2020华杯赛决赛小学高年级组试题A参考答案详解
- 格式:pdf
- 大小:350.83 KB
- 文档页数:9
20届华杯赛试题及答案华杯赛,全称“华罗庚数学竞赛”,是中国的一项全国性数学竞赛,旨在激发青少年对数学的兴趣,培养他们的数学思维和解决问题的能力。
20届华杯赛的试题和答案如下:# 20届华杯赛试题一、选择题(每题5分,共20分)1. 若a、b、c为正整数,且满足\( a^2 + b^2 = c^2 \),求证a、b、c中至少有一个是偶数。
2. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
二、填空题(每题5分,共30分)1. 一个圆的半径为5,求其面积。
2. 若\( x^2 - 5x + 6 = 0 \),求x的值。
三、解答题(每题25分,共50分)1. 证明:对于任意正整数n,\( 1^3 + 2^3 + ... + n^3 = (1 + 2+ ... + n)^2 \)。
2. 一个长方体的长、宽、高分别为a、b、c,求证其对角线的长度为\( \sqrt{a^2 + b^2 + c^2} \)。
# 20届华杯赛答案一、选择题答案1. 正确。
根据奇偶性的性质,偶数的平方是偶数,奇数的平方是奇数。
若a、b、c都是奇数,则\( a^2 + b^2 \)为偶数,与\( c^2 \)为奇数矛盾。
2. 斜边长度为5,根据勾股定理\( 3^2 + 4^2 = 5^2 \)。
二、填空题答案1. 圆的面积为\( 25\pi \)。
2. \( x = 2 \) 或 \( x = 3 \),根据因式分解\( (x - 2)(x - 3) = 0 \)。
三、解答题答案1. 证明:- 左边:\( 1^3 + 2^3 + ... + n^3 = (1 + 2 + ... + n)(1^2 + 2^2 + ... + n^2) - (1 + 2 + ... + n) \)。
- 右边:\( (1 + 2 + ... + n)^2 \)。
- 根据等差数列求和公式,\( 1 + 2 + ... + n = \frac{n(n + 1)}{2} \)。
总分 第十八届华罗庚金杯 少年邀请赛 决赛试题B (小学高年级组) (时间2013年4月20日10:00~11:30)一、填空题(每小题 10分, 共80分)1.计算: 19×0.125+281×81+12.5=________. 解析:原式=(19+281+100)×0.125=400×0.125=502.农谚‘逢冬数九’讲的是, 从冬至之日起, 每九天分为一段, 依次称之为一九, 二九, ……, 九九, 冬至那天是一九的第一天. 2012年12月21日是冬至, 那么2013年的2月10日是________九的第________天.解析:31-21+1+31+10=52,52÷9=5…7,2013年的元旦是六九的第7天.3.某些整数分别被131********,,,除后, 所得的商化作带分数时, 分数部分分别是112927252,,,, 则满足条件且大于1的最小整数是________.解析:设整数为A, 分别被131********,,,除后, 所得的商分别为A A A A 11139117957,,,; )1(111311211113)1(911921911)1(7972179)1(5752157-++=-++=-++=-++=A A A A A A A A ,,,显然,当A-1是[5,7,9,3]的时候满足题意。
所以A-1=3465,A=3466。
4.如图所示, P, Q 分别是正方形ABCD 的边AD 和对角线 AC 上的点, 且PD:AP =4:1, QC:AQ =2:3, 如果正方形ABCD 的面积为25, 那么三角形PBQ 的面积是 .解析:连接QD,做QE ⊥BC 于E, QF ⊥AD 于F, QG ⊥CD 于G, 正方形ABCD 的面积为25,所以AD=EF=5, QC: AQ =2:3,根据正方形对称性,所以QE=QG=2,QF=3, PD:AP =4:1, AP=1,PD=4。
第十五届华罗庚金杯少年数学邀请赛决赛试题A(小学组)一、填空题(每小题10分,共80分)1.在10个盒子中放乒乓球,每个盒子中的球的个数不能少于11,不能是13,也不能是5的倍数,且彼此不同,那么至少需要个乒乓球。
2.有五种价格分别为2元、5元、8元、11元、14元的礼品以及五种价格分别为1元、3元、5元、7元、9元的包装盒。
一个礼品配一个包装盒,共有种不同价格。
3.汽车A从甲站出发开往乙站,同时汽车B、C从乙站出发与A相向而行开往甲站,途中A与B相遇20分钟后再与C相遇。
已知A、B、C的速度分别是每小时90km, 80km, 60km,那么甲乙两站的路程是km。
4.将和这6个分数的平均值从小到大排列,则这个平均值排在第位。
5.将一个数的各位数字相加得到新的一个数称为一次操作,经连续若干次这样的操作后可以变为6的数称为“好数”,那么不超过2012的“好数”的个数为,这些“好数”的最大公约数是。
6.右图所示的立体图形由9个棱长为1的立方块搭成,这个立体图形的表面积为。
7.数字卡片“3”、“4”、“5”各10张,任意选出8张使它们的数字和是33,则最多有张是卡片“3”。
8.若将算式的值化为小数,则小数点后第1个数字是。
二、解答下列各题(每题10分,共40分,要求写出简要过程)9.右图中有5个由4个1×1的小正方格组成的不同形状的硬纸板。
问能用这5个硬纸板拼成右图中4×5的长方形吗?如果能,请画出一种拼法;如果不能,请简述理由。
10.长度为L的一条木棍,分别用红、蓝、黑线将它等分为8,12和18段,在各划分线处将木棍锯开,问一共可以得到多少段?其中最短的一段的长是多少?11.足球队A,B,C,D,E进行单循环赛(每两队赛一场),每场比赛胜队得3分,负队得0分,平局两队各得1分。
若A,B,C,D队总分分别是1,4,7,8,请问:E队至多得几分?至少得几分?12.华罗庚爷爷出生于1910年11月12日。
第二十二届华杯赛小高年级组决赛试题A 解析1. 用[x]表示不超过x 的最大整数,例如[3.14]=3,则:201732017420175201762017720178[][][][][][]111111111111⨯⨯⨯⨯⨯⨯+++++的值为 。
【考点】取整运算 【专题】计算 【难度】☆【解析】直接计算即可 比较麻烦的简算方法: 先看第一项20173(200215)361001454545[][][][691]691[]1111111111⨯+⨯⨯+===⨯+=⨯+ 第二项:20173(200215)481001606060[][][][891]891[]1111111111⨯+⨯⨯+===⨯+=⨯+ 所以原式=45607590105120691[]891[]1091[]1291[]1491[]1691[]111111111111⨯++⨯++⨯++⨯++⨯++⨯+=(6810121416)914568910+++++⨯++++++ =60482. 从4个整数中任意选出3个, 求出它们的平均值, 然后再求这个平均值和余下1个数的和, 这样可以得到4个数:8,12,2103和193, 则原来给定的4个整数的和为 。
【考点】平均数与求和 【专题】计算 【难度】☆【解析】假设这四个数为,,,a b c d每三个数的平均值为:()3,()3,()3,()3a b c a b d a c d b c d ++÷++÷++÷++÷ 分别与余下的数的和为:21()38,()312,()310,()3933a b c d a b d c a c d b b c d d ++÷+=++÷+=++÷+=++÷+=将这四个式子左右两边分别相加得到:21()3()3()3()381210933a b c d a b d c a c d b b c d d ++÷++++÷++++÷++++÷+=+++()340a b c a b d a c d b c d a b c d +++++++++++÷++++=3()3()40a b c d a b c d ⨯+++÷++++=2()40a b c d ⨯+++=20a b c d +++=3. 在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子最多放一枚棋子, 共有 种不同的摆放方法.(如果两种放法能够由旋转而重合, 则把它们视为同一种摆放方法).【考点】 【专题】杂题【难度】☆【解析】这种题目因为情况不多,所以一一列举就是一种很好的办法,但是要注意不能重复和遗漏。
第二十二届华罗庚金杯少年邀请赛初赛试题(小学高年级组)(时间2016 年12 月10 日10: 00〜11: 00)一、选择遢(每題10分,满分60分,以下每團的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每題的圆括号内。
)1•两个有限小数的整数部分分別是7和10,那么这两个有限小数的积的整数部分有( )种可能的取值.(A) 16 (B) 17 (C) 18 (D) 19解析:设这两个有限小数为A、B,则7XlO二70<AB〈8Xll二88,很明显,积的整数部分可以是70-87 的整数,所以这两个有限小数的积的整数部分有87-70+1=18种。
答案选C。
2.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了( )分钟.(A) 6 (B) 8 (C) 10 (D) 12解析:方法一:单位“1”和假设法,设小明家距学校的路程为“1",乘地铁的速度为丄,乘公30交车速度为丄,40-6=34分钟,假设全程都做地铁,能走丄X 34=卩,所以坐公交车用T(—-1)50 30 15 15÷ (―-—)二10 分钟。
30 50方法二:设数法和假设法,设小明家距学校的路程为[30, 50]二150m,乘地铁的速度为150÷50=3m∕min,乘公交车速度为150÷30=5m/Inin, 40-6=34分钟,假设全程都做地铁,能走5丄X30 34二17Onb 所以坐公交车用了(170-150) ÷ (5-3)二10 分钟。
方法三:时间比和比例。
同一段路程,乘地铁和乘公交车时间比为3:5,全程乘地铁需要30分钟,有一段乘公交车则用40-6=34分钟,所以乘公交车的那段路比乘地铁多用34-30二4分钟,所以坐公交车用了4三(5-3) ×5=10分钟。
第二十二届华罗庚金杯少年邀请赛初赛试题(小学高年级组)(时间2016 年12 月10 日10: 00〜11: 00)一、选择遢(每題10分,满分60分,以下每團的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每題的圆括号内。
)1•两个有限小数的整数部分分別是7和10,那么这两个有限小数的积的整数部分有( )种可能的取值.(A) 16 (B) 17 (C) 18 (D) 19解析:设这两个有限小数为A、B,则7XlO二70<AB〈8Xll二88,很明显,积的整数部分可以是70-87 的整数,所以这两个有限小数的积的整数部分有87-70+1=18种。
答案选C。
2.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了( )分钟.(A) 6 (B) 8 (C) 10 (D) 12解析:方法一:单位“1”和假设法,设小明家距学校的路程为“1",乘地铁的速度为丄,乘公30交车速度为丄,40-6=34分钟,假设全程都做地铁,能走丄X 34=卩,所以坐公交车用T(—-1)50 30 15 15÷ (―-—)二10 分钟。
30 50方法二:设数法和假设法,设小明家距学校的路程为[30, 50]二150m,乘地铁的速度为150÷50=3m∕min,乘公交车速度为150÷30=5m/Inin, 40-6=34分钟,假设全程都做地铁,能走5丄X30 34二17Onb 所以坐公交车用了(170-150) ÷ (5-3)二10 分钟。
方法三:时间比和比例。
同一段路程,乘地铁和乘公交车时间比为3:5,全程乘地铁需要30分钟,有一段乘公交车则用40-6=34分钟,所以乘公交车的那段路比乘地铁多用34-30二4分钟,所以坐公交车用了4三(5-3) ×5=10分钟。
第二十二届华罗庚金杯少年数学邀请赛决赛试题A(小学高年级组)详细解答【解】:∵201711=183+411∴[201711×3] = [183×3+411×3]= 183×3+1类似地,可知:[201711×4]= 183×4+1;[201711×5]= 183×5+1[201711×6]= 183×6+2;[201711×7]= 183×7+2;[201711×8]= 183×8+2∴原式= 183×[3+4+5+6+7+8]+1+1+1+2+2+2=6048【答】:所求值为6048。
【解】:假设原来四个整数分别为a,b,c,d,则按照题意所求的四个数的表达式分别为:a+b+c3+d,a+b+d3+ca+c+d3+b,b+c+d3+a∵a+b+c3+d+a+b+d3+c+a+c+d3+b+b+c+d3+a=3(a+b+c+d)3+(a+b+c+d)=2(a+b+c+d)∴a+b+c+d=12×(8+12+1023+913)=12×(20+20) =20【答】:原来给定的4个整数的和为20。
【解】:分三种情形,共有10种不同摆法,如下图:(1)两个点都在第一行;(2)两个点不在同一行但相邻;(3)两个点不在同一行且不相邻;【答】:共有10种不同的摆放方法。
【解】:设甲的速度为V甲,乙的速度为V乙,AB两地距离为SAB,BC两地距离为SBC 根据题意可知:V甲=80÷2=40 (千米/小时) ,甲原来的速度的2倍为80(千米/小时) 所以,BC两地距离:SBC=2×80=160 (千米)又,乙从B地到C地花了2.5小时,所以,乙的速度为:V乙=SBC÷2.5=160÷2.5=64(千米/小时)【答】:乙的速度为64 千米/小时。
第二十届华罗庚金杯少年数学邀请赛决赛(A )卷【小中组】1. 森林里举行比赛,要派出狮子、老虎、豹子和大象中的两个动物去参加,如果派狮子去,那么也要派老虎取;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去,那么,最后能去参加比赛的是( )A. 狮子、老虎B.老虎、豹子C.狮子、豹子D.老虎、大象2. 小明有多张面额为1元,2元和5元的人民币,他想用其中不多于10张的人民币购买一只价格为18元的风筝,要求至少用两种面额的人民币,那么不同的付款方式有( )种. A.3 B.9 C.11 D.83. 如右图,在有1×1的正方形组成的网格中,写有2015四个数字(阴影部分),其边线要么是水平,要么是竖直的直线段,要么是连接1×1正方形相邻两边中点的线段,或者是1×1的正方形的对角线,则图中2015四个数字(阴影部分)的面积是( ) A.47 B.2147C.48D.21484. 新生入校后,合唱队,田径队,舞蹈队共招收学员100人,如果合唱队招收的人数比田径队多一倍,舞蹈队比合唱队多10人,那么舞蹈队招收( )人.(注:每人限加入一个队) A.30 B.42 C.46 D.525.一只旧钟的时针和分针每重合一次,需要经过标准时间66分钟,那么这只旧钟的24小时比标准时间的24小时()A.快12分B.快6分C.慢6分D.慢12分6.一次考试共有6道选择题,评分规则如下:每人先给6分,答对一题加4分,答错一题减一分,不答得0分,现有51名同学参加考试,那么,至少有()人得分相同.A.3B.4C.5D.67.计算:_____(=⨯+314-151000+++.⨯)-+-+)110(15(314360)360201201110)1000(8.角可以用它的两边上的两个大写字母和顶点的字母表示,(如右图的AOB∠表示,∠,也可以用0顶点处只有一个角时),下面的三角形ABC中,οBCO∠ACO=∠AOCABOBAO,则_____CAO∠CBO,,==110∠,∠∠∠=∠CBO.=9.张叔叔和李叔叔的年龄和是56岁,当张叔叔的年龄是李叔叔现在年龄的一半时,李叔叔当时的年龄是张叔叔现在的年龄,那么张叔叔现在有______岁.10.妈妈决定假期带小花驾车去10个城市旅游,小花查完地图后惊奇地发现:10个城市的任意三个城市之间或者都开通了高速公路,或者只有两个城市间没有开通高速路,那么这10个城市间至少开通了______条高速公路.(注:两个城市间最多只有一条高速公路)第二十届华罗庚金杯少年数学邀请赛决赛(A )卷参考答案【小中组】1.解析:【知识点】逻辑推理假设派狮子去,那么老虎也去,那么豹子就不去,这样老虎也不能去,矛盾,A 排除; 假设派狮子去,那么老虎也去,C 排除; 不派豹子去,那么也不能派老虎去,D 排除; 故只能派老虎和豹子去,答案选B 2.解析:【知识点】计数,枚举 付款方式有以下几种:3×5+1×2+1×1=18,3×5+1×3=18,2×5+4×2=18,2×5+3×2+2×1=18,2×5+2×2+4×1=18, 2×5+1×2+6×1=18,2×5+8×1=18,1×5+6×2+1×1=18,1×5+5×2+3×1=18,1×5+4×2+5×1, 8×2+2×1=18;总共11种,答案选C 。
2020年华杯赛试题解析1.解答题(25分).________4213011612.03266142.14.278875.05222126.1625.0=++÷⨯+⨯⨯⨯+⨯⨯【答案】145【知识点】计算,分数裂项【解析】1457161615151414131312142130120112161421301161253320625565127887512255885=-+-+-+-+-=++++=++⨯⨯+⨯⨯⨯+⨯⨯=原式2.2020年鼠年的一次在线趣味课堂上,老师组织六年级一班同学(不到100人)做“微信传数”游戏,游戏规则是:A 同学心里先想好一个自然数,将这个数乘以2020再加1后微信传给B 同学;B 同学将A 同学告诉他的数除以2020再加1,将结果微信传给C 同学;C 同学将B 同学告诉他的数乘以2020再加1,将结果微信传给D 同学;D 同学将C 同学告诉他的数除以2020再加1,将结果微信传给E 同学;E 同学将D 同学告诉他的数乘以2020再加1,将结果微信传给F 同学;……按照上述规律,序号排在前面的同学继续依次传数给后面的同学,最后一位同学将数传给A 同学,此时游戏结束.如果最后传给A 同学的数是58604,那么参加“微信传数”的同学共有多少位?A 同学最初想好的自然数是多少?【答案】47;6【知识点】归纳递推,周期问题【解析】设A 同学最初所想的数是x ;B 同学得到的数可以表示为:12020+x ;C 同学得到的数可以表示为:20201112020)12020(+=+÷+x x ;D 同学得到的数可以表示为:220201202012020202011(+⨯+=+⨯+x x ;E 同学得到的数可以表示为:20202212020)20222020(+=+÷+x x ;F 同学得到的数可以表示为:320202202012020)202022(+⨯+=+⨯+x x ;G 同学得到的数可以表示为:20203312020)40432020(+=+÷+x x ;H 同学得到的数可以表示为:420203202012020)202033(+⨯+=+⨯+x x ;……令58604)1(20202020=++⨯+n n x ,1+n 个位数字是4,考虑=n 13、23、33、43、53…尝试发现当23=n 时,6=x ,那么A 同学最初所想的数是6,总共有47名同学.3.甲、乙、丙三人分苹果,分法如下:先在三张卡片上写上自然数c b a 、、,其中c b a <<,每一轮分苹果时,每人抽一张卡片,然后把卡片上的数减去a ,得数就是他这一轮分得的苹果数.经过若干轮这种分法后,甲总共分得12个苹果,乙分得9个苹果,丙分得6个苹果,又知丙在各轮中抽到的卡片上写的数字的和是18,问:c b a 、、是哪三个数?为什么?【答案】1074===c b a ,,【知识点】计数,组合【解析】每一轮分苹果,三人得到的总数为a-++-;-+-=aa2ccbaba设总共分苹果n轮,则27-⋅+nb;=ca129+6)+(=2考虑n、都是正整数,则有如下四种可能:、cba、①27+ncb,;a12==-②1ac+nb,;2=27=-③9a3b,;+nc2==-④3ac+nb,;2=-9=丙分到6个苹果,且抽到的数字和是18,则6na;=-na,那么1218=n是12的因数,只能取1或3,分类讨论;当1=n时,12a,矛盾,舍去;-a=a,这样丙得到的苹果数是0=当3=n时,4=a,17cb,考虑17的分拆方式,分类讨论;+a+29==①9c-a=-ba8,,凑不出12、9、6;a,=ab=c=a,4=0=4,,则5-②10c-a=-ab,,可以凑出12、9、6;a,a=,,则6=c=4=-b0=a,37甲乙丙第一轮630第二轮360第三轮306③11-ac=-aa,,凑不出12、9、6;=a,b4==c=6ba,0=2,,则7-④12-a=-=caa,ab,,凑不出12、9、6;-=4=0==c5b,,则81a,综上,10a,,.b4=7==c4.在梯形ABCD的底边AD(或其延长线)上任取一点N,过N作平行于对角线BD AC 、的直线,分别交边CD (或CD 的延长线)、AB (或AB 的延长线)于点M K 、,证明:BMN ∆与NKC ∆的面积相等.【答案】CNKBMN S S ∆∆=【知识点】几何,等积变形,相似模型【解析】证明:因为BD MN //,则MND BMN S S ∆∆=,因为AC KN //,则ANK CNK S S ∆∆=;设a AN =,b DN =,梯形ABCD 高为h ,过M 作三角形MND 的高,记作1h ;由于三角形AMN 与三角形ABD 相似,则h h b a a 1=+,则h ba ah ⋅+=1,那么h ba ab S MND⋅+⋅⋅=∆21;同理,过K 作三角形ANK 的高,记作2h ,由于三角形DNK 与三角形DAC 相似,则h h b a b 2=+,则h b a b h ⋅+=2,那么h ba ba S ANK ⋅+⋅⋅=∆21;显然ANK MND S S ∆∆=,所以CNK BMN S S ∆∆=.5.一个“三阶幻方”是在如下的九个方格中分别填入数字1~9,使得每行、每列和每条对角线的数字和相等.对于一个三阶幻方,如果已给出三个格中填入的数字,其余六个格中的数字能确定吗?有哪些可能?请分别举例枚举.【答案】2种情况无法唯一确定【知识点】幻方;【解析】294753618如图,是三阶幻方的填法,容易得出中间位置一定填入,所以分成“给出中间数”和“未给出中间数”进行分类讨论;①给出中间数,又根据所给出的数的具体位置分类讨论,具体如下:229475753618唯一确定229457536618唯一确定229457531618唯一确定229427657539518618438不能唯一确定929475753618唯一确定929429657539511618418不能唯一确定①给出的三个数中不包含中间数,但由于中间数必须是5,所以相当于给出4个数,再根据其它3个数的具体位置分类讨论,结合第一种类型,只有两种无法确定,所以这里只需判断如下几种形式,具体如下:2429457536618唯一确定9429457536618唯一确定2929457531618唯一确定9294757531618唯一确定综上所述,给出3个数,有两种情况无法唯一确定.6.一个两位数ab,一个三位数cde,一个四位数fghi相加得2020,且这三个数的每个数位各不相同,问满足要求的算式一共有多少种?【答案】【知识点】竖式谜【解析】考虑数字和的要求,设两个加数的数字和为x -45,和的数字和是4,假设进位k 次,可以求出4=k ,5)944(45=⨯+-,即进位4次,数字5没有用;考虑“和”的百位数字是0,则一定进位,那么1=f ;总共进位4次,百位进位1次,根据十位和个位的进位情况分类讨论;①个位进位1次,十位进位2次,百位进位1次,那么要求:10=++i e b ,可能数组有(0,2,8),(0,3,7),(0,4,6),(2,3,5);21=++h d a ,可能数组有(4,8,9),(5,7,9),(6,7,8);8=+g c ,可能数组有(0,8)(2,6),(3,5);若g c 、取(0,8),则h d a 、、只能取(5,7,9),此种情况无解;若g c 、取(2,6),h d a 、、取(4,8,9),i e b 、、取(0,3,7),考虑不同的排列顺序,总共有72A A A 333322=⨯⨯种;若g c 、取(2,6),h d a 、、取(5,7,9),此种情况无解;若g c 、取(3,5),h d a 、、只能取(4,8,9),此种情况无解;那么,个位进位1次,十位进位2次,百位进位1次总共72种可能;②个位进位2次,十位进位1次,百位进位1次,那么要求:20=++i e b ,可能数组有(3,8,9),(4,7,9),(5,6,9),(5,7,8);10=++h d a ,可能数组有(0,2,8),(0,3,7),(0,4,6),(2,3,5);9=+g c ,可能数组有(0,9),(2,7),(3,6),(4,5);若g c 、取(0,9),h d a 、、只能取(2,3,5),此种情况无解;若g c 、取(2,7),h d a 、、只能取(0,4,6),i e b 、、取(3,8,9),考虑不同的排列顺序,总共有48A 4A 3322=⨯⨯种;若g c 、取(3,6),h d a 、、只能取(0,2,8),i e b 、、取(4,7,9),考虑不同的排列顺序,总共有48A 4A 3322=⨯⨯种;若g c 、取(4,5),h d a 、、取(0,2,8),此种情况无解;若g c 、取(4,5),h d a 、、取(0,3,7),此种情况无解;那么,个位进位2次,十位进位1次,百位进位1次总共96种可能;综上所述,使得竖式成立的填法共168种.。
华杯赛每周一练试题及答案第一期试题一:某公司有一项运动--爬楼上班,公司正好在18楼办公。
一天该公司的箫菲爬楼上班,她从一楼爬到六楼用了90秒,由于爬楼很累每爬一层都要比上一层多用2秒时间,那么她到18楼共需要多少分钟?答案:爬到六楼每一层平均用时间:90÷(6-1)=18(秒)。
爬第一层用时间:18-2×2=14(秒);到18楼共爬楼:18-1=17(层);爬最后一层用时间:14+2×(17-1)=46(秒);总共爬楼用时:(14+46)×17÷2÷60=8.5(分钟)。
华杯赛每周一练试题及答案第二期试题一某公司有一项运动——爬楼上班,该公司正好在xx大厦18楼办公。
一天编辑箫菲爬楼上班,她数了一下楼梯,每段有14级台阶,每层有2段。
她想我每一步走一级或二级。
那么我到公司走楼梯共有多少种走法呢?亲爱的小朋友你能帮萧菲解决这个难题吗?解析:如果用n表示台阶的级数,an表示某人走到第n级台阶时,所有可能不同的走法,容易得到:①当n=1时,显然只要1种走法,即a1=1。
②当n=2时,可以一步一级走,也可以一步走二级上楼,因此,共有2种不同的走法,即a2=2。
③当n=3时,如果第一步走一级台阶,那么还剩下二级台阶,由②可知有a2=2(种)走法。
如果第一步走二级台阶,那么还剩下一级台阶,由①可知有a1=1(种)走法。
根据加法原理,有a3=a1+a2=1+2=3(种)类推,有:a4=a2+a3=2+3=5(种)a5=a3+a4=3+5=8(种)a6=a4+a5=5+8=13(种)a7=a5+a6=8+13=21(种)a8=a6+a7=13+21=34(种)a9=a7+a8=21+34=55(种)a10=a8+a9=34+55=89(种)a11=a9+a10=55+89=144(种)a12=a10+a11=89+144=233(种)a13=a11+a12=144+233=377(种)a14=a12+a13=233+377=610(种)一般地,有an=an-1+an-2走一段共有610种走法。
小学第十二届华杯赛决赛试题及解答第十二届华杯赛决赛试题及解答一、填空1.“华”、“杯”、“赛”三个字的四角号码分别是“2440”、“4199”和“3088”,将“华杯赛”的编码取为244041993088,如果这个编码从左起的奇数位的数码不变,偶数位的数码改变为关于9的补码,例如:0变9,1变8等,那么“华杯赛”新的编码是________.2.计算:____3.如图所示,两个正方形abcd和defg的边长都是整数厘米,点e在线段cd上,且ce<de,线段cf=5厘米,则五边形abcfg的面积等于________平方厘米.4.威尔、、、、从小到大排列,第三个数是________.5.下图a是密封水瓶的剖面图。
上半部分为圆锥形,下半部分为圆柱形。
底部直径为10cm,水瓶高度为26cm,瓶内液位高度为12cm。
倒置水瓶后,如下图B所示,水瓶内液位高度为16cm,则水瓶容积等于________________________6.一列数是按以下条件确定的:第一个是3,第二个是6,第三个是18,以后每一个数是前面所有数的和的2倍,则第六个数等于________,从这列数的第________个数开始,每个都大于2021.7.对于一个自然数,它的最大除数和下一个最大除数之和是111,这个自然数是___8.用一些棱长是1的小正方体码放成一个立体,从上向下看这个立体,如下图a,从正面看这个立体,如下图b,则这个立体的表面积最多是________.二、简要回答以下问题(需要一个简短的过程)9.如图,在三角形abc中,点d在bc上,且∠abc=∠acb、∠adc=∠dac,∠dab=21°,求∠abc的度数;并回答:图中哪些三角形是锐角三角形.10.李云坐在一列时速60公里的火车上,看到一辆30节车厢的卡车迎面驶来。
当卡车的前部驶过车窗时,他开始计算时间,直到最后一节车厢驶过车窗。
记录的时间是18秒。
据了解,货车长15.8m,车距1.2m,货车车头长10m。