基于FPGA和LabVIEW的电流互感器校验仪
- 格式:docx
- 大小:37.38 KB
- 文档页数:2
毕业设计外文翻译题目:交通灯控制系统学院:信息与电子工程学院专业:测控技术与仪器班级:测仪 0 6 0 1学号:0611400133学生姓名: 蔡碎斌指导教师:余金华二O一O年四月外文翻译之一A LabVIEW Based Instrument Current TransformerCalibratorXin Ai Hai Bao Y.H Song(1) North China Electric Power University, Beijing, China 102206(2) Brunel University. UKABSTRACTThe Virtual Instrument (VI) mainly refers to build all kinds of instruments by software such as LabVIEW, which likes a real instrument build in a computer. Its' main characteristics are flexibility, multi-functions, multiple uses for one PC computer, giving high performance, and is less costly. In this paper, the VI technology is applied to the test and measurement of instrument current transformer (TA). By using the LabVIEW, the TA accuracy calibrator was developed. This virtual TA calibrator can automatically measure the accuracy of TA and can indicate the ratio error and phase error curves. The tests and calibration for the TA show that the virtual TA calibrator can be used in place of the traditional calibrator and is much better than the traditional one. Keywords:Instrumentcurrenttransformer(TA),TAcalibrator,VirtualInstruments, LabVIEWⅠ. INTRODUCTIONSince 1992 the VXIbus Rew.1.4 standard wasestablished by the United States and LabVIEW was presented by the National Instruments co.(NI), the Virtual Instrument (VI) have lain the foundation for its commercial use. The main characteristic of Virtual Instrument is that it makes instruments by software.Most of the traditional instrument can be developed by VI. The VI is a real instrument made by the personal computer. [1]The Instrument current transformer (TA) is widely used in all kinds of current measurement and it has the functions of protection, isolation and extending the measuring range. With the rapid development of computer measurement and control technology, and with the sequent emergence of current transformer and transduczr, there is an increasing number of current transformers with high accuracv and low secondarly current. The standard TA secondary current is usually 1A or 5A,some non-standard TA secondary current may be 0.1A or lower [ 2 ] [ 3 ] . Although we have the technique to make this kind of calibrator by means of hardware such as single chip computer and electronic circuit, DSP and so on[4-8], it will cost too much money for these no-standardcalibrator and will take too much time and the calibrator made by these hardware mill not be satisfactory in both function and practicality for designing all kinds of new TA.The calibrator that adopts VI technology not only can meet the requirements of the traditional one but also can satisfy customers with such advantages as multi-functions, convenience, and high ratio between performance and cost. The experiment results indicate that the virtual calibrator can provide excelIent condition for TA measurement and design. The VI technolog and personal computer must be widely used in the area of calibration on instrument transformer.Ⅱ. THE WORNNG PRINCIPLE OF TA CALIBRATORThe error of TA includes ratio error and phase error.The measuring of the error of TA or the calibration of the accuracy of TA usually applies differential measuring method. The method needs a standard TA except the measured TA and a TA calibrator. There is the same tum ratio between the standard and measured TA and the standard TA's accuracy should be 2 levels higher than the measured one. The calibrator function lies in forming comparison circuits, measuring, and showing the error at all range. The comparison circuit,also referred to the difi-erence measuring principle circuit, is showed in Fig. 1. By measuring the voltage on R0 and Rd , calculate the corresponding current.Then the calibrator can indicate the errors.Fig.1 Schematic of TA comparison circuitWhen a TA has the same turn ratio between the primary and secondary winding, the self-comparison circuit could be used and is shown in Fig.2. In the figures, TA0 and TAx are standard and TA being measured respectively. Np and Ns are primary and secondary winding turns. ip and io, id , ix, are primary current.secondary standard current, secondary error current,secondary current of TA being measured respectively.Ro and Rd, Rb, are secondary winding's resistance of standard TA. error current detecting resistance,burden resistance of TA being measured respectively.To and K, Tb. Tx, are voltage sampling points which can calculate the current In this paper, only voltage between K and Tx, voltage between Tb and Tx, are being measured and theyrepresent the voltage on Rd, and Rb, respectively.Fig.2 Schematic of TA self-comparison circuitIn general, the TA calibrator's principle of the sample resistance should be: 1) it can not affect the accuracy of the comparison circuit. In the ideal condition Ro, and Rd should be 0, but it can not be sampled. So there must be sample resistance, in this paper, Rd, as shown in Fig.2, is used; 2) the magnitude of the sample resistance should make the sampled standard current and error current in prorata and should not have too much difference. The sampled resistance is set by experiment: Ro, is the secondary standard current sampling resistance and can be 0.1-0.5Ω, R4, is the error current sampling resistance and can be lO-lOOQ,R, is the burden resistance and it depends on the TA being measured. By sampllng the voltage Uo and Ud, on R0 and Rd, respectively, the ratio error and phase error are showed on the LED through some process and calculations.According to the TA error's phase diagram [9], when io is maximum, the value of id is the ratio error,when io changes from negative to positive and equals to 0, the value of id is the phase error. For the same principle, the relationship is equal to the voltage signal U0, and Ud . showed in Fig.3. a and b is represent the ratio error and phase error separately. the TA's real ratio error f and phaseerror can be found out through proper calculation,where Uom is the amplitude of Uo.The TA calibrator doesn't need very high accuracy. 1% to 3% error for the calibrator is enough. Because of the difference measuring principle, the erroris the read error of calibrator, that is, the TA's error's error being measured. But the calibrator needs to have a suitable enlargement factor. The calibrator maximum enlargementfactor through all channels should be 1000 times [l0][ll].Fig3 The Sketch map or ratio and phase error.III. THE PRINCIPLE OF VIRTUAL CA LIBRATORThe Virtual Instrument consists of three parts: the external comparison circuit (showed in Fig.1 or Fig.2),data acquisition card (PCI-6023) installed in the PC and the VI program by LabVIEU! Then, after the two channels' signal U0, and Ud come into the PC through the ADC, the rest of the work is done by the software. In this paper we use voltage Ur, on Rb,substitute for U0, approxhatively. The virtual calibrator's work flow chart is shown as follow:1) Set the essential initial values of the virtual calibrator;2) Press the start button to start to work, adjusting the voltage regulator and changing the primary current,let the ratio between primary current and the rated current change from 10% to 120%;3)The VI program will group the voltage signal U,and ud , then use the digital filter to eliminate the harmonic:4) Calculate the root-mean-square (RMS) value of uχand U d, ~ find out the amplitude of u0, ;5) Calculate the RMS valve of io (substitute for iχ, ),i d, and the ratio between io and it's rated currentand show the results.6) Find out the a and b showed in Fig. 3, calculate the ratio error and phase error and show the resuits.7)Set the k times loop, record and show the errors acquired by every time.8 ) Show and print all the results of calibration.9) Stop.The front panel of the virtual calibrator has the Conrrols,hdictor and Switch. The function of Controls is to set the initial value before it works, Tne function of the Indictor is to show at1 kinds of needed values, including digital, curve and diagram etc. . 'The switch decides the start and stop oithe virtual calibrator.Of course, to change the measuring range, the operator needs to adjust the voltage regulator and change the primary current. This operation is necessary lke that of the traditional calibration, but the recording for the error in any range is done by the virtual calibration.This confirms the accuracy of recording and relieves the operator's work. The use of virtual calibrator is mostinteresting.The controIs of virtuaf calibrator include:1) Setting the two sampling (analogue input)channels;2) Setting the magnitude of sampling resistance in the comparison circuit;3 ) Setting the secondary rated current of measured TA;4) Setting the number of sampling of error curve;The Indictor of virtual calibrator has:1) Showing ratio and phase error, ratio between theprmary current and the rated ones in digital;2 ) Showing ratio and phase error, rdtio between the prmary current and the rated ones In curves and diagram. where the curve include the active sampling points and function fitting curves.3) Showing the error for the ratio between the primary currcnf and the rated current from 1 O?G to 120°%.4) Showing the waveform of standard and error current,digital value of amplitude;5 )Showing of digita1 RMS value the standard and error current;6 )Showing the pole of TA in the comparison circuit..The above shows that the function of virtual calibrator is greatly expended that of the traditional ones. This kind of calibrator is not only convenient to use, but also makes the performance of the calibrator much better.From the function that shows the waveform, we can find out if there are some harmonics in the current, and confirm the accuracy for the calibrator.IV. EXPERIMENTThe virtual calibrator is mainly characterized by the flexibility compared with the traditional ones. Although the front panel has many functions. they can be easily extended by the user. So the virtual calibrator is of important value for the non-standard TA calibration.In the experiment, the primary current produce by a step-up current transformer and its' current controlled by a voltagc regulator. Through fitting the comparison circuit, the measuring range of the virtual calibrator can be set in any value. This paper gives SA and 0.1A two kinds of TXs calibration experiment. The parameter and method. results are presented below.A. 5A TA experimentThe parameter of TA being measured is:Ratio of turn: Np :Ns=100:100;Ratio of current:Ip :Is=5A:5AWindlng resistance 0.1Core size: 70x1 1Ox4O(mm).Core material: silicon-steel sheet;Burden: Rb =1, cos =l.Because of the 1:1 ratio of turn, the calibration for it doesn't need standard TA. The calibration circuit show in Fig2 We can apply self calibration method to measure it's accuracy. The results are presented in the Ftg.4 and Fig.5 and show that this TA's accuracy can be defined as 0.5 degree.B. 0.1 A TA experimentThe parameter of standard TA:Ratio of turns: 1:1000;Ratio of currant: Ip :Is = 100A: 100mA:Secondary winding resistance 8 .5;Core size 29 x 46 x 25(mm);Core material: permalloy;Accuracy 0.01 degree;The parameter of TA being measured is:Ratio of turn Np :Ns =1 :1OO0;Ratio of current: Ip :Is =100A:100mA;Secondary winding resistance. 3O;Core size: 2Ox40x15(mm):Core material: silicon-steel sheet;Burden: Rb =35, cos =lFrom the Fig4 and 5, the accuracy of the TA being measured can be defined as 0.5 degree. In the experiment. the input signal of virtual calibrator should be properly grounded to avoid the hsturbance. The sampling resistance in the comparison circuit should use precise ones and with no induction.Fig.4 ratio error curvesFig.5 phase error curvesV. CONCLUSIONSThe VI technique is one of the new scientific and technique productions. The appearance of VI is called-Revolution of Measuring and Control Technology.According to the development of the software and hardware for computers, the VI t~hn01Ogy will have more developing space. The VIS will replace most of the traditional ones in the 21th century.With its flexibility, the virtual calibrator can measure any kind of T.4 including standard and non-standard ones. But the traditional calibrator can not measure most of the non-standard TA. It can record and save,display the data automatically. The method presented in this paper gives a new way to make he TA calibration.The main characteristics of the virtual calibrator are:1) Flexibility, virtual calibrator is mainly made of LabVIEW software and can be easily modified by rewrite some software;2)Multi function, VI is designed on PC. It has waveform indictor, parameter controls and so on. At the time we calibrating a TKs accuracy, these functions can indicate many information such as waveform quality and so on;3) Convenience to carry and use;4)High efficiency and accuracy;5) High ratio between performance and cost;6 )For multiple use in one PC.7)It can record and save, display the calibration data automatically.VI. REFERENCE[1] LabVlEW Data Acquisition Basics Manual, Nabonal Instruments Co. of USA., 1998[2] Xm XI, Hai Bao, Yonghua Song, Novel method of Eror Current Compensation for Hall Effect Based HighAccuracy Current Transformer, IEEE Transactions on Instrument and Measurement, 2003 (adopted)[3] AI Xin, Hao Yushan. Yang Yihan et al, CT Calibrator Based on virtual Instruments, Beijing: Clunese Joumal of Scientific Instrument,V 01.2 1I No.4, Aug.2000,p p331 -334[4] Carney, A.C.; Simple absolute method for current transformer calibration,IEEE Transactions onInstrumentation and Measurement, Vo1.50 Issue: 2, April 2001, pp278 -281 [5] Lap& R.; Svetik, Z.; Current transformet calibration using synchronous sampling, Digest of Conference on Precision Electromagnebc Measlrrements, 16-2 I June 2002, pp548-549[6] Comey: A.C.; A simple traceable current transformer calibrationmethod,Digest of Conference on Precision Electromagnetic Measurements, 14-19 May 2000, pp660[7] Waltrip, B.C; Nelson T.L.; A system to measure current transducer performance. Digest of Conference on Precision Elecnomagnetic Measurements, 6-1 0 July 1998, pp272-273[8] Zoltan, I.; A new self-calibrating standard instrument for current transformer calibration, Digest of Conference on Precision Electromagnetx Measurements.27 June- 1998 ;pp238 -239[9] HES-IS type dgital transformer calibrator rhrection, Jiang Su Jing Jiang Measuring instrument factmy, 1997[10] Zhao Xiumin Current Transformer, Tai yuan: San Xi Scientific and Education Press, l990(In Chnese)[11] Zhao Xiumin, Transformer Calibrator, Tai yuan: San Xi Scientific and Education Press, 1996 (In Chnese)中文译文一基于LabVIEW的电流互感器校验仪Xin Ai Hai Bao Y.H.Song(1)《华北电力大学学报》,北京,中国107206 (2)布鲁内尔大学。
基于LabView的电流互感器励磁特性自动测量系统程玉进;达来;杨煜普;李富根;张毅君;牛志永【期刊名称】《微型电脑应用》【年(卷),期】2004(020)010【摘要】电流互感器二次绕组的励磁特性是决定互感器性能的重要因素,二次绕组品质的好坏直接关系到成品的质量.本文介绍了互感器制造厂常用的电流互感器励磁特性的检测方法,并剖析了其缺点,结合虚拟仪器的概念提出了一种基于计算机技术的电流互感器励磁特性检测系统,并讨论了这种系统的原理及其硬件和软件实现.系统实现了电流互感器二次绕组励磁特性检测自动化,极大提高了生产效率;又具有开发周期短、成本低的特点,并且以实际测量结果展示此方法的优势.【总页数】4页(P15-18)【作者】程玉进;达来;杨煜普;李富根;张毅君;牛志永【作者单位】上海交通大学自动化系,硕士研究生,上海,200030;上海交通大学自动化系,硕士研究生,上海,200030;上海交通大学自动化系,教授博士生导师,上海,200030;上海MWB互感器有限公司,工程师,上海,200245;上海MWB互感器有限公司,工程师,上海,200245;上海MWB互感器有限公司,工程师,上海,200245【正文语种】中文【中图分类】TP3【相关文献】1.一种基于广义逆的电流互感器励磁特性分析方法 [J], 王一清;阮江军;杨志强2.基于人工神经网络的电流互感器励磁特性建模方法 [J], 于海春;俞阿龙3.基于LabVIEW的换能器辐射声场自动测量系统 [J], 王伟印;陈毅;王世全;贾广慧4.基于超低频任意波形信号源进行保护用电流互感器励磁特性试验新方法 [J], 刘涛;刘可真;梁仕斌;李秉睿5.基于LabVIEW的甲烷产气量自动测量系统设计 [J], 姚燕;邱倩;沈晓敏;金佩薇;梁晓瑜;朱颖颖因版权原因,仅展示原文概要,查看原文内容请购买。
基于LabVIEW平台的光电互感器校验仪设计许江淳;石河;李瑞;张松琛;赵晔【摘要】为了解决现有光电互感器校验系统在精度和稳定性上的不足,该文设计了一种基于LabVIEW平台的光电互感器校验仪.系统由前瑞信号处理模块、采集卡和LabVIEW平台上位机软件组成,采用IEC61850协议实现数据通信,通过直接比较被测试互感器信号和标准互感器信号,实现被测互感器比差和角差的测量.实验结果表明系统测量精度高于0.5‰,能够完成对0.02级光电互感器的校验,在甘肃某330 kV数字化变电站进行了现场测试,系统稳定性满足要求.【期刊名称】《工业仪表与自动化装置》【年(卷),期】2016(000)003【总页数】4页(P118-121)【关键词】光电互感器;校验仪;LabVIEW;IEC61850;直接比较法【作者】许江淳;石河;李瑞;张松琛;赵晔【作者单位】昆明理工大学信息工程与自动化学院,昆明650500;昆明理工大学信息工程与自动化学院,昆明650500;昆明理工大学信息工程与自动化学院,昆明650500;昆明理工大学信息工程与自动化学院,昆明650500;昆明理工大学信息工程与自动化学院,昆明650500【正文语种】中文【中图分类】TM76随着数字化变电站的推广与应用,光电互感器得到了迅速的发展。
光电互感器的变换原理区别于传统电磁式互感器,其二次输出可分为模拟量和数字量两类[1]。
在使用过程中,互感器输出量的准确度必须经过校验。
因此,实现对光电互感器的准确校验已成为数字化变电站中的一项关键技术。
为解决现有光电互感器校验系统在精度和稳定性上的不足,该文设计了一种基于LabVIEW平台的新式光电互感器校验仪,通过直接比较法实现被测信号比差和角差的测量。
系统由前端信号处理模块、NI-4474采集卡和LabVIEW平台上位机软件组成,其中前端信号处理模块主要完成信号滤波放大功能,NI-4474采集卡完成信号采样与上传,上位机软件实现IEC61850协议解析和互感器误差测量。
基于LabVIEW的电子式互感器校验系统【摘要】本文基于NI公司PCI-4474数据采集板卡结合LabVIEW开发环境建立了电子式互感器的校验系统。
现场测试结果表明系统具有测量精度高、性能稳定可靠的特点,满足对电子式互感器比差和角差校验的要求,具有一定的实用价值。
【关键词】电子式互感器;PCI-4474数据采集卡;LabVIEW开发环境;校验1.前言随着数字化变电站和智能电网建设步伐的加快,电子式互感器得到了迅速的发展[1]。
电子式互感器包括电子式电流互感器和电子式电压互感器两种。
为了保证电子式互感器的准确度,确保系统安全、稳定,需要对互感器进行校验[2]。
电子式互感器校验系统用来对电子式互感器的比差和角差进行校验。
与传统互感器相比,电子式互感器在测量原理、结构和输出信号的方式上发生了根本的变化,其校验原理和方法与传统互感器校验原理和方法完全不同,因此传统互感器的校验方法不能应用到电子式互感器的校验中。
LabVIEW是一种图形化的编程语言(G语言),区别于传统的文本式的编程语言,它将各种功能封装成函数模块,能够快速建立系统的图形用户界面,具有开发效率高,开发周期短的特点,在测试测量、信号处理中的应用非常广泛[3]。
利用LabVIEW开发环境编写的程序称为虚拟仪器程序(Virtual Instrument program),简称VI。
本文基于NI公司PCI-4474数据采集板卡以及LabVIEW开发环境建立了电子式互感器的校验系统,结合同步信号卡和数字信号处理实现对互感器的检验。
对于校验10~500kV电压等级的电子式电压互感器和额定电流为5~5000A的电子式电流互感器能够达到万分之五的精度,具有精度高、性能稳定可靠的特点,满足对电子式互感器比差和角差校验的要求。
现场测试表明了本文所建立的校验系统的有效性。
2.系统组成校验系统由硬件和软件两部分组成,系统硬件主要包括以下部分:(1)标准电压、电流(电磁式)互感器(包括升压、升流器)。
基于LabVIEW的电流互感器校验仪Xin Ai Hai Bao T. H. Song---布鲁塞尔大学2004摘要:虚拟仪器(VI),指的是利用软件在计算机上建立各种各样的仪器,比如说Labview,就象是真的建立在计算机上的仪器一样。
其主要特点是多功能的,可以集成多种功能于一台PC上,从而使其性能高,成本底。
在我所讲的这一章中,Labview虚拟仪器技术应用于测试与测量仪器电流互感器(AT)。
利用Labview测量仪器电流互感器精度校准精度是相当高的。
这个虚拟的电流互感器校验仪不仅能够自动的进行尺寸计算,而且还能够指出错误的状态曲线。
关于基于Labview的电流互感器校验仪的测试表明,它不仅能够用于替代传统的校验仪,而且还能够比传统的检验仪做的更好。
关键字:电流互感器(AT) AT校验仪虚拟仪器 LabviewI. 简介自从1992年美国建立VXIbus Rw.1.1标准以及National Instruments公司出品Labview 软件以后,虚拟仪器已经为他们商业上奠定了基础,虚拟仪器扮演的主要角色就是利用软件来构建各种仪器。
大多数的传统的仪器都能够通过虚拟仪器来实现,虚拟仪器的通过PC来实现的真实可用的仪器。
虚拟的电流互感器被广泛的应用于各种各样的电流测量,并且它还具有保护功能,能隔离和扩大测量范围。
随着业务的快速发展计算机测量与控制技术,与相继出现的电流互感器和transduczr ,有越来越多的高accuracv和低secondarly 电流的电流变压器。
电流变压器的标准电流通常是1A或者5A,而一些不标准的电流变压器有可能是0.1A或者更底。
虽然我们有技术,使这种校验方式硬件如单片计算机和电子电路,DSP等[集成电路],但是这将耗资太大钱,为这些不符合标准的校准器,并会采取过多的时间来校准所作出的这些硬件,这样不理想,所以无论从功能性和实用性都要求设计各种新的电流变压器(AT)。
基于LabVIEW模拟输出型电子式互感器误差调试系统
尚秋峰;赵梦莹;吕鹏鹏
【期刊名称】《电源技术》
【年(卷),期】2016(040)001
【摘要】电子式互感器误差调试的研究有着重要的理论意义和实用价值.采用LabVlEW软件设计了一个模拟输出型误差电子式互感器的调试系统,并完成了相应的界面设计.应用该系统可实现误差测试和分析,满足各项功能的设计及测试要求.【总页数】4页(P199-202)
【作者】尚秋峰;赵梦莹;吕鹏鹏
【作者单位】华北电力大学电子与通信工程系,河北保定071003;华北电力大学电子与通信工程系,河北保定071003;华北电力大学电子与通信工程系,河北保定071003
【正文语种】中文
【中图分类】TM933
【相关文献】
1.基于LabVIEW的模拟输出型电子式互感器校验系统 [J], 李昊翔;游大海;李宝磊;刘辉
2.基于虚拟仪器的高准确度电子式电流互感器模拟输出校验系统 [J], 徐波;童悦
3.基于LabVIEW的电子式互感器校验系统 [J], 李冬芳
4.基于电网谐波对电子式电压互感器信息采集误差影响的分析与处理 [J], 殷培峰;闫海兰
5.基于传递熵和小波神经网络的电子式电压互感器误差预测 [J], 李振华;郑严钢;李振兴;徐艳春;邾玢鑫;刘颂凯
因版权原因,仅展示原文概要,查看原文内容请购买。
基于虚拟仪器技术的互感器校验系统设计的开题报告一、选题背景与意义:互感器是电力系统中必不可少的一个测量元件,用于将高电压电流转换为低电压电流,满足保护、测量、控制等功能的需要。
然而,随着电力系统的发展,互感器的精度和质量要求也越来越高,而传统的互感器校验方法费时费力、操作繁琐,容易造成误差。
虚拟仪器技术是一种较新的技术,它可以实现在线自动化测量、数据处理和结果分析,具有使用灵活、方便快捷、节约成本等优点。
因此,设计一种基于虚拟仪器技术的互感器校验系统具有重要的现实意义和研究价值。
二、研究内容:本研究拟设计一款基于虚拟仪器技术的互感器校验系统,涵盖如下内容:1. 互感器的基本原理及校验方法;2. 虚拟仪器技术的理论与应用;3. 互感器校验系统的硬件结构设计;4. 互感器校验系统的软件设计与实现;5. 互感器校验系统的测试与验证。
三、研究方法:1.理论研究:对互感器的基本原理、虚拟仪器技术的发展历程、互感器校验方法和相关技术进行深入研究和探讨;2.硬件设计:选用适合的硬件平台和器件,进行整体系统的硬件设计,包括数据采集、信号处理、数据存储等功能;3.软件设计:使用虚拟仪器技术、LabVIEW等工具进行系统软件设计,包括图形化界面、自动化测试、测试结果分析等模块,确保系统功能可靠、易用;4.测试与验证:自行制造具有不同规格的互感器进行校验测试,对系统的各项指标进行测试和评估,探索进一步优化和改进的可行性。
四、预期成果:本研究旨在设计一种基于虚拟仪器技术的互感器校验系统,期望可以实现以下预期成果:1. 可以实现有效精确的互感器校验功能,提高校验效率和准确性;2. 系统使用方便简单,用户仅需几步操作即可完成互感器的校验;3. 系统可移植性强,在不同的硬件平台和操作系统中均可以运行;4. 对于基于虚拟仪器技术的实验教学,本研究的相关设计和研究成果可作为参考。
基于LabView的光纤电流互感器一体化测试系统设计刘宪爽;肖文波;吴华明;肖永生;黄丽贞【摘要】Optical fiber current transformer has become one of the most important equipment in power system,in the practical research,the detection accuracy of optical fiber current transformer is one of the important indexes,and the accuracy of the measured noise and internal harmonic optical fiber current transformer current often affecting the measurement.So it is very important to detect the harmonic of the optical fiber current transformer and to verify the practicability of the demodulation algorithm.Based on the detailed analysis of the existing harmonic detection theory and two kinds of demodulation algorithm,we design a detection and demodulation algorithm of optical fiber current transformer harmonic test system based on LabView integration,in the rapid detection of harmonic current and harmonic distortion level at the same time the demodulated information and comparing the measured current to verify the feasibility and superiority of two demodulation algorithm,the verification results show that the second kinds of demodulation algorithm accuracy is superior to the first demodulation algorithm,more suitable for signal demodulation of fiber optic current transformer.%光纤电流互感器日益成为电力系统中最重要的设备,在实用化研究中,光纤电流互感器的检测精度是重要的指标之一,而被测电流的谐波和光纤电流互感器内部的噪声往往影响其测量的准确性;因此对光纤电流互感器谐波的检测以及对其解调算法实用性的验证非常重要;为进一步的谐波治理提供依据及验证解调算法能否有效运用问题,在详细分析现有的谐波检测理论和两种解调算法原理的基础上,设计了一种基于虚拟仪器LabView的光纤电流互感器谐波检测及解调算法测试一体化系统,在快速检测电流各次谐波电平的同时解调出被测电流的信息并对比验证两种解调算法的可行性与优越性,验证结果表明第二种解调算法的精度明显优越于第一种解凋算法,更能适用于光纤电流互感器的信号解调.【期刊名称】《计算机测量与控制》【年(卷),期】2017(025)007【总页数】4页(P39-42)【关键词】光纤电流互感器;谐波检测;解调算法验证;一体化系统;虚拟仪器【作者】刘宪爽;肖文波;吴华明;肖永生;黄丽贞【作者单位】江西省光电检测技术工程实验室、南昌航空大学测试与光电工程学院,南昌 330063;江西省光电检测技术工程实验室、南昌航空大学测试与光电工程学院,南昌 330063;江西省光电检测技术工程实验室、南昌航空大学测试与光电工程学院,南昌 330063;南昌航空大学信息工程学院,南昌330063;南昌航空大学信息工程学院,南昌330063【正文语种】中文【中图分类】TH7光纤电流互感器(fiber-optical current transformer,FOCT)因其结构简单、绝缘性能好、无铁磁饱和、动态范围广等优点,正逐步取代传统电磁式电流互感器,成为电器设备行业设计的主流。
基于FPGA和LabVIEW的电流互感器校验仪
李毅;张玉荣;王志敏;杜长亮
【期刊名称】《电子测试》
【年(卷),期】2012(000)005
【摘要】With the rapid development of smart grid and digital substation, the demand for calibration of current transformer is increasingly higher
and higher. This paper introduces a kind of calibration system for current transformers based on FPGA and LabVIEW, which adopts difference measurement, programmable gain amplification, FPGA digital phase lock and frequency multiplication, and Rocket IO Transmission nuclear optical fiber communication. It effectively reduces the influence of high frequency interference and frequency fluctuations etc, and ensures its data synchronization and data accuracy. Through the computer analysing, displaying and saving the data, it realizes the t full automation. The results show that this calibration system can be applicable to the current transformer whose accuracy is less than 0.2 level.%随着智能电网、数字化变
电站的快速发展,对电流互感器及其校验的要求越来越高。
本文介绍了一种基于FPGA技术和LabVIEW开发平台的电流互感器校验仪,采用差值测量、可编程增益放大、FPGA数字锁相倍频、Rocket IO传输核光纤通信,有效地减少了高频干扰、频率波动等因素的影响,保证了数据同步和数据精度。
通过计算机对数据进行分析
处理、显示和保存,实现了整个测量的全自动化。
多次校验结果表明,该校验仪可适
用于准确度小于0.2级的电流互感器。
【总页数】6页(P59-64)
【作者】李毅;张玉荣;王志敏;杜长亮
【作者单位】西安石油大学,陕西西安710065;西安石油大学,陕西西安710065;西安石油大学,陕西西安710065;西电高压开关有限责任公司,陕西西安710018
【正文语种】中文
【中图分类】TP933
【相关文献】
1.基于STM32的电流互感器现场校验仪的设计 [J], 蒋威;李小魁
2.基于虚拟仪器技术的电流互感器校验仪 [J], 杨子强;任锋;艾欣
3.基于虚拟仪器的电流互感器校验仪的研制 [J], 姚永刚;郝文思
4.基于互易原理的电流互感器校验仪准确性试验分析 [J], 刘刚; 艾兵; 刘鹍; 张杰夫; 张福州; 何娜
5.基于DSP的电子式电流互感器校验仪的研制 [J], 李童杰;张晓更
因版权原因,仅展示原文概要,查看原文内容请购买。