第六章 遥感图像分类(一)
- 格式:ppt
- 大小:344.00 KB
- 文档页数:20
第六章遥感图像辐射校正名词解释:辐射定标、绝对定标、相对定标、辐射校正、大气校正、图像增强、累积直方图、直方图匹配、NDVI、图像融合1、辐射定标:是指传感器探测值的标定过程方法,用以确定传感器入口处的准确辐射值。
2、绝对定标:建立传感器测量的数字信号与对应的辐射能量之间的数量关系,对目标作定量的描述,得到目标的辐射绝对值。
3、相对定标:又称传感器探测元件归一化,是为了校正传感器中各个探测元件响应度差异而对卫星传感器测量到的原始亮度值进行归一化的一种处理过程。
最终得到的是目标中某一点辐射亮度与其他点的相对值。
4、辐射校正:是指消除或改正遥感图像成像过程中附加在传感器输出的辐射能量中的各种噪声的过程。
5、大气校正:是指消除大气对阳光和来自目标的辐射产生的吸收和散射影响的过程。
6、图像增强:为了特定目的,突出遥感图像中的某些信息,削弱或除去某些不需要的信息,使图像更易判读。
7、累积直方图:以累积分布函数为纵坐标,图像灰度为横坐标得到的直方图称为累积直方图。
8、直方图匹配:是通过非线性变换使得一个图像的直方图与另一个图像直方图类似。
也称生物量指标变化,可使植9、NDVI:归一化差分植被指数。
NDVI=B7−B5B7+B5被从水和土中分离出来。
10、图像融合:是指将多源遥感图像按照一定的算法,在规定的地理坐标系,生成新的图像的过程。
问答题:1.根据辐射传输方程,指出传感器接收的能量包含哪几方面,辐射误差及辐射误差纠正内容是什么。
根据辐射传输方程,传感器接收的电磁波能量包含三部分:1)太阳经大气衰减后照射到地面,经地面发射后又经过大气的二次衰减进入传感器的能量;2)大气散射、反射和辐射的能量;3)地面本身辐射的能量经过大气后进入传感器的能量。
辐射误差包括:1)传感器本身的性能引起的辐射误差;2)大气的散射和吸收引起的辐射误差;3)地形影响和光照条件的变化引起的辐射误差。
辐射误差纠正的内容是传感器辐射定标和辐射误差校正等。
遥感图像分类的综述1.前言遥感图像是按一定的比例尺,客观真实地记录和反映地表物体的电磁辐射的强弱信息,是遥感探测所获得的遥感信息资料的一种表现形式。
所以遥感技术的核心问题是根据地物辐射电磁辐射强弱在遥感图像上表现的特征,判读识别地面物体的类属及其分布特征。
随着空间科技的发展,各种资源环境监测卫星的发射与运行为地表动态变化研究提供了多平台、多光谱、多时相、大范围的实时信息,遥感技术已成为当前人类研究地球资源环境的一种有力技术手段。
在遥感技术的研究中,分类是遥感图像应用的一个重要方面,同时也是学者们研究的重点和热点。
随着成像技术及相应数据产品不断的发展,遥感图像分类得到了越来越广泛的应用,由单波段的遥感图像到多光谱图像再到高光谱图像,其应用研究得到不断的扩展和深入。
2.遥感图像分类的概念及原理遥感图像分类就是利用计算机通过对遥感图像中各类地物的光谱信息和空间信息进行分析,选择特征,并用一定的手段将特称空间划分为互不重叠的子空间,然后将图像中的各个像素划归到各个子空间去。
遥感图像分类中的特征就是能够反映地物光谱信息和空间信息并可用于遥感图像分类处理的变量,如多波段图像的每个波段都可作为特征,多波段图像的各种处理结果也可以作为特征空间构成一个特征向量。
遥感图像分类的理论依据是:遥感图像中的同类地物在相同的条件下(纹理、地形、光照以及植被覆盖等),应具有相同或相似的光谱信息特征和空间信息特征,从而表现出同类地物的某种内在的相似性,即同类地物像素的特征向量将集群在同一特征空间区域;而不同的地物其光谱信息和空间信息特征将不同,将集群在不同的特征空间区域。
因此,我们就要对图像进行分类。
图像分类的任务就是通过对各类地物波谱特征的分析选择特征参数,将特征空间划分为不相重叠的子空间,进而把影像内各像元划分到各子空间去,从而实现分类。
3.遥感图像分类3.1图像的预处理利用光谱数据进行特征向量识别时,结果的准确性很大程度上取决于光谱数据的聚集程度。
实验六遥感图像分类一、实习目的和要求·了解遥感图像分类的节本原理和过程,懂得遥感图像分类的依据,了解遥感图像分类的几种常用方法;·掌握监督分类与非监督分类的原理以及它们的区别,熟悉两种不同的分类方法的操作过程;·熟悉遥感图像的各个波段所含有的特征,熟悉地物的光谱特征,能够根据实际的应用目的选择不同的波段组合,以使分类效果最满意得到解译的目的;·掌握监督分类分类模板的建立方法,知道如何进行模板的评价;·掌握分类精度评定的原理以及实验方法和操作步骤,了解什么样的分类精度才是符合要求的分类结果;·熟练掌握分类后处理的方法,当结果不合格或需要高精度分类结果时以及非监督分类的时候都要用到分类后处理,熟练掌握分类后处理的操作步骤;二、实验原理·图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。
常规图像分类主要有两种方法:非监督分类与监督分类,专家分类方法是近年来发展起来的新兴遥感图像分类方法;·遥感图像分类的依据是地物的光谱特征,即地物电磁波辐射的多波段测量值,这些测量值作为遥感图像分类的原始特征变量;·非监督分类运用ISODA TA(Iterative Self-Organizing Data Analysis Technique )算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。
使用该方法时。
原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。
由于人为干预较少,非监督分类过程的自动化程度较高。
非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析;·监督分类比非监督分类更多地要求用户来控制,常用于对研究区域比较了解的情况。
在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。
图像分类1. 监督分类 (1)1.1 定义训练样本 (1)1.2 执行监督分类 (3)1.3 评价分类结果 (4)2. 非监督分类(Unsupervised Classification) (5)2.1 执行非监督分类 (5)2.2 类别定义与子类合并 (6)3. 分类后处理 (7)3.1 Majority/Minority分析 (7)3.2 聚类处理(Clump) (8)3.3 过滤处理(Sieve) (8)4. 分类结果评价——混淆矩阵 (9)遥感图像通过亮度值的高低差异及空间变化来表示不同地物的差异。
遥感图像分类就是利用计算机通过对遥感图像中各类地物的光谱信息和空间信息进行分析,选择特征,将图像中每个像元按照某种规则或算法划分为不同的类别。
一般的分类方法可以分为两种:监督分类与非监督分类。
1. 监督分类监督分类总体上可以分为四个过程:定义训练样本、执行监督分类、评价分类结果和分类后处理。
实验数据:can_tmr.img1.1 定义训练样本ENVI中是利用ROI Tool(感兴趣区)来定义训练样本的,因此,定义训练样本的过程就是创建感兴趣区的过程。
第一步打开分类图像并分析图像训练样本的定义主要靠目视解译。
(1)打开TM图像,以543(模拟真彩色)或者432(标准假彩色)合成RGB显示在Display中。
(2)通过分析图像,确定类别数与类别名称。
例如,定义6类地物样本为林地、耕地、裸地、人造地物、水体和阴影。
第二步应用ROI Tool创建感兴趣区从RGB彩色图像上获取ROI(1)在主图像窗口中,选择Overlay→Region of Interest,打开ROI Tool对话框。
感兴趣区工具窗口的打开方式还有:Basic Tools →Region Of Interest→ROI tool,或者直接在图像窗口上点击鼠标右键,再选择ROI Tool。
(2)在ROI Tool对话框中,可以进行样本编辑(名称、颜色、填充方式等)。
遥感图像的分类和格式目录一遥感图像的分类 (1)1.监督分类的主要方法 (1)2.非监督分类的主要方法 (2)二遥感图像的格式 (3)1 TIFF图像格式 (3)2 GeoTIFF图像格式 (3)三结语 (4)一遥感图像的分类遥感图像分类是图像分析的一个重要内容,它是利用计算机通过对图像中不同地物的空间信息和光谱信息进行分析,选择特征,并将特征空间划分为互不重叠的子空间,然后将图像中各个像元划归到子空间去.目前国内国际上对图像分类的研究主要集中在应用具体的物理的、数学的方法等对图像进行的分类研究方面[1 - 8 ] ,对于图像分类方法的研究,从不同的方面可以划分为不同的类型. 按照利用图像要素的不同,图像分类大体可以分为三种:一是基于图像灰度值的分类,二是基于图像纹理的分类,三是基于多源信息融合的分类[9 ] . 用计算机对图像进行分类应用的主要是模式识别技术,根据具体应用的数学方法不同又可分为:统计法(决策分类法) 、语言结构法(句法方法) 、模糊法以及神经网络法. 在图像分类过程中,根据是否已知训练样本的分类数据,图像分类方法又可以分为监督分类和非监督分类. 本文主要从分类原理、分类过程、分类方法等方面来探讨这两种分类方法的区别与联系.1.监督分类的主要方法最大似然判别法. 也称为贝叶斯(Bayes) 分类,是基于图像统计的监督分类法,也是典型的和应用最广的监督分类方法. 它建立在Bayes 准则的基础上,偏重于集群分布的统计特性,分类原理是假定训练样本数据在光谱空间的分布是服从高斯正态分布规律的,做出样本的概率密度等值线,确定分类,然后通过计算标本(像元) 属于各组(类) 的概率,将标本归属于概率最大的一组. 用最大似然法分类,具体分为三步:首先确定各类的训练样本,再根据训练样本计算各类的统计特征值,建立分类判别函数,最后逐点扫描图像各像元,将像元特征向量代入判别函数,求出其属于各类的概率,将待判断像元归属于最大判别函数值的一组. Bayes 判别分类是建立在Bayes 决策规则基础上的模式识别,它的分类错误最小精度最高,是一种最好的分类方法.但是传统的人工采样方法由于工作量大,效率低,加上人为误差的干扰,使得分类结果的精度较差. 利用GIS数据来辅助Bayes 分类,可以提高分类精度,再通过建立知识库,以知识来指导分类的进行,可以减少分类错误的发生[1 ] ,这正是Bayes 分类的发展趋势和提高其分类精度的有效途径.神经元网络分类法. 是最近发展起来的一种具有人工智能的分类方法,包括BP 神经网络、Kohonen 神经网络、径向基神经网络、模糊神经网络、小波神经网络等各种神经网络分类法.BP 神经网络模型(前馈网络模型) 是神经网络的重要模型之一,也是目前应用最广的神经网络模型,它由输入层、隐含层、输出层三部分组成,所采取的学习过程由正向传播过程和反向传播过程组成. 传统的BP 网络模型把一组样本的输入/ 输出问题作为一个非线性优化问题,它虽然比一般统计方法要好,但是却存在学习速度慢,不易收敛,效率不高等缺点. 采用动量法和学习率自适应调整的策略,可以提高学习效率并增加算法的可靠性[3 ] .模糊分类法. 由于现实世界中众多的自然或半自然现象很难明确划分种类,反映在遥感图像上,也存在一些混合像素问题,并有大量的同谱异物或者同物异谱现象发生,使得像元的类别难以明确确定. 模糊分类方法忽略了监督分类的训练过程所存在的模糊性,沿用传统的方法,假定训练样本由一组可明确定义、归类,并且具有代表性的目标(像素) 构成. 监督分类中的模糊分类可以利用神经元网络所具有的良好学习归纳机制、抗差能力和易于扩展成为动态系统等特点,设计一个基于神经元网络技术的模糊分类法来实现. 模糊神经网络模型由ART 发展到ARTMAP 再到FasART、简化的FasART 模型[4 ] ,使得模糊神经网络的监督分类功能不断完善、分类精确度不断增加.最小距离分类法和Fisher 判别分类法. 它们都是基于图像统计的常用的监督分类法,偏重于几何位置.最小距离分类法的原则是各像元点划归到距离它最近距离的类别中心所在的类, Fisher 判别分类采用Fisher 准则即“组间最大距离”的原则,要求组间距离最大而组内的离散性最小,也就是组间均值差异最大而组内离差平方和最小. 用这两种分类法进行分类,其分类精度取决于对已知地物类别的了解和训练统计的精度,也与训练样本数量有关. 针对最小距离分类法受模式散布影响、分类精度不高的缺点,人们提出了一种自适应的最小距离分类法,在训练过程中,将各类样本集合自适应地分解为子集树,定义待分类点到子集树的距离作为分类依据[2 ] ,这种方法有效地提高了最小距离法的分类正确率和分类速度,效率较高. Fisher 判别分类也可以通过增加样本数量进行严密的统计分类来增加分类精度.2.非监督分类的主要方法动态聚类. 它是按某些原则选择一些代表点作为聚类的核心,然后将其余待分点按某种方法(判据准则)分到各类中去,完成初始分类,之后再重新计算各聚类中心,把各点按初始分类判据重新分到各类,完成第一次迭代. 然后修改聚类中心进行下一次迭代,对上次分类结果进行修改,如此反复直到满意为止. 动态聚类的方法是目前非监督分类中比较先进、也较为常用的方法. 典型的聚类过程包括以下几步:选定初始集群中心;用一判据准则进行分类;循环式的检查和修改;输出分类结果. 聚类的方法主要有基于最邻近规则的试探法、K- means 均值算法、迭代自组织的数据分析法( ISODATA) 等. 其中比较成熟的是K - means 和ISODATA算法,它们较之其他分类方法的优点是把分析判别的统计聚类算法和简单多光谱分类融合在一起,使聚类更准确、客观. 但这些传统的建立在统计方法之上的分类法存在着一定的缺点:很难确定初始化条件;很难确定全局最优分类中心和类别个数;很难融合地学专家知识. 基于尺度空间的分层聚类方法(SSHC) 是一种以热力学非线性动力机制为理论基础的新型聚类算法[10 ] ,它与传统聚类算法相比最大的优点是其样本空间可服从自由分布,可获取最优聚类中心点及类别,可在聚类过程中融合后验知识,有更多的灵活性和实用性.模糊聚类法. 模糊分类根据是否需要先验知识也可以分为监督分类和非监督分类. 事实上,由于遥感图像的复杂性和不精确性等特点,预先很难获得所有有代表性样本的各类别的精确含量,因此很多情况下用纯粹的监督方法作模糊分类并不现实. 模糊聚类属于非监督分类的一种,它根据样本间的统计量的相似程度作为模糊隶属度,在无预知类别的前提下对数据集中各点作含量划分. 模糊聚类算法有多种,如基于模糊等价关系的模糊聚类分析法、基于最大模糊支撑树的模糊聚类分析法等[11 ] ,最典型的模糊聚类法是模糊迭代自组织的数据分析法———Fussy - ISODATA. 但纯粹的非监督分类对图像一无所知的情况下进行所得到的结果往往与实际特征存在一定的差异,因此聚类结果的精度并不一定能够满足实际应用的要求,还需要地学知识的辅助,也就是部分监督的Fussy - ISODATA 聚类.系统聚类. 这种方法是将图像中每个像元各自看作一类,计算各类间均值的相关系数矩阵,从中选择最相关的两类进行合并形成新类,并重新计算各新类间的相关系数矩阵,再将最相关的两类合并,这样继续下去,按照逐步结合的方法进行类与类之间的合并. 直到各个新类间的相关系数小于某个给定的阈值为止.分裂法. 又称等混合距离分类法,它与系统聚类的方法相反,在开始时将所有像元看成一类,求出各变量的均值和均方差,按照一定公式计算分裂后两类的中心,再算出各像元到这两类中心的聚类,将像元归并到距离最近的那一类去,形成两个新类. 然后再对各个新类进行分类,只要有一个波段的均方差大于规定的阈值,新类就要分裂.二遥感图像的格式随着地理信息系统被广泛应用和遥感技术的日渐成熟。