基于Delaunay三角剖分的测头半径补偿算法
- 格式:pdf
- 大小:296.08 KB
- 文档页数:4
基于最优凸壳技术的Delaunay三角剖分算法
陈学工;黄晶晶
【期刊名称】《计算机工程》
【年(卷),期】2007(033)017
【摘要】提出了一种基于最优凸壳技术的Delaunay三角剖分算法.该算法对离散点进行扫描线方式排序,利用最优凸壳技术进行凸壳的生成和三角网联结,最后利用有向边的拓扑结构进行三角网优化.该算法不但避免了所有的交点测试,而且使得新加入点与凸壳边的平均比较次数不大于4,从而实现了高效的三角剖分.
【总页数】3页(P93-95)
【作者】陈学工;黄晶晶
【作者单位】中南大学信息科学与工程学院,长沙,410083;中南大学信息科学与工程学院,长沙,410083
【正文语种】中文
【中图分类】TP391
【相关文献】
1.基于改进遗传算法的技术型虚拟发电厂最优化经济调度策略 [J], 李志伟;马静;冯沛儒;杨娜;周静姝
2.基于凸壳技术的Delaunay三角网生成算法 [J], 陈学工;陈树强;王丽青
3.GIS中基于拓扑结构和凸壳技术的快速TIN生成算法 [J], 章孝灿;黄智才;戴企成;潘云鹤
4.基于凸壳技术的Delaunay三角网生成算法研究 [J], 鲍蕊娜;李向新;麻明;孙晓丽;
贺瑞喜
5.基于通信线性冲激响应优化裂变算法的最优铸造技术研究 [J], 黎飞云;
因版权原因,仅展示原文概要,查看原文内容请购买。
基于Delaunay三角剖分和ICP的星图运动补偿算法
孙瑾秋;周军
【期刊名称】《机械科学与技术》
【年(卷),期】2012(031)004
【摘要】星图运动补偿技术是有效提高空间监测中复杂背景弱小目标检测精度的关键技术之一。
本文中提出了一种基于Delaunay三角剖分和ICP算法相结合的星图运动补偿算法。
该方法首先通过Delaunay三角剖分建立星图中恒星之间的线索矩阵,其次通过ICP配准算法得到相邻星图间的对应关系,并通过SVD最优解析得到相邻帧之间的变换关系即摄像机运动模型,最后通过双线性内插法进行运动补偿。
实验结果表明:该方法可有效实现高精度的运动背景补偿,为复杂背景弱小目标检测奠定技术基础。
【总页数】4页(P534-537)
【作者】孙瑾秋;周军
【作者单位】西北工业大学精确制导与控制研究所,西安710072;西北工业大学精确制导与控制研究所,西安710072
【正文语种】中文
【中图分类】TP391.2
【相关文献】
1.基于Delaunay三角剖分的全天自主星图识别算法 [J], 房建成;全伟;孟小红
2.一种基于遗传算法的全天自主星图识别算法 [J], 李立宏;张福恩;林涛
3.基于Delaunay三角剖分的ICP算法研究与实现 [J], 龚子桢;花向红;义崇政;杨荣华
4.基于改进Delaunay三角剖分的水下地形三维重建算法 [J], 陈士杰;张森林;刘妹琴;郑荣濠
5.基于遗传算法的ISAR运动补偿新算法 [J], 刘润华;胡国旗;彭石宝
因版权原因,仅展示原文概要,查看原文内容请购买。
基于Delaunay三角网格剖分算法在三维造型中的研究作者:王牌来源:《科学与财富》2014年第06期摘要:在对三维图像进行有限元数值模拟解析时,为了对连续的计算区域进行数值计算,达到模拟仿真的效果,必须先对三维图像进行网格剖分。
Delaunay三角网格剖分算法是生成网格的一种有效方法。
本文介绍了Delaunay三角网格剖分算法,以及在约束条件下的网格细分,最后给出了该算法在三维实体造型中的应用。
关键词:三角剖分;网格生成;网格细分Abstract: In the simulation analysis of the 3D finite element numerical, in order to carry out the numerical calculation for the calculation of continuous area, achieve the simulation results, we must first on the 3D mesh. Delaunay triangulation algorithm is an effective method to generate mesh. This paper introduces the Delaunay triangulation algorithm, and in the condition of mesh subdivision, finally the application of the algorithm in 3D solid modeling are given in this paper.Keywords: triangulation,mesh generation,mesh subdivision1、引言网格生成是有限元模拟计算的先决条件,有限元计算的效率和精确度在很大程度上受生成的网格质量的影响。
三维空间Delaunay三角剖分算法的研究及应用一、本文概述随着计算几何和计算机图形学的发展,三维空间Delaunay三角剖分算法已成为一种重要的空间数据处理和分析技术。
本文旨在全面深入地研究三维空间Delaunay三角剖分算法的原理、实现方法以及应用领域。
本文将对三维空间Delaunay三角剖分算法的基本概念和性质进行详细的阐述,包括其定义、性质、特点以及与其他三角剖分算法的比较。
接着,本文将重点探讨三维空间Delaunay三角剖分算法的实现方法,包括增量法、分治法和扫描转换法等,并分析它们的优缺点和适用范围。
本文还将对三维空间Delaunay三角剖分算法在各个领域的应用进行详细的介绍和分析。
这些领域包括计算机科学、地理信息系统、地质学、气象学、生物医学等。
通过具体的应用案例,本文将展示三维空间Delaunay三角剖分算法在实际问题中的应用价值和效果。
本文还将对三维空间Delaunay三角剖分算法的未来发展方向进行展望,探讨其在新技术和新领域中的应用前景和挑战。
本文旨在全面系统地研究三维空间Delaunay三角剖分算法的理论和实践,为其在实际问题中的应用提供有力的支持和指导。
二、三维空间Delaunay三角剖分算法的基本原理Delaunay三角剖分算法是一种广泛应用于二维空间的数据处理算法,它的核心目标是将一组离散的二维点集剖分为一系列互不重叠的三角形,且这些三角形满足Delaunay性质。
简单来说,Delaunay 性质要求任何一个三角形的外接圆内部不包含该三角形之外的任何数据点。
初始化:为每个点分配一个初始的三角形。
这通常是通过连接每个点与它的两个最近邻点来完成的,形成一个初始的三角形网格。
合并三角形:接下来,算法会尝试合并相邻的三角形,以形成更大的三角形。
在合并过程中,算法会检查新形成的三角形是否满足Delaunay性质。
如果满足,则合并成功;如果不满足,则放弃合并,并标记这两个三角形为“已处理”。
一、概述Delaunay 三角剖分算法是计算机图形学领域中常用的一种算法,它可以将给定的点集进行高效的三角剖分,用于构建网格、进行地理信息系统分析、建立三维模型等应用。
本文将对该算法的原理、实现和应用进行介绍。
二、算法原理1. 待剖分点集在进行Delaunay三角剖分之前,需要准备一个点集,这个点集是待剖分的对象。
点集的数量取决于具体的应用,可以是二维平面上的点,也可以是三维空间中的点。
2. Delaunay 三角形在进行三角剖分时,Delaunay 三角形是一种特殊的三角形,满足以下性质:a. 任意一个点要么位于Delaunay 三角形的外接圆内部,要么位于外接圆的边上;b. 任意两个Delaunay 三角形之间的外接圆不相交。
3. Delaunay 三角剖分Delaunay 三角剖分是将给定点集进行三角剖分的过程,它的目标是构建满足Delaunay 三角形性质的三角形集合。
三、算法实现1. 基于增量法的实现增量法是Delaunay 三角剖分的一种经典算法,它的基本思想是逐步增加点,并根据Delaunay 三角形的性质进行调整。
具体步骤如下: a. 初始化:选择一个超级三角形包含所有点集,作为初始三角剖分;b. 顺序插入点:逐个将待剖分点插入到当前三角剖分中,并进行调整;c. 边界检测:检测新增的边界是否需要进行修正;d. 优化处理:对新增点周围的三角形进行优化调整。
2. 时间复杂度分析增量法的时间复杂度主要取决于点集的数量和点的分布情况,一般情况下,其时间复杂度可以达到O(nlogn)。
四、算法应用1. 图形渲染在计算机图形学中,Delaunay三角剖分常用于构建网格、进行三维渲染等。
它可以有效地分割空间,使得渲染效果更加真实。
2. 地理信息系统地理信息系统中常常需要对地理数据进行空间分析,Delaunay三角剖分可以帮助构建地理网格,进行地形分析、资源评估等。
3. 三维建模在三维建模领域,Delaunay三角剖分可以用于构建复杂的三维模型,并支持模型的分析、编辑等功能。
delaunay三角剖分算法流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!Delaunay三角剖分算法的流程详解Delaunay三角剖分是一种在二维空间中将点集划分为三角形的方法,使得没有任何一个点位于其相邻三角形的内切圆内。
Delaunay三⾓剖分的问题最近接触到计算Delaunay三⾓剖分的问题,也算是计算⼏何的⼀个经典问题了。
按照别⼈的算法,也⾃⼰实现了个,发现点集⼤的时候,程序计算起来特慢。
后来分析发现,别⼈程序号称的都是O(nlogn)的,我的却成了O(n*n)的,算法都是⼀样,后来才发现是数据结构的问题,看来程序=算法+数据结构,有道理。
闲着,就整理了些相关知识,组织如下:1.Delaunay三⾓剖分&Voronoi图定义2.计算Delaunay三⾓剖分的算法及分析3.例⼦程序&代码⼤话点集的三⾓剖分(Triangulation),对数值分析(⽐如有限元分析)以及图形学来说,都是极为重要的⼀项预处理技术。
尤其是Delaunay三⾓剖分,由于其独特性,关于点集的很多种⼏何图都和Delaunay三⾓剖分相关,如Voronoi图,EMST 树,Gabriel图等。
Delaunay三⾓剖分有⼏个很好的特性:1.最⼤化最⼩⾓,“最接近于规则化的“的三⾓⽹。
2.唯⼀性(任意四点不能共圆)。
概念及定义⼆维实数域(⼆维平⾯)上的三⾓剖分定义1:假设V是⼆维实数域上的有限点集,边e是由点集中的点作为端点构成的封闭线段, E为e的集合。
那么该点集V的⼀个三⾓剖分T=(V,E)是⼀个平⾯图G,该平⾯图满⾜条件:1.除了端点,平⾯图中的边不包含点集中的任何点。
2.没有相交边。
3.平⾯图中所有的⾯都是三⾓⾯,且所有三⾓⾯的合集就是点集V的凸包。
那什么是Delaunay三⾓剖分呢?不过是⼀种特殊的三⾓剖分罢了。
从Delaunay边说起。
Delaunay边定义2:假设E中的⼀条边e(两个端点为a,b),e若满⾜下列条件,则称之为Delaunay边:存在⼀个圆经过a,b两点,圆内不含点集V中任何的点,这⼀特性⼜称空圆特性。
Delaunay三⾓剖分定义3:如果点集V的⼀个三⾓剖分T只包含Delaunay边,那么该三⾓剖分称为Delaunay三⾓剖分。