遥感图像分类
- 格式:doc
- 大小:1.10 MB
- 文档页数:20
遥感图像分类方法及应用示例遥感技术是通过卫星、飞机等远距离传感器获取地表信息的一种技术手段。
遥感图像分类是遥感技术中的一项重要任务,它可以将遥感图像中的像素按照其特征进行分类,并生成分类结果。
本文将介绍遥感图像分类的方法,并给出一些应用示例。
一、遥感图像分类方法1. 基于像元的分类方法基于像元的分类方法是将遥感图像中的每个像素点看作一个样本进行分类,通过像素点的光谱特征来确定其所属类别。
常见的方法有最大似然法、支持向量机等。
最大似然法是一种基于统计学原理的分类方法,它通过求解样本的概率密度函数来确定像素点的类别。
支持向量机是一种基于样本间距离的分类方法,它通过构建超平面将不同类别的样本分开。
2. 基于对象的分类方法基于对象的分类方法是将遥感图像中的像素组成的对象进行分类,通过对象的形状、纹理等特征来确定其所属类别。
常见的方法有基于区域的分割和基于对象的分类。
基于区域的分割将遥感图像中的像素按照相似性进行分组,形成具有相同特征的区域。
基于对象的分类是在分割得到的区域基础上,通过提取区域的特征来确定其所属类别。
3. 基于深度学习的分类方法随着深度学习技术的发展,基于深度学习的分类方法在遥感图像分类中得到了广泛应用。
深度学习通过构建深层神经网络模型,可以自动学习遥感图像中的特征表示。
常见的方法有卷积神经网络(CNN)、循环神经网络(RNN)等。
卷积神经网络可以有效地提取图像的空间特征,循环神经网络可以捕捉图像序列的时序特征。
二、遥感图像分类的应用示例1. 农作物类型分类农作物类型分类是农业生产中的重要任务,可以帮助农民了解农田的分布情况和种植结构,指导农作物管理和精细化农业。
通过遥感图像分类方法,可以将农田遥感图像中的不同农作物进行分类,比如小麦、玉米、水稻等。
这样可以帮助农民进行农作物识别和农田监测,提高农业效益。
2. 土地利用分类土地利用分类是城市规划和土地资源管理中的重要任务,可以帮助决策者了解土地利用的分布情况和变化趋势,指导城市规划和土地资源开发。
遥感图像分类常见方法一、前言遥感分类算法大致有三个阶段(1)基于传统数学统计的方法;(2)经典机器学习;(3)深度学习。
按是否有样本可以分为监督分类和非监督分类两种。
实现分类的流程是:特征+算法二、分类之特征工程分类本来就是计算机领域的问题,遥感分类的本质也是图像处理。
遥感分类属于CV领域的一个子集。
不论是监督还是非监督,分类的前提是特征工程。
构建特征工程的目的是突出关注目标和其他目标之间的差异,从而使得分类具有更好的效果。
遥感的特征工程可以大致分为三类:(1)纹理特征,(2)光谱特征,(3)时序特征。
当然,由上述特征还可延伸出LAI等生物量信息,但其本质上是由光谱特征反演出来的。
(1)纹理特征纹理特征一般从高空间分辨率的遥感影像提取才有效果,纹理特征又可以分为以下三种:统计方法:灰度共生矩阵、灰度游程长度法等模型方法:自相关模型、Markov随机场模型、分形模型等数学变换方法:空间域滤波、傅里叶滤波, Gabor和小波模型等。
(2)光谱特征光谱特征包括地物原始光谱反射率和衍生植被指数两种。
光谱特征较纹理特征容易获得,缺点是反射光谱容易受到“同物异谱”和“异物同谱”的影响。
光谱特征:R,G,B,NIR等衍生植被指数:NDVI,EVI等(3)时序特征由多时相遥感数据提取的特征成为时序特征,包括光谱时序和纹理时序。
时序特征可以描述作物在生育进程中动态的生长变化,已成为遥感农作物分类的重要特征支撑。
大量研究表明,生育期内高频次的时间特征会显著提升分类效果;多特征时间序列比单特征时间序列更能表征不同作物之间的差异特征比较特征的计算是基于数学方法计算的。
(1)光谱植被指数就是加、减、乘,除;(2)纹理特征一般通过滤波模板计算;(3)但数学中更高级,更有用的特征应该是偏导,在矩阵中,偏导及其重要。
因为偏导能够综合多个变量,因此个人认为,偏导特征会更具优势。
传统的统计学方法偏导较少,机器学习次之,深度学习偏导参数最多。
遥感图像的分类方法
遥感图像的分类方法常见有以下几种:
1. 监督分类方法:该方法需要先准备一些具有标签的样本数据集进行训练,并从中学习模式进行分类。
常见的监督分类方法包括最大似然分类、支持向量机等。
2. 无监督分类方法:该方法不需要标签样本数据集,通过对图像像素进行统计分析和聚类来确定类别。
常见的无监督分类方法包括K均值聚类、高斯混合模型等。
3. 半监督分类方法:该方法结合监督和无监督分类方法的优势,同时利用有标签和无标签样本数据进行分类。
常见的半监督分类方法包括标签传播、半监督支持向量机等。
4. 深度学习分类方法:近年来,随着深度学习方法的发展,基于卷积神经网络(CNN)的遥感图像分类方法变得流行。
这些方法通过搭建深度学习网络模型并使用大量的标签样本进行训练,能够实现较高的分类精度。
除了以上几种方法外,还有基于纹理特征、形状特征等的分类方法。
不同的分类方法适用于不同的遥感图像场景和实际需求。
综合考虑数据集大小、分类效果、计算时间等因素,选择合适的分类方法对于遥感图像的分类任务非常重要。
遥感图像分类遥感图像的分类就是通过对遥感图像中地物的光谱信息和空间信息进行分析,选择特征,将图像中每个象元按照某种规则或算法划分为不同的类别,然后获得遥感图像与实际地物的对应信息,从而实现遥感图像的分类。
一般的分类方法可分为两类:监督分类和非监督分类。
将多源数据应用于图像分类中,发展成基于专家知识的决策树分类。
一、监督分类监督分类(supervised),又称训练分类法,即用被确认的样本象元去识别其他未知象元的过程。
已经被确认类别的样本象元是指那些位于训练区的象元。
在这种分类中,分析者在图像上对每一种类别选取一定数量的训练区,计算机计算每种训练样区的统计或其他信息,每个象元和训练样本作比较,按照不同规则将其划分到其最相似的样本类。
监督分类的算法主要有:平行算法、最小距离法、最大似然法等。
这里采用最大似然法作为监督分类的算法。
原理:最大似然法假设遥感图像的每个波段数据都是正态分布。
其基本思想是:地物类数据在空间中构成特定的点群;每一类的每一维数据都在自己的数轴上成正态分布,该类的多维数据就构成了一个多维正态分布;各类多维正态分布模型各有其分布特征。
根据各类已有的数据,可以构造出各类的多维正态分布模型,在此基础上,对于任何一个像素,可反过来求出它属于各类的概率,取最大概率对应的类为分类结果。
步奏:第一步:分析图像①打开图像,将图像以5、4、3波段合成RGB显示在#1中。
②通过目视分析,可以定义6类样本:水体、建筑、耕地、草地、荒地、其他。
第二步:选择训练样本①在主图像窗口选择Overlay-----Region of Interest,打开ROI Tool对话框。
②在ROI Tool对话框中设置相关样本的名称、颜色等。
③选择ROI_Type—Polygon,在window中选择image,在图像上绘制训练区。
④重复②、③步奏,最终完成以下结果:第三步:评价训练样本①在ROI Tool对话框中,选择Options——Compute ROI Separability,打开目标图像。
遥感图像分类方法与结果验证技巧遥感图像分类是利用遥感数据进行地物分类的过程,是遥感技术在地学领域中的重要应用之一。
而遥感图像分类方法的选择和结果验证技巧的使用对于获得准确可靠的分类结果至关重要。
本文将讨论常见的遥感图像分类方法以及一些结果验证技巧。
一、遥感图像分类方法1. 监督分类方法监督分类方法是最常用的一种遥感图像分类方法,它需要先手动标注一些样本点,然后使用机器学习算法进行分类。
常用的监督分类方法包括支持向量机(SVM)、随机森林(RF)和人工神经网络(ANN)等。
这些方法在遥感图像分类中表现出色,但要求标注样本点会增加工作量。
2. 无监督分类方法与监督分类方法相反,无监督分类方法不需要事先手动标注样本点,而是通过对图像内部的类别划分进行分类。
常用的无监督分类方法包括聚类算法,如K均值算法和谱聚类算法。
这些算法可以有效地从遥感图像中自动识别出地物的类别,但分类结果的准确性可能不如监督分类方法。
3. 半监督分类方法半监督分类方法结合了监督和无监督分类方法的优点,它既可以利用有标签样本进行训练,又可以利用无标签样本进行分类。
典型的半监督分类方法包括自动编码器和生成对抗网络(GAN)等。
这些方法在遥感图像分类中具有潜力,可以有效提高分类结果的准确性。
二、结果验证技巧1. 精确度评估精确度评估是验证分类结果准确性的重要指标之一。
常用的精确度评估方法包括混淆矩阵、精确度(Accuracy)、召回率(Recall)和F1值等。
通过对分类结果和真实样本进行对比,可以评估分类算法的准确性。
2. 交叉验证交叉验证是在有限的数据集上评估模型性能的常用方法,它可以有效地避免由于数据集选择不当而引起的偏差。
常见的交叉验证方法有k折交叉验证和留一交叉验证。
在遥感图像分类中,交叉验证可以帮助评估模型在不同样本集上的分类性能。
3. ROC曲线分析ROC曲线分析是衡量分类器性能的重要工具,它可以绘制出分类器在不同阈值下真阳性率和假阳性率之间的关系。
实验四遥感图像分类
一、背景知识
图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。
常规计算机图像分类主要有两种方法:非监督分类与监督分类,本实验将依次介绍这两种分类方法。
非监督分类运用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。
使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。
由于人为干预较少,非监督分类过程的自动化程度较高。
非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。
监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。
在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。
对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。
监督分类一般要经过以下几个步骤:建立模板(训练样本)分类特征统计、栅格矢量转换、评价模板、确定初步分类图、检验分类结果、分类后处理。
由于基本的非监督分类属于IMAGINE Essentials级产品功能,但在IMAGINE Professional级产品中有一定的功能扩展,非监督分类命令分别出现在Data Preparation菜单和Classification菜单中,而监督分类命令仅出现在Classification菜单中。
二、实验目的
理解并掌握图像分类的原理,学会图像分类的常用方法:人工分类(目视解译)、计算机分类(监督分类、非监督分类)。
能够针对不同情况,区别使用监督分类、非监督分类。
理解计算机分类的常用算法实现过程。
熟练掌握遥感图像分类精度评价方法、评价指标、评价原理,并能对分类结果进行后期处理。
三、实验内容(6课时)
1.非监督分类(Unsupervised Classification);
2.监督分类(Supervised Classification);
3.分类精度评价(evaluate classification);
4.分类后处理(Post-Classification Process);
四、实验准备
实验数据:
非监督分类文件:germtm.img
监督分类文件:tm_860516.img
监督模板文件:tm_860516.sig
五、实验步骤、方法
1、非监督分类(Unsupervised Classification)
ERDAS IMAGINE使用ISODATA算法(基于最小光谱距离公式)来进行非监督分类。
聚类过程始于任意聚类平均值或一个已有分类模板的平均值;聚类每重复一次,聚类的平均值就更新一次,新聚类的均值再用于下次聚类循环。
ISODATA实用程序不断重复,直到最大的循环次数己达到设定阈值或者两次聚类结果相比有达到要求百分比的像元类别已经不再发生变化停止。
(1)打开非监督分类对话框
DataPrep图标/Data Preparation/Unsupervised Classification菜单项;
(2)如下图输入相应参数后,OK完成非监督分类;
(3)分类评价(Evaluate Classification )
获得一个初步的分类结果以后,应用分类叠加检查分类精度。
1.显示原图像与分类图像
在视窗中同时显示germtm.img和germs_isodat两个图像,叠加顺序为
germtm.img在下,germtm_isodat.img在上。
germtm.img显示方式用红(4)、绿(5)、蓝(3)。