船, 设最远离租船处x千米. 因为回到租船处是逆水, 所以小虎只有 110 分钟可用. 由于划船时顺流速度是逆流速度的 3 倍, 所以用在向下游划船的时间不能超过半小时. 另外两次休息时间只能用在返程, 在休息期间内船向下游漂流了13⨯1.5 , 所以⎛ 1 ⎫x ÷4.5+ x + ⨯1.5⎪ ÷1.5 = 1.5 .3⎝ ⎭整理上式得x +3x +1.5=6.75,4x= 5.25,x =1.3125(千米).2)开始向上游划, 设最远离租船处y千米. 小虎可用 120 分钟, 有两次休息时间用在向上游. 所以⎛ 1 ⎫ ⎛ 1 ⎫y + ⨯1.5⎪ ÷1.5 + y - ⨯1.5⎪ ÷ 4.5 = 1.5 .3 6⎝ ⎭ ⎝ ⎭整理上式得4 y+5 ⨯1.5 = 6.75 , 4 y= 5.5 , y =1.375(千米).6综合 1) 和 2) 的讨论, 小虎的船最多离租船处 1.375 千米.12.答案:不能解答. 设放的最小自然数为a,则放的最大自然数为a+23.于是这24个数的和为A= 12(2a+ 23).假设可能, 设每个正方形边上的数之和为S . 因为共有5个正方形, 这些和的和为5S . 因为每个数在这些和中出现两次, 所以有5S= 2A.“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解记最小的 16 个数的和为B , 则B=8(2a+15) . 下面分两种情形讨论:(1)若 B ≤ S ,则S = 2 A = 24 (2a+ 23) ≥ 8(2a+15) , 9.8a+110.4 ≥16a+120 ,5 5不存在自然数 a 使得不等式成立.(2)情形 B > S 也是不可能的,因为此时不可能选择最大正方形边上的16个数使得这16 个数的和等于S .三、解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程)13.答案:5解答. 用右图代替题目中的2⨯1小长方形.因为题目所给的小长方形上下不对称,所以同一个小长方形在拼成的上下对称的正方形中, 不会既在上半部分也在下半部分. 这样, 就可以只考虑上半部分的不同情形.1)相邻的空白格在第一行最左边或最右边. 因为要排除旋转相同的, 所以只考虑相邻空白格在最右边的情况, 有下图所示的 2 种图形,2)相邻的空白格在第一行中间. 去掉旋转重合的, 有下图所示的 3 种图形,所有不同的图形为 5 种.14.答案:6036“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解解答. 令n = a1+ a2++ a2010 = b1 + b2 + + b2012 = c1 + c2 ++ c2013 ,其中, 所有的a i数字和相同, 所有的b j数字和相同, 所有的c k数字和相同. 两个自然数数字的和相同, 则它们除以 9 的余数相同, 即a i = 9u i + r, i =1, 2, , 2010,bj = 9v j + s, j =1, 2, , 2012,c k = 9w k + t, k =1, 2, , 2013.则n= 9 ⨯ (u1+u2+ +u2010 ) + 2010⨯r= 9 ⨯ (v1+v2+ +v2012 ) + 2012⨯s (1)= 9 ⨯ (w1+w2+ +w2013 ) + 2013⨯t,由上面的等式可得,9 ⨯ (u1+u2++ u2010 + 223 ⨯ r) + 3r = 9 ⨯ (v1 + v2 ++ v2012 + 223 ⨯ s) + 5 ⨯ s ,(2)9 ⨯ (w1+w2++ w2013 + 223 ⨯ t) + 6 ⨯ t = 9 ⨯ (v1 + v2 ++ v2012 + 223 ⨯ s) + 5 ⨯ s ,(3) 由 (2) 可以得出s是 3 的倍数, 只能是 0, 3 或 6. 下面三种情况讨论:1)s =0.此时,对j=1, 2,, 2012 ,因为b j=9v j的数字和不为零,所以v j≥1. 则n =9⨯(v1+ v2++ v2012 ) ≥ 9 ⨯ 2012 = 18108 .2)s =6.此时“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解客服电话:400 650 0888 n =9(v1+ v2++ v2012 ) + 2012 ⨯ 6 ≥ 12072 .3)s =3,此时n= 9(v1+v2+ +v2012 ) + 2012 ⨯ 3 ≥ 6036 .可以取 r =2, t =1.而6036 = 3 + 3 + + 3 = 2 + 2 + + 2 +11 +11 + +112012 个x 个y 个=10 +10 + +10 +1 +1 + +1.=m 个n 个下面计算 x, y 与 m, n,⎧x + y =2010, ⎨ ⎧m + n =2013,⎨⎩10m+n= 6 0 3,6即6036 = 2⨯1786 +11⨯224 =10⨯447 +1566 = 3⨯2012.最终, 满足条件的最小自然数是 6036.“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解第 5 页共5页。
第十八届华罗庚金杯少年数学邀请赛初赛试题C (小学高年级组)(时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn =+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )4029解答:B 。
在考试中,选择恰当的方法很重要。
这道题,看到这道题后,我第一个想法就是归纳。
2222315=+、2231422=+、2244537=+、2255648=+、写完前三个,发现第二个算式很不和谐,又写出了第四个,仔细一想,原来第二个可以写成2233426=+,规律找到了,分子是原式中分子部分的一个因数,分母比分子大3!答案一定是20132016,很简单,第一题是很容易的年份题,等等,年份2013这个数是我们非常熟悉的,2013=3×11×61,是3的倍数,那么加3不还是3的倍数么?可以约分,所以最后的答案是20136712016672=所以选B ! 如果本题需要详细的过程,那么用规纳的方法是不合适的,因为这是不完全归纳法,你这么知道前几个适用的情况下,最后的2013也适用呢,所以最正确的方法是这样思考:如果这道题直接计算,分别算出分子分母,然后必然需要一个约分的过程(从选项可以看出),那么就太麻烦了,如果不计算出最后结果就可以约分,是件好事儿,那么转化分子还是转化分母呢?我们都知道,当分子分母都是乘法的形式,是比较好约分的,所以要转化分母,要在分母中“凑”出2013.具体过程是这样的:201320132014(20131)2012201320132014201320142012201320132014201320132201320132013671,2013(20142)2016672⨯=⨯++⨯=⨯++⨯=⨯+⨯⨯===⨯+原式 6716721343.m n +=+=这个题做完了,很容易得分的一道题,也是容易马虎的一个题,如果不仔细读题,忽略了“m 与n 为互质的自然数”,那么就容易把答案写成D 。
第十八届华罗庚金杯少年数学邀请赛初赛试卷B (小学高年级组)(时间: 2013 年3 月23 日10:00 ~ 11:00)一、选择题 (每小题 10 分, 满分60 分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 一个四位数, 各位数字互不相同, 所有数字之和等于6, 并且这个数是11 的倍数, 则满足这种要求的四位数共有( )个.(A )6 (B )7 (C )8 (D )9【答案】A【解析】四个数字互不相同,且和为6,只能是0、1、2、3;又知这个四位数是11的倍数,所以奇数位的数字和和偶数位的数字和都是3,只能是0+3=1+2;千位可能是1、2、3;确定千位后十位也随之确定。
每个对应的个位和百位有2种可能;共有6种。
2.932232332333+⨯+⨯⨯++⨯⨯⨯⨯个个位数字是( ).(A )2 (B )8 (C )4 (D )6【答案】B【解析】式子为10个数相加,这10个数的个位分别是2、6、8、4、2、6、8、4、2、6;易得和的个位是83. 在下面的阴影三角形中, 不能由右图中的阴影三角形经过旋转、平移得到的是图( )中的三角形.(A ) (B ) (C ) (D )【答案】B【解析】图中①、②、③三边应为顺时针关系,B 不合要求。
4. 某日, 甲学校买了56 千克水果糖, 每千克8.06 元. 过了几日, 乙学校也需要买同样的56 千克水果糖, 不过正好赶上促销活动, 每千克水果糖降价0.56 元, 而且只要买水果糖都会额外赠送5% 同样的水果糖. 那么乙学校将比甲学校少花( )元.(A )20 (B )51.36 (C )31.36 (D )10.36【答案】B【解析】甲花的钱是8.0656451.36⨯=元乙花的钱是568.060.56=4001+5%-⨯()元; 差是451.36-400=51.36元5. 甲、乙两仓的稻谷数量一样, 爸爸, 妈妈和阳阳单独运完一仓稻谷分别需要10 天, 12 天和15 天. 爸爸妈妈同时开始分别运甲、乙两仓的稻谷, 阳阳先帮妈妈, 后帮爸爸, 结果同时运完两仓稻谷, 那么阳阳帮妈妈运了( )天.(A6.中所有线段的长度的总和是((A 1×二、填空题(每小题 10 分, 满分7. 0.2430.325233⨯化为小数243325233-3927879371079110.2430.325233====0.079119999999903727999991099999⨯⨯⨯⨯⨯⨯⨯⨯8. , 下滑1 , 为229. . 如果a b b c c a a b ++++⨯④10. 九个同样的直角三角形卡片, 用卡片的锐角拼成一圈, 可以拼成类似右图所示的平面图形. 这种三角形卡片中的两个锐角中较小的一个的度数有________种不同的可能值. (右图只是其中一种可能的情况)【答案】4【解析】若某三角形符合条件,设它的两个锐角分别为a°,b°则a+b=90;且下面五个式子有且只有一个成立;9a+0b=360,8a+b=360,7a+2b=360,6a+3b=360,5a+4b=360;从下面的五个式子选出一个与a+b=90构成方程组,若解出的a、b符合0<a、b<90,且a≠b,则对应的三角形符合条件;这五组方程组中有4个的解满足条件。
学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。
可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
第十八届华罗庚金杯少年邀请赛初赛试题B(小学高年级组)(时间2013年3月23日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1.一个四位数, 各位数字互不相同, 所有数字之和等于6, 并且这个数是11的倍数, 则满足这种要求的四位数共有()个。
A.6 B.7 C.8 D.9解析:数论,整除特征、数字和。
四位数, 各位数字互不相同, 所有数字之和等于6, 所以,组成四位数的四个数字分别为0、1、2、3,这个数是11的倍数,则奇数位上的数字和等于偶数位上的数字和,等于3。
符合条件的四位数有3102、3201、1320、1023、2310、2013,共6个。
选A。
2. 2+2×3+2×3×3+2×3×3×3+…+2×3×…×3的个位数字是()。
9 3A.2 B.8 C.4 D.6解析:数论,周期位数问题。
原式=2×(1+3+32+33+…+39),3n的个位数按3、9、7、1呈周期出现,3+9+7+1=20,9÷4=2…1,所以原式的个位数为2×(1+20×2+3)≡2×4=8(mod10),所以答案为B.3.在下面的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形。
A .B .C .D .解析:图形旋转、平移问题。
第十八届华杯赛总决赛试题——必答题A 组试题组试题必答题A1 左下图是一个等腰梯形,左下图是一个等腰梯形,上底和两腰的长度是上底和两腰的长度是2,下底长度是4;右下图是一个正六角星形,面积和等腰梯形的面积相等,问:正六角星形的周长是多少?个正六角星形,面积和等腰梯形的面积相等,问:正六角星形的周长是多少?必答题A2 将1,2,3,4分别填入下面的方格中,使得等式分别填入下面的方格中,使得等式+2× +3× +4× =22 成立,那么第一个方格填的数与第四个方格填的数之积是多少?成立,那么第一个方格填的数与第四个方格填的数之积是多少?必答题A3 右图的三角形ABC 中,D ,E 分别是所在边的中点,BC=6MN ,三角形GMN 的面积等于3平方厘米。
求三角形ABC 的面积。
的面积。
等腰梯形正六角星形面积相等,五个地块栽种四种不同颜色不能同色,不相邻的地块可以同色。
问共有多少种不同的栽种方案?E D C B A A黑板上写有数字1到9.请你擦掉其中的几个数字,使得剩下的数字的两两相这十个数字,你从黑板上最多能擦掉几个数字?乘积中,个位出现由0到9这十个数字,你从黑板上最多能擦掉几个数字?第十八届华杯赛总决赛试题——必答题B组试题组试题 必答题B1 在100至200之间有三个连续的自然数,其中最小的能被3整除,中间的能整除。
写出这样的三个连续自然数。
被5整除,最大的能被7整除。
写出这样的三个连续自然数。
必答题B2 边长分别为6厘米和8厘米的两张正方形纸板,放在一个边长为10厘米的大正方形内,大正方形内未被两小正方形纸板盖住的部分的面积最小值是多少平方厘米?厘米?必答题B3 自然数n是两个质数的乘积,它的包含1但不包含n的所有因数的和等于100,那么n=? 必答题B4 如图,三角形ABC中,∠ACB=90°,AC=1cm,AB=2cm.以B为中心,将三角形ACB顺时针旋转,使得点A落在边CB的延长线上A1点,此时点C落在点C1的位置。