2、常见的数量关系(20201014085630)
- 格式:docx
- 大小:93.31 KB
- 文档页数:2
(完整版)常用的数量关系式常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间9、利息=本金×利率×时间10、收入-支出=结余单产量×数量=总产量量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。
名数;数和单位名称合起来叫做名数。
单名数:只含有一种单位名称的名数叫单名数。
复名数:含有两种或两种以上单位名称的名数叫复名数。
×进率高级单位的名数低级单位的名数÷进率长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=1000000平方米1公顷=10000平方米1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升1升=1000毫升质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒练习:填空(1). 1时30分=()时40分=()时时=()分0.7时=()分平方米=()平方分米125克=()千克2 立方分米=()升=()毫升10 吨=()吨()千克()元=50元8角1分(2).1米∶ 10厘米=()∶()=()∶()100毫升∶1升=()∶()=()∶ ()(3).填上适当的计量单位名称。
小学数学各种常见的数量关系式集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]小学数学各种常见的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、一倍数×倍数=几倍数几倍数÷一倍数=倍数几倍数÷倍数=一倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5 、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7 、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形C周长 S面积 a边长周长=边长×4C=4a面积=边长×边长S=a×a2、正方体V:体积 a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形s面积 a底 h高面积=底×高s=ah7、梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷28、圆形S面积 C周长∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9、圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高体积=侧面积÷2×半径10、圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)。
常见的数量关系数量关系是指通过观察和分析,发现数量关系的一种数学方法。
这种方法能够帮助我们更好的理解世界上的物质和现象以及它们之间的相互作用。
数量关系能够帮助数学家们更好的解决复杂的数学问题,也能够帮助科学家们加深理解自然界的规律。
在数量关系中,克服方程式是最常见的数量关系,它可以表示两个变量之间的关系,可能是相等关系、不等关系或其他关系。
另外,根据克服方程式,我们可以求解其参数的实际值。
此外,指数关系也是一种常见的数量关系,它表示相同增量百分比下两个量之间的关系,可以设计出合理的计算模型,从而理解和掌握实际问题中不同量之间的变化规律。
大家在学习和研究数量关系的时候,必须要熟练掌握几个关键概念,这些概念包括:关系、逆变换、累乘关系和累加关系等。
其中,逆关系是指反转原始数量关系中变量的数量关系,而逆变换则是将原始数量关系中的变量反过来排列,累乘关系和累加关系则是对不同量之间的比例进行分析的数量关系。
除了上述三种常见的数量关系以外,还有一些更复杂的数量关系,这些数量关系因其使用的方法和结果的复杂性而得名,例如:稀疏矩阵关系、同余方程组关系、矩阵关系、累乘与累加分析关系、指数函数关系等等。
这些数量关系可以用来解决许多复杂的问题,例如求解复杂系统中的参数、研究复杂数学模型中的解和找出它们之间的关系。
当我们学习数量关系时,除了了解它们之间的理论模型外,还应引入实际的例子,从而加深对数量关系的理解。
例如,当我们在研究累乘关系时,可以引入一个实际的例子,即A公司在某年生产了1000台产品,在次年生产2000台,在第三年生产4000台,然后我们可以用累乘关系去推断在未来几个年份里A公司的生产量。
综上所述,数量关系是数学领域里一种非常重要的研究内容,它能够帮助我们看清客观现实中不同物质间的关系及其变化,从而更好的理解世界的运行原理以及影响的因素。
要深入了解数量关系,我们需要复习数学基础知识,了解相关概念,并熟练掌握各种变换模型和实际例子,以此来加深对数量关系的理解。
常用的数量关系数量关系是数学中常用的概念,它描述的是不同数量之间的关系。
在实际问题中,常见的数量关系包括比例关系、等量关系、不等式关系等。
下面将分别介绍这些常用的数量关系。
1.比例关系比例关系是指两个数或多个数之间的比例,通常表示为两个数的商或比值。
在数学中,比例关系是一种非常重要的概念,它在解决各种实际问题中有着广泛的应用。
例如,在速度、时间和距离之间存在比例关系,即速度= 距离/ 时间。
如果一个物体的速度是恒定的,那么它所走的距离和所用的时间之间就存在一个比例关系。
又比如,在投资和回报之间也存在比例关系,即投资回报率= 回报/ 投资。
如果一个投资者希望获得更高的回报,他可以通过增加投资来提高回报,但同时也要承担更高的风险。
2.等量关系等量关系是指两个或多个数量相等的关系。
在数学中,等量关系是一种基本的概念,它通常表示为方程或等式。
在解决实际问题时,等量关系可以用来建立数学模型,从而帮助我们更好地理解和解决问题。
例如,在几何学中,等量关系通常用来描述图形的形状和大小。
比如,在矩形中,长和宽是两个相等的边,可以用等量关系来表示矩形的形状和大小。
又比如,在代数中,等量关系通常用来描述未知数之间的关系。
比如,在方程x + 2y = 5 中,x 和y 之间的关系可以用等量关系来表示。
3.不等式关系不等式关系是指两个或多个数量不相等的关系。
在数学中,不等式关系是一种基本的概念,它通常表示为不等式或不等号。
在解决实际问题时,不等式关系可以用来描述某些数量之间的不相等关系。
例如,在经济学中,不等式关系通常用来描述成本、价格和收益之间的关系。
比如,在成本一定的情况下,如果想要获得更高的收益,就需要提高价格;而在价格一定的情况下,如果想要获得更高的收益,就需要降低成本。
又比如,在统计学中,不等式关系通常用来描述数据之间的差异和变化。
比如,在比较两个样本的平均数时,如果它们的标准差不同,就需要使用不等式关系来描述它们之间的差异程度。
常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数7、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商8、总数÷总份数=平均数9、相遇问题相遇路程=速度和×相遇时间相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间10、利息=本金×利率×时间11、收入-支出=结余单产量×数量=总产量量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。
名数;数和单位名称合起来叫做名数。
单名数:只含有一种单位名称的名数叫单名数。
复名数:含有两种或两种以上单位名称的名数叫复名数。
长度单位换算1千米=1000米 1米=10分米 1分米=10厘米1米=100厘米 1厘米=10毫米面积单位换算1平方千米=1000000平方米 1公顷=10000平方米1平方千米=100公顷1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升 1立方厘米=1毫升 1升=1000毫升质量单位换算1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算1世纪=100年 1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分 1分=60秒 1时=3600秒练习:填空(1). 1时30分=()时 40分=()时3.5时=()分 0.7时=()分2.3平方米=()平方分米 125克=()千克 2 立方分米=()升=()毫升10 .5吨=()吨()千克()元=50元8角1分(2).1米∶10厘米=()∶()=()∶()100毫升∶1升=()∶()=()∶()(3).填上适当的计量单位名称。
作者:非成败作品编号:92032155GZ5702241547853215475102 时间:2020.12.13常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形( C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积s:面积a:长b: 宽h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2 s=(a+b)×h ÷28、圆形(S:面积C:周长лd=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和作者:非成败作品编号:92032155GZ5702241547853215475102 时间:2020.12.13速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
数量关系公式大全数量关系是数学中一个重要的概念,它描述了不同量之间的相互关系,包括比例关系、倍数关系、增减关系等。
在实际生活和学习中,数量关系公式的运用非常广泛,可以帮助我们解决各种实际问题。
下面就为大家介绍一些常见的数量关系公式,希望能够对大家有所帮助。
1. 比例关系公式。
比例关系是指两个量之间的相对大小关系。
在数学中,通常用a∶b或a/b表示两个量的比例关系。
如果a∶b=c∶d,那么a与b的比值等于c与d的比值,可以表示为a/b=c/d。
在实际生活中,比例关系公式常常用于解决各种比例问题,如物品的混合、工程的配比等。
2. 倍数关系公式。
倍数关系是指一个量是另一个量的几倍。
在数学中,通常用a=kb表示倍数关系,其中k为倍数。
如果a是b的k倍,那么a/b=k。
倍数关系公式在实际生活中也有着广泛的应用,如计算物品的批发价和零售价之间的倍数关系。
3. 增减关系公式。
增减关系是指一个量相对于另一个量的增加或减少。
在数学中,通常用a=b±c 表示增减关系,其中加号表示增加,减号表示减少。
增减关系公式常用于解决各种增减问题,如计算物品的涨幅、降幅等。
4. 百分比关系公式。
百分比关系是指一个量相对于另一个量的百分比大小。
在数学中,通常用a=b%表示百分比关系,其中b%表示b的百分之几。
百分比关系公式在实际生活中也有着广泛的应用,如计算物品的折扣、利润率等。
5. 平均值关系公式。
平均值关系是指一组量的平均值与这组量的总和之间的关系。
在数学中,通常用平均值公式来表示平均值关系,如平均数=总和/数量。
平均值关系公式常用于解决各种平均值问题,如计算考试成绩的平均分、商品的平均售价等。
6. 比较大小关系公式。
比较大小关系是指比较两个量的大小关系。
在数学中,通常用不等关系符号来表示比较大小关系,如>表示大于,<表示小于,≥表示大于等于,≤表示小于等于。
比较大小关系公式常用于解决各种大小比较问题,如比较不同商品的价格、比较不同地区的气温等。
常用数量关系:1、每份数×份数=总数2、1倍数×倍数=几倍数总数÷每份数=份数几倍数÷1倍数=倍数总数÷份数=每份数几倍数÷倍数=1倍数3、速度×时间=路程4、相遇路程=速度和×相遇时间路程÷时间=速度相遇时间=相遇路程÷速度和路程÷速度=时间相遇时间=相遇路程÷速度和5 工作效率×工作时间=工作总量6、单价×数量=总价工作总量÷工作效率=工作时间总价÷单价=数量工作总量÷工作时间=工作效率总价÷数量=单价加减乘除各部分之间的关系:1、加数+加数=和2、被减数-减数=差和-一个加数=另一个加数被减数-差=减数差+减数=被减数3、因数×因数=积4、被除数÷商=除数积÷一个因数=另一个因数被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形2、长方形周长=边长×4 周长=(长+宽)×2正方形的边长=面积÷4 长方形的长=面积÷2-宽长方形的宽=面积÷2-长面积=边长×边长面积=长×宽长方形的长=面积÷宽长方形的宽=面积÷长3、平行四边形4、三角形面积=底×高面积=底×高÷2平行四边形的底=面积÷高三角形高=面积×2÷底平行四边形的高=面积÷底三角形底=面积×2÷高5、梯形面积=(上底+下底)×高÷2梯形的上底=面积×2÷高-下底梯形的下底=面积×2÷高-上底梯形的高=面积×2÷(上底+下底)。
小学数学各种常见的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、一倍数×倍数=几倍数几倍数÷一倍数=倍数几倍数÷倍数=一倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5 、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7 、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形C周长 S面积 a边长周长=边长×4C=4a面积=边长×边长S=a×a2、正方体V:体积 a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形s面积 a底 h高面积=底×高s=ah7、梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷28、圆形S面积 C周长∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9、圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高体积=侧面积÷2×半径10、圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)。
四年级《两种常见的数量关系》的作业设计
宝应县望直港镇中心小学董寿云
学校___________________ 班级_______________ 姓名_____________________ 一、新知尝试
例1. (1)篮球每个80元,买3个要多少钱?
(2)鱼每千克10元,买4千克要多少钱?
例2 . (1)一辆汽车每小时行70千米,4小时行多少千米?
(2)一人骑自行车每分钟行225米,10分钟行多少米?
、课堂练习
1.红红2小时骑了16千米。
她的平均速度是多少千米?
2.红红2小时骑了16千米。
她的平均速度是多少千米?
3.宇宙飞船在太空5秒钟飞行40千米。
他的平均速度是多少?
4.老师以80千米/小时的速度行驶4小时,行驶多少千米?
5、如果以80千米/小时的速度行驶160千米,需要多长时间?
三、拓展提高
1.8.有60元,买3份,有几种买法?
2.王叔叔从县城出发去王庄乡送化肥。
去的时候用了3小时,返回时用了2小时。
从县城到王庄乡有多远?。