第八章—极大似然法辨识
- 格式:pdf
- 大小:346.27 KB
- 文档页数:31
2 极大似然参数辨识方法极大似然参数估计方法是以观测值的出现概率为最大作为准则的,这是一种很普遍的参数估计方法,在系统辨识中有着广泛的应用。
2.1 极大似然原理设有离散随机过程}{k V 与未知参数θ有关,假定已知概率分布密度)(θk V f 。
如果我们得到n 个独立的观测值,21,V V …n V ,,则可得分布密度)(1θV f ,)(2θV f ,…,)(θn V f 。
要求根据这些观测值来估计未知参数θ,估计的准则是观测值{}{k V }的出现概率为最大。
为此,定义一个似然函数)()()(),,,(2121θθθθn n V f V f V f V V V L = (2.1.1)上式的右边是n 个概率密度函数的连乘,似然函数L 是θ的函数。
如果L 达到极大值,}{k V 的出现概率为最大。
因此,极大似然法的实质就是求出使L 达到极大值的θ的估值∧θ。
为了便于求∧θ,对式(2.1.1)等号两边取对数,则把连乘变成连加,即 ∑==ni iV f L 1)(ln ln θ (2.1.2)由于对数函数是单调递增函数,当L 取极大值时,lnL 也同时取极大值。
求式(2.1.2)对θ的偏导数,令偏导数为0,可得0ln =∂∂θL(2.1.3)解上式可得θ的极大似然估计ML ∧θ。
2.2 系统参数的极大似然估计设系统的差分方程为)()()()()(11k k u z b k y z a ξ+=-- (2.2.1) 式中111()1...nn a z a z a z ---=+++1101()...nn b z b b z b z ---=+++因为)(k ξ是相关随机向量,故(2.2.1)可写成)()()()()()(111k z c k u z b k y z a ε---+= (2.2.2) 式中)()()(1k k z c ξε=- (2.2.3)nn z c z c z c ---+++= 1111)( (2.2.4))(k ε是均值为0的高斯分布白噪声序列。
第八章无信号交叉口理论平面交叉口把相交的道路路段连接起来,构成路网。
因为在交叉口同一平面上有多股交通流动,考虑到交通安全,有时需要进行适当的交通控制。
按照有无交通控制,可将交叉口分为有交通信号控制的交叉口(简称为信号交叉口)和无交通信号控制的交叉口(简称为无信号交叉口)。
无信号交叉口是最普遍的交叉口类型,虽然它的通行能力可能低于信号交叉口,但它在网络交通控制中起到了非常重要的作用。
一个运行情况不良的无信号交叉口,可能会影响整个信号网络或者智能运输系统的运行,并且无信号交叉口理论是信号交叉口理论的基础,因此首先对无信号交叉口进行研究是非常必要的。
无信号交叉口不像信号交叉口那样会给驾驶员确定的指示或控制,驾驶员必须自己判断何时进入交叉口是安全的。
驾驶员所寻求的在交通流中进入交叉口的安全机会或“间隙”称为可插车间隙,它用时间来度量,并且等于某一车头时距。
可插车间隙理论是分析无信号交叉口运行的基本理论,其它的所有分析过程在某种程度上都依赖于可插车间隙理论,或者即使没有明确地应用该理论,但也是以它为基础的。
在无信号交叉口中,必须考虑车辆的优先权问题。
如果有一辆车试图进入交叉口,但此时存在优先级高于它的交通流,那么它必须让路给这些交通流。
另外,低级别交通流的存在也会影响高级别交通流的运行。
由此可见,无信号交叉口的车流间存在着相互作用。
本章的第一节首先讨论无信号交叉口的理论基础,着重介绍可插车间隙理论以及在该理论中用到的几种基本的车头时距分布。
普通的无信号交叉口(即四路相交)可分为二路停车和四路停车两类,即主路优先控制的交叉口(包括停车控制和让路控制)和主次路不分的交叉口。
在第二节中首先讨论了二路停车的无信号交叉口,第三节接着讨论了四路停车的无信号交叉口。
在考虑交叉口交通运行时还用到了经验方法,并且在许多情况下经验方法的结果也是比较准确的,与实际情况差别并不大,在第四节中介绍了这些方法。
第一节理论基础一、可插车间隙理论1. 可利用间隙可插车间隙理论是分析无信号交叉口的基本理论,理解该理论必须先理解可利用间隙的概念。
极大似然法原理在统计学中,极大似然法是一种常用的参数估计方法。
它的原理是基于已知数据集的情况下,通过寻找最大概率使模型参数最接近真实值。
接下来,我们将围绕极大似然法原理进行分步骤的阐述。
第一步,定义似然函数。
似然函数是指在已知数据集的情况下,模型参数的取值所产生的概率。
假设我们要估计一个二项分布模型的参数p,数据集中有n个实例,其中有m个成功实例(成功实例概率为p)。
那么这个模型的似然函数可以表示为:L(p;m,n) = C(n,m) * p^m * (1-p)^(n-m)其中,C(n,m)表示从n个实例中选择m个成功的组合数。
这个式子中,p取值不同,所对应的似然函数值也不同。
第二步,求解极大化似然函数的参数值。
在求解参数值时,我们要找到一个能使似然函数取到最大值的p值。
这个过程可以通过求解似然函数的导数为零来实现。
即:dL/dp = C(n,m) * [m/(p)] * [(n-m)/(1-p)] = 0这个式子中,p的值是可以求出来的,即为p = m / n。
这个p值被称为最大似然估计值,意味着在该值下,似然函数取值最大。
这个值也是对真实参数值的一个良好估计。
第三步,检验极大似然估计值的可靠性。
为了检验极大似然估计值的可靠性,我们需要进行假设检验。
通常我们会计算一个置信区间,如果实际参数值在置信区间内,那么我们就认为估计值是可靠的。
置信区间可以通过计算似然函数的二阶导数来得到。
即:d^2L/dp^2 = -C(n,m) * [m/(p^2)] * [(n-m)/((1-p)^2)]计算得到极大似然估计值的二阶导数在该参数值下是负数。
根据二阶导数的符号,可以确定p = m / n是最大值,同时也可以计算出该置信区间的范围。
在这个过程中,我们还需要参考似然比值,以便更好地确定参数估计值。
综上所述,极大似然法是统计学中重要的一种参数估计方法。
它的原理在求解模型参数时非常实用,能够帮助我们更好地估计真实值,从而使得我们的模型更加准确。
未知参数的极大似然估计方法最早是由高斯(C・F・Ga-uss)提出的,后来为费歇在1912年的文章中重新提出,并且证明了这个方法的一些性质。
极大似然估计这一名称也是费歇命名的。
这是一种得到广泛应用的统计方法。
它是建立在极大似然原理基础之上的一种统计方法,所得到的极大似然估计具有很好的性质,如一致性、有效性和不变性。
从某种意义上说没有比极大似然估计更好的参数估计。
当然极大似然估计方法在实际中有非常广泛的应用,对极大似然估计问题进行深入研究是很有必要的。
一、极大似然原理设;2,…,其中2,…,ÄÚ£¬µ«¾ßÌåÊýÖµ²»Öª£©¡£Èô1,1,¼ÇΪӲ±Ò³öÏÖ·´ÃæµÄ¸ÅÂÊ£¬Èô³öÏÖ·´Ã棬¼Ç=0,则该问题可以描述为,中抽取一样本2,…,=0。
8,因为如果硬币是均匀的,“掷5次硬币,出现4次反面”的可能性不大。
事实上,事件|均匀)==0.5540.540.5=0.156=0.5540.840.2=0.410由此可见,若硬币是偏心的,则事件发生的可能性大些,但实验结果确实发生了,自然认为硬币是偏心的。
这种方法可以推广到一般情形,其基本思想是:虽然参数中的所有值,但在给定样本观察值(2,…,)之后,不同的1,1,1,1,1,1,1,1,1,1~,,£¨1,1,=1,为样本2,…,的联合密度函数,它是参数的似然函数。
系统辨识的常用方法系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型,是现代控制理论中的一个分支。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
传统的系统辨识方法(1)脉冲响应脉冲响应一般是指系统在输入为单位冲激函数时的输出(响应)。
对于连续时间系统来说,冲激响应一般用函数h(t)来表示.对于无随机噪声的确定性线性系统,当输入信号为一脉冲函数δ(t)时,系统的输出响应 h(t)称为脉冲响应函数。
辨识脉冲响应函数的方法分为直接法、相关法和间接法。
①直接法:将波形较理想的脉冲信号输入系统,按时域的响应方式记录下系统的输出响应,可以是响应曲线或离散值。
②相关法:由著名的维纳—霍夫方程得知:如果输入信号u(t)的自相关函数R(t)是一个脉冲函数kδ(t), 则脉冲响应函数在忽略一个常数因子意义下等于输入输出的互相关函数,即 h(t)=(1/k)Ruy(t)。
实际使用相关法辨识系统的脉冲响应时,常用伪随机信号作为输入信号,由相关仪或数字计算机可获得输入输出的互相关函数Ruy(t),因为伪随机信号的自相关函数 R(t)近似为一个脉冲函数,于是h(t)=(1/k)Ruy(t).这是比较通用的方法。
也可以输入一个带宽足够宽的近似白噪声信号,得到h (t)的近似表示。
③间接法:可以利用功率谱分析方法,先估计出频率响应函数H(ω),然后利用傅里叶逆变换将它变换到时域上,于是便得到脉冲响应h(t)。
(2)最小二乘法最小二乘法(LS)是一种经典的数据处理方法, 但由于最小二乘估计是非一致的、有偏差的, 因而为了克服它的不足, 形成了一些以最小二乘法为基础的辨识方法:广义最小二乘法(GLS)、辅助变量法(IVA)和增广矩阵法(EM),以及将一般的最小二乘法与其它方法相结合的方法,有相关分析——-最小二乘两步法(COR —LS)和随机逼近算法.(3)极大似然法极大似然法(ML)对特殊的噪声模型有很好的性能,具有很好的理论保证;但计算耗费大, 可能得到的是损失函数的局部极小值。