检测电缆附件局部放电内置传感器的特性分析
- 格式:pdf
- 大小:507.99 KB
- 文档页数:8
内置测温传感器10kV电缆分支箱电缆头测温技术研究近年来,随着电力行业的快速发展,10kV电缆分支箱作为电力系统中的重要设备,其安全稳定运行已成为电力系统运行管理的重要环节。
而10kV电缆分支箱电缆头的温度监测技术,作为保障其安全运行的关键一环,也越来越受到人们的关注。
为了更好地保障电力系统的安全稳定运行,内置测温传感器的10kV电缆分支箱电缆头测温技术研究成为当前期待解决的问题之一。
一、研究背景及意义10kV电缆分支箱作为电力系统输电与配电的重要设备之一,其稳定运行对整个电力系统的正常运行至关重要。
由于工作环境的特殊性,电缆分支箱电缆头往往会受到外部环境影响,加之长期运行的磨损和老化,容易造成电缆头温度升高,从而加剧电缆头的老化和绝缘性能的下降,影响到电力系统的安全稳定运行。
对10kV电缆分支箱电缆头的温度进行实时监测,对于预防事故的发生,保障电力系统的正常运行具有重要意义。
二、内置测温传感器的优势与特点为了更好地实现对10kV电缆分支箱电缆头的实时监测和智能管理,需要对内置测温传感器10kV电缆分支箱电缆头测温技术进行深入研究与探索。
1. 内置测温传感器的选型首先需要选择适合的内置测温传感器,这需要考虑到其测温范围、测温精度、抗干扰能力等因素,以满足实际应用的需要。
目前,市场上已经出现了多种类型的内置测温传感器,如热电偶、热敏电阻、红外线传感器等,需要根据具体情况进行选型。
2. 内置测温传感器的安装与调试选定合适的内置测温传感器后,需要进行安装和调试工作。
由于内置测温传感器需要植入到电缆头内部,因此需要有专业人员进行施工,确保传感器的位置准确、稳固,以及传感器与监控系统的连接良好。
3. 监控系统的建设和优化内置测温传感器10kV电缆分支箱电缆头测温技术的研究还需要建设和优化监控系统,将传感器采集到的温度数据进行采集、存储和分析,实现对电缆头温度的智能监控和管理,以应对各种异常情况。
4. 技术的实际应用与推广研究成果需要在实际工程中得到应用和推广,为实现10kV电缆分支箱电缆头的实时监测和智能管理提供技术支持。
高压电缆局部放电检测方法分析摘要:对高压电缆接头局部放电进行在线检测,能够及时发现绝缘的受损情况,是保障电力电缆可靠运行的重要手段,具有非常重要的意义。
本文对高压电缆接头局部放电检测方法进行分析。
关键字:高压电缆;局部;放电检测高压电缆由于长时间与空气、水分、土壤等发生接触,电缆绝缘层容易受到腐蚀,出现绝缘老化现象。
此时电缆的电容和电阻都已发生改变,在物理和化学效应下,出现局部放电现象。
在高压电缆运行维护过程中,对局部放电故障点进行排查和检测是一项重要工作,而且具有较高难度,如果选择方法不当,会消耗大量时间,容易导致故障升级。
因此,有必要对其具体检测方法进行研究,提高高压电缆局部放电检测效率和检测结果的准确性。
1高压电缆局部放电的基本原理局部放电是指当外加电压在电气设备中产生的场强足以使绝缘部分区域发生放电,但在放电区域内未形成固定放电通道的一种放电现象,高压电缆的绝缘劣化主要就是由于这个原因。
电缆的绝缘性能决定着其局部放电量,而电缆能否安全、无缺陷地运行一定程度上也正是由其局部放电量的变化决定的。
这种电气设备绝缘内部存在缺陷的局部放电现象放电能量虽然并不大,短时间内不会引起整个绝缘的击穿,但是在长期工作电压的作用下,局部放电会使绝缘缺陷变大,进而会使整个绝缘都发生击穿。
局部放电主要有表面放电、内部放电和尖端放电等。
电缆系统局部放电的基本原理大体相同:当电缆的绝缘本体、电缆接头存在一定缺陷时,有可能会发生局部放电现象,产生脉冲电流信号。
这种信号由于绝缘介质不同特性的原因,所表现的频率大小也各不相同,一般产生高频脉冲信号,其频率在300 kHz以上,会在电缆线路的回路中传播,可以沿高压电缆带电检测有效性评估系统研究着电缆的屏蔽层传播,这样就可以在电缆外层屏蔽的接地线上,通过高频电流互感器来耦合这类高频电流信号。
引起电缆局部放电的原因主要包括:微空穴或不同介质交界面接触不良而产生局部放电、径向不对称而产生局部放电、热效应产生脱层、接头处半导体均压层处理不良、处理半导体均压层时对绝缘产生损伤及外皮接地不良等。
电缆终端安装刀痕缺陷的局部放电特性分析摘要:为了能够在电缆终端运行的第一时间可以有效的检查出安装刀痕缺陷,需要对其进行一系列典型的刀痕缺陷的相应设计。
本文则通过对电缆终端典型刀痕缺陷的设计进行了相关的分析,并进行了局部放电测试,最后得出了相应的结论。
希望本文关于电缆终端安装刀痕缺陷的局部放电特性的相关分析,可以为我国相关领域起到一定借鉴的意义。
关键词:电缆终端;刀痕缺陷;局部放电;放电频谱1.电缆终端故障问题的概述电缆终端故障问题多是由于其附件出现的问题而引发的,电缆附件在进行现场安装时出现的问题基本是因为操作人员的工作大意造成的,但是因为附件的体积一般很小,这种问题不容易被及时的查出,所以在初期进行耐压试验时都会试验合格。
但是这种缺陷在电缆线路实际工作一段时间后就会将缺陷问题不断扩大,最后结果就是发生绝缘被击破的现象,如果缺陷十分严重甚至会产生爆炸燃烧等重大事故。
所以,在对附件进行安装后如何及时发现缺陷是对整个线路安全运营来说最重要的问题。
本文根据对我国过往电缆终端运行的故障信息进行统计和分析,选定了两种比较普遍的刀痕缺陷。
然后通过电缆附件的淘汰平台对实际工作过程进行一系列的模拟演示,然后利用技术手段对两种刀痕局部放电时所产生的时域和频域的不同特点进行分析,对两种刀痕的放电特征进行比较。
2.电缆终端典型刀痕缺陷设计通过对我国过往案例的分析可以发现,在现场耐压试验顺利通过后,电缆终端在正常运行不久仍然出现故障,这主要是由于半导电层的横断处环切刀痕和纵向刀痕导致的。
另外,据对现场考察结果显示对于剥离外的半导电层日常运行中,一般会应用的措施是先从横断处开始,然后围绕其中心点画圆切割。
再利用设备向对外半导电层由中心位置纵向剖开,使得外半导电层成功脱离。
但是在切割工作中,因为对切割的力度没有办法进行精准的掌控,所以会造成环切和纵切的刀痕缺陷。
3.局部放电测试和分析3.1电热老化对局部放电造成的影响在电热老化的实验装置上实行对电缆终端连续120h的老化实验后,此时可以观察到放电信号开始出现显示,但是信号检测放电值比较低,在这种情况下一般难以得到数据统计的有效结果。
本文从电力电缆局部放电测量要求和试验特点分析测量中干扰的来源和途径,分析和阐述各种干扰的抑制措施,共同探讨、研究在测量系统设计、安装和使用过程中抑制测量干扰重要性和必要性。
关键词:电力电缆局部放电测量干扰抑制措施一、前言局部放电测量是挤包绝缘电力电缆产品检验中重要安全项目之一,电缆局部放电是指电缆绝缘中局部缺陷(如毛刺、杂质、气泡或水气等)被击穿引起的电气放电,其放电量可能极小,以10-12库仑(pC)计,但这种微小放电危害极大,若在电缆运行中长期存在,或将引起放电周围绝缘发热老化,导致绝缘性能下降,引发电力安全事故,因此,准确测量电缆局部放电十分必要。
但准确测量除关注检验设备性能及精度外,还应特别关注各种干扰对测量产生的影响。
二、常见干扰来源及途径(一)电缆局部放电测量标准要求及试验特点GB/T1206.2-2008和GB/T1206.3-2008挤包绝缘电力电缆标准要求,被试电缆在1.73U0(U0为电缆额定电压)下,应无任何由被试电缆产生的超过声明试验灵敏度的可检测到的放电,例行试验声明试验灵敏度应不大于10 pC,型式试验声明试验灵敏度应不大于5 pC。
GB/T3048.12-2007局部放电试验方法标准要求,试验回路包括高压电源、高压电压表、放电量校准器、双脉冲发生器等组成,试验电源应是频率为49~61Hz交流电源,近似正弦波,且峰值与有效值之比应为√2±0.07。
产生试验电压可以是变压器或串联谐振装置。
试验步骤包括试验回路选择和连接、电量校准、施加电压和放电测量等。
从试验设备和标准要求可知,电缆局部放电测量具有如下特点:1、设备庞大,试验室占据空间大,连接环节多。
无论使用变压器式或串联谐振式高压设备,其额定电压输出容量一般都在100kV以上,其调压设备、高压设备、耦合电容器和控制设备等都很庞大,试验时,需将这些设备、试样和局部放电检测仪按试验要求连接一起,可见空间之大,环节之多。
电力电缆的局部放电检测与处理局部放电是电力电缆中常见的故障形式之一,它会导致电缆损坏、短路等严重后果。
因此,对电力电缆进行局部放电的及时检测与处理,具有重要的意义。
本文将介绍电力电缆局部放电的检测原理、方法以及处理措施。
一、电力电缆局部放电的检测原理局部放电是指电缆中的电荷在局部区域释放能量,造成电弧放电或脉冲放电的现象。
电缆在运行或负荷过程中,由于介质老化、控制电极不良、绝缘结构破损等原因,可能引发局部放电。
因此,及时检测局部放电的存在是至关重要的。
电力电缆局部放电的检测可以通过不同的方法实现。
其中主要包括以下几种:1. 电缆局部放电检测仪器:采用高频电流放电法、超声波法、暂态地电压法等原理进行检测,可以对电缆进行全面、精确的监测。
2. 红外热像仪:通过检测电缆表面的热量分布,可以发现局部放电产生的热量异常,提前发现潜在故障。
3. 电缆局部放电监测系统:通过长期、实时监测电缆的电压、电流等参数,及时判断电缆是否存在局部放电,保障电力系统的稳定运行。
二、电力电缆局部放电的检测方法1. 高频电流放电法:通过检测电缆导体内部的高频电流信号,判断是否存在局部放电现象。
2. 超声波法:利用超声波的传导和反射特性,检测电缆绝缘及连接部位是否存在局部放电。
3. 暂态地电压法:通过在电缆两端施加暂态地电压,通过检测地电压的变化情况,判断是否存在局部放电。
三、电力电缆局部放电的处理措施当电力电缆存在局部放电时,需要及时采取相应的处理措施,避免故障扩大,确保电力系统的正常运行。
具体处理措施包括:1. 局部放电源的隔离:通过对电缆的发生放电部位进行隔离,防止放电的继续发展。
2. 放电源的修复:及时修复局部放电源,修复或更换损坏的电缆绝缘部分。
3. 系统的升级改造:通过对电力系统进行升级改造,提高电缆的绝缘性能,减少局部放电的可能性。
4. 定期检测与维护:定期对电力电缆进行检测与维护,及时排除潜在的故障隐患,提高电缆的安全可靠性。
大长度400kV超高压XLPE电缆系统在现场验收阶段的附件局部放电测量摘要2005年6月,欧洲最大的电缆项目400kV,20公里交联聚乙烯电缆项目的现场验收试验在英国伦敦成功完成。
本文介绍了从伦敦St.Johns Wood到Elstree20公里电缆线路项目的交流耐压试验的实施及项目特点,尤其是局部放电监测的实施情况。
这是第一次在一个20公里长的交联电缆系统上进行了交流电压试验,随后在20个中间接头和2个SF6密闭终端上进行了电缆全程的局部放电测量。
1 介绍1997年英格兰和威尔士的一大批使用中的275kV电缆系统将在接下来的几年内达到他们的允许使用年限和报废期,电力传输网的拥有者——英国国家电网(NG)做出了一个对伦敦供电电网的基本结构进行升级的决定。
考虑的关键是安装过程中的质量保证、电网的运行可靠性和未来系统的安全性。
电缆工程。
400kV交联电缆系统选用了电缆型号2XS(FL)2Y 1x2500 RMS/400 230/400kV 的交联电缆,安装在平均深度30米,长20公里的隧道内,隧道连接伦敦北郊和市中心。
电缆为铜芯导体,导体截面2500mm2,传输容量标称值为1600MV A。
电缆的结构见图2。
电缆的外径150mm,单位重量为40kg/m。
在电缆回路上安装了温度监测系统。
在电缆制造过程中,一根带有二芯光纤的细钢管被内嵌到电缆金属屏蔽层下面,这样就能用光纤监测整个电缆的温度。
图2 400kV交联聚乙烯电缆结构该电缆项目总共包括60个交叉互联接头和6个GIS电缆终端头。
电缆的总长度为60公里。
隧道内预留了敷设第二回具有同样额定传输容量的400kV电缆系统位置。
此外,132kV的电缆系统目前已经在Elstree和Hendon之间(近似10公里)的隧道内,以品字形结构敷设在已安装的400kV电缆系统的下面。
在两个终端头之间设置了五个中间竖井通道以便通风和人员进入的需要(见图1)。
该400kV系统由三根单芯的XLPE电缆组成,它们以一个在另一个的上面方式垂直平行排列,(见图3)。
电缆局部放电检测方法随着电力系统的不断发展,电缆作为输电线路的重要组成部分,其安全性能和可靠性越来越受到重视。
电缆局部放电是指电缆绝缘局部区域发生的放电现象,这种放电可能导致电缆绝缘击穿,造成设备损坏甚至火灾等严重事故。
因此,就需要对电缆局部放电进行检测。
下面一起了解下电缆局部放电检测的方法和意义。
一、电缆局部放电检测的意义1.提高设备安全性。
电缆局部放电会导致绝缘击穿,进而引发设备故障,影响电力系统的稳定运行。
通过对电缆局部放电的及时检测,可以有效降低设备故障率,提高设备的安全性。
2.保证电力系统稳定运行。
电缆局部放电会导致电力系统的电压波动、电流畸变等问题,影响电力系统的稳定运行。
通过对电缆局部放电的检测,可以及时发现问题并采取措施,保证电力系统的稔定运行。
3.延长设备使用寿命。
电缆局部放电会导致绝缘老化、材料损耗等问题,从而缩短设备的使用寿命。
通过对电缆局部放电的检测,可以及时发现问题并采取措施,延长设备的使用寿命。
二、电缆局部放电检测的方法1.电测法电测法是一种直接测量电缆绝缘介质中的电气参数的方法。
通过在电缆表面或内部安装电极,利用电场的作用原理,测量绝缘介质中的电压、电流等参数。
当绝缘介质中存在局部放电时,会产生局部电场,从而导致绝缘介质中的电压、电流发生变化。
通过对这些变化信号的分析,可以判断是否存在局部放电现象。
电测法的优点是检测灵敏度高,能够实现对电缆全面、连续的检测。
但其缺点是对现场设备要求较高,需要专业的检测仪器和技术人员进行操作。
2.热像法热像法是一种通过测量绝缘介质中的温度分布来判断是否存在局部放电的方法。
当绝缘介质中存在局部放电时,会产生局部热量,导致绝缘介质中的温度分布发生变化。
通过时这些温度变化的图像分析,可以判断是否存在局部放电现象。
热像法的优点是检测成本较低,适用于对现场设备要求较低的场合。
但其缺点是对温度分布的敏感度较低,可能漏检部分局部放电现象。
3.声波法声波法是一种通过测量绝缘介质中传播的声音信号来判断是否存在局部放电的方法。
电力电缆局部放电的超声波检测摘要:局部放电是导致电缆绝缘劣化的重要原因,超声波局部放电检测是评估电缆绝缘材料性能和状态的一种重要手段,具有非接触式、非破坏性、易于定位等诸多优点,可用于电缆绝缘劣化初期对其局部放电的强度、位置、模式作有效的监测及分析。
关键词:电力电缆局部放电超声波检测超声传感器随着社会经济的发展,电网运行可靠性不断提升,电力电缆的运行要求也随之提高。
根据电网运行情况统计,电缆的局部放电是造成电力电缆绝缘损坏的最主要原因之一[1]。
电力电缆在长年运行后,很容易产生内部的局部缺陷,从而产生局部放电现象,引起电缆进一步老化,最终导致绝缘失效击穿。
局部放电是造成高压电力电缆的绝缘损坏的重要因素,为了保障电力系统的稳定运行,有效地检测电缆的状况,有必要深入研究对电缆局部放电检测技术,这对于及时发现潜伏隐患,提高电缆有效使用寿命具有十分重要的意义。
根据检测结果,采取相应的措施,实施有计划、合理的检修,可以减少因突发故障而造成的损失,达到提高供电可靠性的目的。
超声波检测法是用超声波传感器接收电气设备内部或电力电缆局部放电产生的超声波,由此来检测局部放电的大小和位置。
典型的超声波传感器的频带一般都为50-200khz,可以通过选中频谱中所占分量较大的频率范围作为测量频率,以提高检测灵敏度。
由于超声检测法抗干扰能力相对较强、使用方便,可以在运行中或耐压试验时检测局部放电,适合预防性试验的要求,并且随着声电换能器效率的提高和电子放大技术的发展,超声波检测法的灵敏度有了较大的提高。
因此,近年来采用超声波探测仪的情况越来越多。
1.局部放电产生超声波的机理通常情况下,局部放电一般是在绝缘介质中的气隙里产生,局部放电等效模型[2]如图1所示,相当于绝缘内部有一个微小气隙,用g表示,四周绝缘完好,其气隙模型如图1(a)所示,等效电路模型如图1(b)所示u。
(a)绝缘介质气隙模型(b)三电容等效电路图1 绝缘介质中的局部放电模型其中,cg是气隙电容,cb是与气隙g串联绝缘b1和b2的电容。
高压电缆局部放电实时监测方法研究与应用随着电力电缆在电力系统中越来越广泛应用,其供电的可靠性也越来越受到相关部门和用户的关注,局部放电是导致电缆附件发生故障的主要原因之一,而高压电缆附件局部放电与内部绝缘状况有密切关系。
文章探索了一种新的监测高压电缆绝缘质量的局部放电方法,提出了一种利用超声波和虚拟仪器的高压电缆局部放电实时监测方法,并对该方法的硬件系统和工作原理进行分析。
仿真实验进一步分析了高压电缆内局部放电超声波传播的特性,其结果表明,文章研究方法对高压电缆局部放电进行实时检测是可行的,可以为实现局部放电故障点定位提供了前期准备工作。
标签:高压电缆;局部放电;绝缘;超声法;虚拟仪器1 概述随着电力系统的高速发展,高压电缆在电力系统中的应用范围也逐渐扩大。
高压电缆的基本结构主要包括四个部分,分别为纤芯、绝缘层、屏蔽层和保护层[1]。
在这四部分中,线芯是高压电缆中电流传播的载体,是高压电缆的重要组成部分[2]。
绝缘层起到的是将线芯与隔离的作用。
而屏蔽层分为导体屏蔽层和绝缘屏蔽层,主要存在于15千瓦以上的高压电缆中[3]。
保护层则是保护高压电缆以防止电缆外杂质和环境中水分的渗入以及外力对电缆的损坏。
当高压电缆频繁产生局部放电时,最终使高压电缆的附件绝缘体被击穿[4]。
就目前来看,对高压电缆的局部放电进行实时监测是检测高压电缆安全性能最为广泛和有效的方法[5]。
为此,提出了一种利用超声波和虚拟仪器的高压电缆局部放电实时监测方法,并对该方法的硬件系统和工作原理进行分析。
仿真实验进一步分析了高压电缆内局部放电超声波传播的特性,其结果表明,本文研究方法能有效对高压电缆局部放电进行实时检测。
2 高压电缆附件局部放电在线检测的意义近年来,随着我国经济快速发展,各大中小城市规模不断扩大,电力消费水平逐年增长。
到今年年底,我国电力装机容量已经达到百万千瓦。
明年预计将增加1亿千瓦,整个社会能耗将接近百万千瓦小时。
电力装机容量迅速增加的同时,电网建设和改造在全国范围内广泛实施,据统计,在年底传输线电路总循环长度将达数千公里。