函数零点问题的求解策略
- 格式:doc
- 大小:356.00 KB
- 文档页数:4
隐零点问题的8种解决策略我们知道导函数的零点在很多时候是无法直接求解出来的,我们称之为“隐零点”(即能确定其存在,但又无法用显性的代数式进行表达),基本解决思路是:形式上虚设,运算上代换,数值上估算,策略上等价转化,方法上参变分离,技巧上反客为主 一、直接观察如果导函数存在零点,但令导函数为零后,出现超越方程,直接求解比较困难,此时可先用特殊值试探出方程的一个根,再通过二次求导研究其单调性,并证明其是唯一的。
一般的,当导数式含有x ln 时,可试根1,e 或e1等,当导数式含有xe 时可试根0或1 例1.(2013北京卷)求证:1ln -≤x xx证法1:令xx x x g ln 1)(--=,则22'ln 1)(x x x x g +-=,令x x x h ln 1)(2+-=, 则012)('>+=xx x h ,所以)(x h 在),0(+∞单调递增,又0)1(=h ,故当10<<x 时,0)(<x h 0)('<⇒x g ,)(x g 递减,当1>x 时,0)(>x h 0)('>⇒x g ,)(x g 递增,所以0)1()(=≥g x g ,即1ln 0ln 1-≤⇒≥--x xxx x x 证法2:(对数单身狗)即证x x x -≤2ln ,令x x x x f ln )(2--=,则)0()1)(12(112)('>-+=--=x xx x x x x f ,所以当)1,0(∈x 时,0)('<x f ,)(x f 递减 当),1(+∞∈x 时,0)('>x f ,)(x f 递增,所以0)1()(=≥f x f ,即0ln 2≥--x x x所以1ln -≤x xx例2.已知0ln )1(≥--a x x 恒成立,求a 的取值范围解:由题意x x a ln )1(-≤恒成立,令x x x f ln )1()(-=,则xx x x x f 1ln )('-+=观察知0)1('=f ,当10<<x 时,0)('<x f ,1>x 时,0)('>x f所以)(x f 在)1,0(内单调减,在),1(+∞单调增,所以0)1()(min ==f x f ,0≤∴a 二、虚设零点当导函数存在零点,但零点式子非常繁琐或无法求解时,可考虑虚设零点0x ,再对0)(0'=x f 进行合理的变形与代换,将超越式化为普通式,从而达到化简)(0x f 的目的例3.设函数)0()1ln(1)(>++=x x x x f ,若1)(+>x kx f 在),0(+∞内恒成立,求正整数k 的最大值解:由题意得xx x k ]1)1)[ln(1(+++<在),0(+∞内恒成立令)0(]1)1)[ln(1()(>+++=x x x x x g ,则2')1ln(1)(x x x x g +--=, 令)0)(1ln(1)(>+--=x x x x h ,则01)('>+=x x x h ,所以)(x h 在),0(+∞上递增又03ln 1)2(<-=h ,04ln 2)3(>-=h ,所以存在唯一的)3,2(0∈x 使得0)(0=x h ,即)1ln(100+-=x x ,所以当),0(0x x ∈时0)(<x h 0)('<⇒x g )(x g ⇒在),0(0x 上递减,当),(0+∞∈x x 时0)(>x h 0)('>⇒x g )(x g ⇒在)(0∞+,x 上递增, 所以)4,3(1]1)1)[ln(1()()(00000min ∈+=+++==x x x x x g x g ,故3≤k ,k 的最大值为3例4.已知)2ln()(+-=x e x f x,求证:0)(>x f 恒成立 证明:21)('+-=x e x f x,显然)('x f 在),2(+∞-上递增,又011)1('<-=-e f ,021)0('>=f 所以存在唯一的)0,1(0-∈x 使得0)(0'=x f ,即2100+=x ex )2ln(00+-=⇒x x 所以当),2(0x x -∈时0)('<x f ,)(x f 递减,当),(0+∞∈x x 时0)('>x f ,)(x f 递增,所以02)1(21)2ln()()(0200000min 0>++=++=+-==x x x x x e x f x f x ,所以0)(>x f 恒成立例5.(2015年全国卷)设x a e x f xln )(2-=,求证:当0>a 时aa a x f 2ln2)(+≥ 证明:xa e x f x-=2'2)(,当0>a 时,显然)('x f 在),0(+∞上递增, 又012)(2'>-=aea f ,+→0x 时-∞→)('x f ,所以)('x f 存在唯一零点0x ,即0002ln 2ln )2ln(220x a x a x x a e x -==⇒=所以当00x x <<时,0)('<x f ,)(x f 递减,当0x x >时,0)('>x f ,)(x f 递增,所以)22(ln 2ln )()(00020min 0x a a x a x a ex f x f x --=-==aa a a a ax x a 2ln 22ln 2200+≥++= 例6.(2018广州一测)设1ln )(++=x ax x f ,若对任意的0>x ,xxe x f 2)(≤恒成立,求a 的范围解:对任意的0>x ,xxe x f 2)(≤恒成立xx e a x1ln 2+-≤⇔在),0(+∞上恒成立 令xx e x g x1ln )(2+-=,则222'ln 2)(x x e x x g x +=,令x ex x h xln 2)(22+=,则01)(4)(22'>++=xe x x x h x ⇒)(x h 在),0(+∞上递增 又082ln 16)41(<-=e h ,02)1(2>=e h ,所以)(x h 存在唯一零点)1,41(0∈x ,所以当00x x <<时0)(0)('<⇒<x g x h ,当0x x >时0)(0)('>⇒>x g x h ,所以)(x g 在),0(0x 递减,在)(0∞+,x 递增,0020min 1ln )()(0x x e x g x g x +-==∴ 由00002202200ln )2ln()ln ln(22ln 0ln 2)(00x x x x x x e x ex x h x x ---=⇒-=⇒=+= )ln ()ln ln(2)2ln(0000x x x x -+-=+⇒,设x x x F +=ln )(,则)ln ()2(00x F x F -=,又易知)(x F 在),0(+∞上递增,020020012ln ln 20x x x ex x x =-=⇒-=∴ 21ln )()(0020min 0=+-==∴x x e x g x g x ,所以2≤a 例7.(2017年全国2卷)已知函数x x x x x f ln )(2--=,且0)(≥x f ,求证:)(x f 存在唯一的极大值点0x ,且2022)(--<<x f e证明:x x x f ln 22)('--=,设x x x h ln 22)(--=,则由21012)('>⇒>-=x x x h )(x h ∴在]21,0(上单调递减, ),21[+∞上单调递增,又0)1(,012ln )21(=<-=h h ,+→0x 时+∞→)(x h ,)(x h ∴在)21,0(上存在唯一零点0x 即0000ln 220ln 22x x x x =-⇒=--,当),0(0x x ∈时0)(>x h 0)('>⇒x f ,当)1,(0x x ∈时0)(<x h 0)('<⇒x f ,当),1(+∞∈x 时0)(>x h 0)('>⇒x f ,所以)(x f 为],0(0x 上递增,]1,[0x 上递减,),1[+∞递增,所以)(x f 极大值为)1()22(ln )(0000020000200x x x x x x x x x x x f -=---=--=,而)1,0(0∈x ,220002)21()(-=-+<∴x x x f ,又10-≠e x 且)1,0(1∈-e ,210)()(--=>∴e e f x f 综上2022)(--<<x f e例8.设2)(--=x e x f x,若0>x 时,01)()('>++-x x f k x ,求整数k 的最大值 解:(分离参数)1)('-=xe xf ,01)1)((1)()('>++--=++-x e k x x x f k x x等价于1111)1(-++=-++-<x x x e x x e x e x k 对0>x 恒成立令)0(11)(>-++=x e x x x g x ,则2')1()2()(---=x x x e x e e x g , 令)0(2)(>--=x x e x h x ,则01)('>-=xe x h ,所以)(x h 在),0(+∞上递增, 又03)1(<-=e h ,04)2(2>-=e h ,所以)(x h 存在唯一零点)2,1(0∈x ,则200+=x ex当),0(0x x ∈时0)(<x h 0)('<⇒x g ,当),(0+∞∈x x 时0)(>x h 0)('>⇒x g ,)(x g ∴在),0(0x 上单调递减,在),(0+∞x 上单调递增所以)3,2(111)()(0000min 0∈+=-++==x e x x x g x g x , 又min )(x g k <,所以整数k 的最大值为2 三、分类讨论例9.设21)(ax x e x f x---=,若当0>x 时0)(≥x f ,求a 的取值范围解:(分类讨论)ax e x f x21)('--=, 令)0(21)(>--=x ax e x g x,则a e x g x2)('-=因为1≥xe (1)当12≤a 即21≤a 时,0)('>x g 恒成立,)(x g ∴在),0(+∞上递增,0)0()(=>∴g x g ,即0)('>x f ,)(x f ∴在),0(+∞上递增,0)0()(=>∴f x f 成立(2)当12>a 即21>a 时,由a x x g 2ln 00)('<<⇒<,)(x g ∴在]2ln ,0(a 递减,),2[ln +∞a 递增所以当)2ln ,0(a x ∈时,0)0()(=≤g x g ,即0)('≤x f )(x f ⇒]2ln ,0(a 在递减,0)0()(=<∴f x f 与题意不符综合(1)(2)知a 的取值范围为21≤a 解法2:(切线放缩)先证明1+≥x e x ,当且仅当0=x 时等号成立,事实上,设1)(--=x e x g x ,则1)('-=x e x g ,令0)('>x g ,解得0>x ,令0)('<x g ,解得0<x ,所以)(x g 在]0,(-∞递减,),0[+∞上递增,所以0)0()(=≥g x g ,即1+≥x e x ,当且仅当0=x 时等号成立x a ax x ax e x f x )21(221)('-=-≥--=①当021≥-a 即21≤a 时,0)('≥x f 对),0(+∞∈x 恒成立,所以)(x f 在),0(+∞上递增,所以0)0()(=>f x f 成立,符合题意②当021<-a 即21>a 时,由当0≠x 时,1+>x e x 得)0(1≠-≥-x x e x ,从而xx x xxxea e e ea e ax e x f )2)(1()1(2121)('--=---<--=- 所以当)2ln ,0(a x ∈时,0)('<x f ,)(x f 递减,此时0)0()(=<f x f ,不合题意综上可知实数a 的取值范围为21≤a 例10.(2012 山东卷)已知xex x x x x f )ln 1)(1()(--+=,求证:21)(-+<e x f 证明:易知当1≥x ,则210)(-+<≤e x f所以当10<<x 时,0ln 1>--x x x ,由1+>x e x110<+<⇒xe x ,x x x x f ln 1)(--<∴ 令)10(ln 1)(<<--=x x x x x g ,则由2'00ln 2)(-<<⇒>--=ex x x g)(x g ∴在],0(2-e 单调递增,在),[2+∞-e 单调递减,所以221)()(--+=≤e e g x g从而21)(-+<e x f 综上知21)(-+<e x f例11.(2013广东卷)设2)1()(kx e x x f x --=,当]1,21(∈k 时,求)(x f 在],0[k 上最大值 解:由0)2()('>-=k e x x f xk x 2ln >⇒,考虑k 2ln 是否属于区间],0[k 令kk k g -=2ln )(,则01)('≤-=k k k g ,)(k g ∴在]1,21(∈k 递减,021)21()(<-=<g k g ,故当]1,21(∈k ]1,21(∈k 时,k k <<2ln 0)(x f ∴在]2ln ,0[k 递减,在],2[ln k k 递增,下面比较)0(f 与)(k f 的大小令)121(1)1()0()()(3≤<+--=-=k k e k f k f k h k,则)3()('k e k k h k -= 设)121(3)(≤<-=k k e k m k,则03)('<-=k e k m )(k m ⇒在]1,21(∈k 递减又049)21(>-=e m ,03)1(<-=e m ,所以)(k m 存在唯一零点)1,21(0∈k所以当),21(0k k ∈时0)(>k m 0)(>⇒k h ,当]1,(0k k ∈时0)(<k m 0)(<⇒k h ,所以)(k h 在),21(0k 递增,在]1,(0k 上递减,又0849)21(>-=eh ,0)1(=h , 0)(≥∴k h ,即)0()(f k f ≥,所以)(x f 在],0[k 上最大值为3)1()(k e k k f k --=例12.设2)(--=x e x f x,若0>x 时,01)()('>++-x x f k x ,求整数k 的最大值 解:(分类讨论)1)('-=xe xf ,设)0(1)1)((1)()()('>++--=++-=x x e k x x x f k x x g x则x e k x x g )1()('+-=(1)当01≤-k 即1≤k 时,0)('>x g 恒成立)(x g ⇒在),0(+∞递增,0)0()(=>g x g 符合题意(2)当01>-k 即1>k 时,由0)('>x g 1->⇒k x ,所以)(x g 在]1,0(-k 上递减,),1[+∞-k 上递增,1min 1)1()(--+=-=k e k k g x g令)1(1)(1>-+=-k ek k h k ,则01)(1'<-=-k e k h 恒成立)(k h ⇒在),1(+∞上递减又03)2(>-=e h ,04)3(2<-=e h ,故整数k 的最大值为2四、拆分函数当原函数比较复杂时,可适当将函数拆分成几个简单函数,便于处理例13.(2014 全国卷)求证:12ln )(1>+=-xe x e xf x x证明:exe x x e ex x ex x e x f x x x2ln 2ln 1)2(ln 1)(->⇔>+⇔>+⇔>-- 设x x x g ln )(=则由e x x x g 101ln )('>⇒>+=,)(x g 在]1,0(e 上递减,),1[+∞e上递增e e g x g 1)1()(min -==⇒设e xe x h x2)(-=-,则由10)1()('<⇒>-=-x x e x h x ,)(x h 在]1,0(上递增,),1[+∞递减eh x h 1)1()(max -==所以max min )()(x h x g ≥,又)(x g 和)(x h 不能同时取得最值,所以1)()()(>⇒>x f x h x g 例14.(2016山东卷)设212)ln ()(x x x x a x f -+-=,求证:当1=a 时23)()('+>x f x f 对任意的]2,1[∈x 恒成立证明:当1=a 时212ln )(x x x x x f -+-=,32'2211)(xx x x f +--= 23)()('+>x f x f 25312ln 23221122ln 23322+-->-⇔++-->-+-⇔x x x x x x x x x x x x令])2,1[(ln )(∈-=x x x x g ,])2,1[(25312)(23∈+--=x x x x x h1011)('>⇒>-=x xx g ,所以)(x g 在]2,1[上递增,1)1()(min ==g x g由0623)(42'>-+=x x x x h 3119->⇒x ,所以)(x h 在]3119,1[-上递减,]2,3119[-上递增,又21)1(=h ,1)2(=h ,1)2()(max ==∴h x h 故max min )()(x h x g ≥,又 )(x g 和)(x h 不能同时取得最值,故)()(x h x g >成立 所以23)()('+>x f x f 对任意的]2,1[∈x 恒成立 五、等价转化例15.(2013四川高考)设a x e x f x -+=)(,若曲线x y sin =上存在点),(00y x 使得00))((y y f f =,求a 的取值范围解:]1,1[sin 00-∈=x y ,且0)(≥x f ,00))((y y f f =,所以]1,0[0∈y ,又)(x f 递增,若00)(y y f >,则000)())((y y f y f f >>与00))((y y f f =矛盾 若00)(y y f <,则000)())((y y f y f f <<与00))((y y f f =矛盾所以00)(y y f =,即x x f =)(在]1,0[上有解,即2x x e a x a x e x x -+=⇔=-+ 令])1,0[()(2∈-+=x x x e x g x,则021)('≥-+=x e x g x恒成立,)(x g 在]1,0[上递增 又1)0(=g ,e g =)1(,即)(x g 的值域为],1[e ,],1[e a ∈∴例16.已知函数x x x x f 11ln )(++=,求证:当1>x 时,1ln )(->x xx f 证明:1ln )(->x x x f 即1ln 11ln ->++x x x x x x x x x x x x ln )1(1ln )1(2+>-+-⇔01ln 2<+-⇔xx x 令)1(1ln 2)(>+-=x xx x x g ,则0)1()(22'<--=x x x g 恒成立)(x g ⇒在),1(+∞上递减 0)1()(=<⇒g x g ,即1ln )(->x xx f 六、降次代换例17.已知函数271)(23+++=ax x x x f 有3个零点,求实数a 的取值范围 解:a x x x f ++=23)(2',则310)31(4<⇒>-=∆a a ,设)('x f 的两个零点分别为)(,2121x x x x <,则3,322121a x x x x =-=+,32023121121ax x a x x +-=⇒=++)(x f ∴在],(1x -∞上递增,],[21x x 上递减,),[2+∞x 上递增273192627132)32(271)(11111121311ax a ax a x a x x ax x x x f -+-=+++-+-=+++= 所以)2731926)(2731926()()(2121ax a a x a x f x f -+--+-=2212212)2731()(243)31(2)926(a x x a x x a -++-+-=1250)512(27)31()2731(3243)31(2)32()926(2222-<⇒<+-=-+⋅-+--==a a a a a a a七、巧妙放缩 利用常见的不等式1ln 11-≤≤-x x x ,1+≥x e x ,ex e x ≥,exx 1ln -≥进行放缩 例18.(2018广州一测)设1ln )(++=x ax x f ,若对任意的0>x ,xxe x f 2)(≤恒成立,求a 的范围解:(放缩法)由1+≥t e t得2)1(ln 1ln 2)1(ln )1(ln 1ln ln 222=+-++≥+-=+-=+-+xx x x x x e x x xe x x e x x x x所以2)1ln (min 2=+-≤xx ea x例19.求证:32ln 2))(1(<+---x x e x x证明:由1ln -≤x x 及xe x ≤+1得)2)(1()1()1(2))(1(ln 2))(1(----=-+--≤+-----x x e x x x e x x x e x x x x 324141)23(222<+<+--⋅<---e x e e x x例20.求证:12ln 1>+-xe x e x x证明:由exx 1ln -≥及1+≥x e x得12)1(2ln 11>=+-≥+--x e x e ex e x e x e x x x x x 例21.求证:)22(ln 22+-≥-x x e x e xe x证明:原不等式2121)1(2ln 21)1(2ln 2xx x x e x x x xex x --≥-⇔--≥-⇔-- 由1ln -≤x x 得x ex ≥-1,故21)1(2ln 201x x x x e x --≥≥--得证 例22.求证:当1>x 吋,x x x x ln 91)1(923+>++ 证明:先把3x 放缩下,x x x x x x x x x ln 9)1(ln 991)1(91)1(92223+>+>=++>++ 例23.求证:2ln ≥-x e x证明:由1+≥x e x 及1ln -≤x x 得2ln ≥-x e x例24.求证:2)1(ln 1)1(-+<+-+x x xe e ex x x 证明:原不等式)1()]1(ln 1)[1(22-+<+-+⇔e e x x x x对x e 放缩,由1+≥x e x可知只需证)1()1()]1(ln 1)[1(22-++<+-+e x x x x即证0ln 2)1)(1()1(ln 1222>+++⇔++<+----ex e x x x e x x x故只需证0ln 22>++-ex x x ,令2ln 2)(-++=e x x x x f ,则3'03ln )(->⇒>+=e x x x f)(x f ∴在],0(3-e 上递减,在),[3+∞-e 上递增,故0)()(323>-=≥---e e e f x f ,得证例25.证明:当0>x 肘,22>+-xex x 证明:先把2x 放缩掉,由x x x x x x ln 101222≥-≥-⇒≥+-xex x e x x +>+-⇒ln 2令x e x x f +=ln )(,则由e x xe x xf >⇒>-=01)(2',)(x f 在],0(e 递减,在),[+∞e 递增,所以2)()(=≥e f x f 证毕例26.设0>>a b ,求证:b ab ab a <--<ln ln证明:由基本不等式1ln 11-≤≤-x x x 得1ln 1-<<-aba b b ab ab a b a a a b a b b a a b a b b a b <--<⇒<--<⇒-<-<-⇒ln ln 1ln ln 1ln ln例27.求证:当20<<x 时,6911)1ln(+<-+++x xx x证明:由11)11(2111ln 211)1ln(1ln -++-+<-+++=-+++⇒-≤x x x x x x x x)11(3-+=x ,令)3,1(1∈=+t x ,则只需证0)2()1(5)1(31222<--⇔+-<-t t t t t显然成立,证毕例28.(2004全国2)设x x x g ln )(=,b a <<0,求证:2ln )()2(2)()(0a b ba gb g a g -<+-+< 证明:ba bb b a a a b a b a b b a a b a g b g a g +++=++-+=+-+2ln2ln 2ln )(ln ln )2(2)()( 由x x 11ln -≥0)21()21(2ln 2ln =+-++-≥+++⇒bba b a b a a b a b b b a a a2ln )(2ln )(2ln 2ln 2ln 2ln 22a b b a ba b a b a b b b a a b a b b b a a a b b a b a a -<+-=+++<+++⇒+<+ 例29.求证:2ln 3>-x e x证明:由132)1(32ln 31ln +-=---≥--⇒-≤x e x e x e x x xxx令23)(+-=x e x f x,则由3ln 03)('>⇒>-=x e x f x,)(x f ∴在]3ln ,0(上递减,在),3[ln +∞上递增,所以03ln 34)3(ln )(>-=≥f x f ,所以2ln 3>-x e x11 八、反客为主例30.(2015全国Ⅰ)设)0(ln )(2>-=a x a ex f x ,求证:a a a x f 2ln 2)(+≥ 证明:原不等式等价于02ln 2ln 2≥---a a a x a ex ,转换主元,视a 为主元, 令aa a x a e a g x 2ln 2ln )(2---=,则ex a ex a a g 20)2ln(ln )('>⇒>-= )(a g ∴在]2,0(ex 上递减,在),2[+∞ex 上递增,所以02)2()(2≥-=≥ex e ex g a g x。
思路探寻函数零点问题的难度通常较大.常见的命题形式有:(1)判断零点的个数;(2)由函数的零点求参数的取值范围;(3)证明与函数零点有关的不等式.那么如何破解这三类函数零点问题呢?下面举例加以探究.一、判断函数零点的个数判断函数零点的个数,实质上是判断函数的图象与x 轴的交点的个数,或求函数为0时的解的个数.因此判断函数零点的个数,往往有两种思路:(1)令函数为0,通过解方程求得零点的个数;(2)判断出函数的单调性、奇偶性、对称性,画出函数的图象,通过研究图象与x 轴的交点,来判断函数零点的个数.例1.已知函数f ()x =ln x -()a -1x +1.(1)若f ()x 存在极值,求a 的取值范围;(2)当a =2,且x ∈()0,π时,证明:函数g ()x =f ()x +sin x 有且仅有2个零点.解:(1)略;(2)当a =2时,g ()x =ln x -x +1+sin x ,得g ′()x =1x-1+cos x ,令h ()x =g ′()x ,因为x ∈()0,π,则h ′()x =-1x2-sin x <0,所以h ()x =g ′()x 在()0,π上单调递减,又因为g ′()π3=3π-1+12=3π-12>0,g ′()π2=2π-1<0,所以g ′()x 在()π3,π2上有唯一的零点α,当x ∈()0,α时,g ′()x >0,当x ∈()α,π时,g ′()x <0,所以g ()x 在()0,α上单调递增,在()α,π上单调递减,可知g ()x 在()0,π存在唯一的极大值点α(π3<α<π2),而g ()α>g ()π2=ln π2-π2+2>2-π2>0,g()1e 2=-2-1e 2+1+sin 1e 2=-1e 2+()sin 1e 2-1<0,g ()π=lnπ-π+1=lnπ-()π-1,令F ()x =ln x -()x -1,F ′()x =1x -1=1-x x ,则x ∈()0,1,F ′()x >0;x ∈()1,+∞,F ′()x <0,所以F ()x 在()0,1上单调递增,在()1,+∞上单调递减,得F ()x max =F ()1=0,故F ()π<F ()1=0,即g ()π=lnπ-()π-1<0,可知g ()x 在()0,α和()α,π上分别有1个零点,所以当x ∈()0,π时,g ()x 有且仅有2个零点.函数式g ()x =f ()x +sin x 中含有对数、三角函数式,我们很难通过画图、解方程求得零点的个数,于是对函数求导,研究函数的单调性、极值,从而画出函数的图象;进而借助函数的图象来确定函数零点的个数.在解答函数零点问题时,经常要用到函数的零点存在性定理,但运用该定理只能判断函数在某个区间上是否含有零点,却不能确定函数在某区间上零点的个数,此时往往需结合函数的图象进行判断.二、由函数的零点求参数的取值范围根据函数的零点求参数的取值范围问题比较常见.在解题时,往往要先通过解方程或画图,利用函数的零点存在性定理,判断函数的零点的存在性和个数,确定零点的范围;然后建立关于参数的关系式,进而求得参数的取值范围.例2.已知函数f ()x =x 2+x ln x .(1)求函数f ()x 在区间[]1,e 上的最大值;(2)若F ()x =f ()x -ax 3有2个零点,求实数a 的取值范围.解:(1)f ()x max =f ()e =e 2+e .(过程略)(2)由题意可知函数f ()x =x 2+x ln x 的定义域为()0,+∞,由f ()x =ax 3可得a =x +ln xx 2,令g ()x =x +ln x x 2,其中x >0,则g ′()x =1-x -2ln xx 3,令h ()x =1-x -2ln x ,其中x >0,则h ′()x =-1-2x<0,所以函数h ()x 在()0,+∞上为减函数,且h ()1=0,当0<x <1时,h ()x >0,则g ′()x >0,所以函数g ()x 在()0,1上单调递增,当x >1时,h ()x <0,则g ′()x <0,所以函数g ()x 在()1,+∞上单调递减,所以g ()x max =g ()1=1,49思路探寻令p ()x =x +ln x ,其中x >0,则p ′()x =1+1x>0,则函数p ()x 在()0,+∞上为增函数,因为p()1e =1e-1<0,p ()1>0,则存在x 0∈()1e,1,使得p ()x 0=0,当0<x <x 0时,f ()x =x ()x +ln x <0;当x >x 0时,f ()x =x ()x +ln x >0.由题意可知,直线y =a 与函数g ()x 的图象有2个交点,如图所示.由图可知,当0<a <1时,直线y =a 与函数g ()x 的图象有2个交点,故实数a 的取值范围是0<a <1.解答本题需抓住关键信息:函数F ()x =f ()x -ax 3有2个零点.于是令F ()x =f ()x -ax 3=0,并将其变形为a =x +ln x x2,再构造新函数,将问题转化为直线y =a 与函数g ()x 的图象有2个交点的问题.利用导数与函数g ()x 单调性的关系判断函数的单调性,并画出函数g ()x 的图象,即可通过讨论直线y =a 与函数g ()x 的图象的位置关系,确定参数a 的取值范围.在求参数的取值范围时,若容易从方程中分离出参数来,往往可以采用分离参数法求参数的取值范围.三、证明与函数零点有关的不等式问题与函数零点有关的不等式问题通常较为复杂,且具有较强的综合性.在解题时,需根据函数零点的分布情况,构造新函数或新方程,再根据导数的性质讨论新函数的性质或方程的根,从而证明不等式.例3.已知函数f ()x =me x -x 2-x +2.(1)若函数f ()x 在R 上单调递增,求m 的取值范围;(2)若m <0,且f ()x 有2个零点x 1,x 2,证明:||x 1-x 2<3+m 3.解:(1)m ≥2e -12;(过程略)(2)不妨设x 1<x 2,由题意可得me x 1-x 21-x 1+2=0,me x 2-x 22-x 2+2=0,即x 1,x 2为方程m =x 2+x -2e x的2个根,因为m <0,所以x 2+x -2<0,解得:-2<x <1,所以x 1,x 2∈(-2,1),设h (x )=x 2+x -2e x(-2<x <1),则h ′(x )=-x 2+x +3e x,令h ′(x )=0得x =1-132,则h (x )在()-2,1-132上单调递减,在()1-132,1上单调递增,而h (x )在()-2,0处的切线方程为y =-3e 2(x +2),设h 1(x )=-3e 2(x +2),则h (x )>h 1(x ),设h (x )在()x 0,x 20+x 0-2ex 0处的切线方程过点(1,0),其切线的斜率为-x 20+x 0+3ex 0,取x 0=-1,则h (x )在()-1,-2e 处的切线斜率为e ,则切线的方程为y +2e =e ()x +1,即y =ex -e ,可知h 2(x )=ex -e 单调递增,可得h (x )≥h 2(x ),记y =m 与y =h 1(x )和y =h 2(x )交点的横坐标分别为x 3,x 4,则h (x 1)=m =h 1(x 3)=-3e 2(x 3+2),故x 3=-2-m3e2,因为h 1(x 3)=h (x 1)>h 1(x 1),所以h 1(x )单调递减,所以x 1>x 3,h (x 2)=m =h 2(x 4)=e (x 4-1),故x 4=1+me,由h 2(x 4)=h (x 2)≥h 2(x 2),知h 2(x )单调递增,所以x 2≤x 4,由于m <0,所以||x 1-x 2=x 2-x 1<x 4-x 3=3+m e +m3e 2=3+m()1e +13e 2<3+m ()13+127<3+m 3.故不等式成立.解答本题,要先将x 1,x 2视为方程m =x 2+x -2e x的两根,根据方程确定两根的取值范围;然后构造新函数h (x ),讨论导函数h ′(x )的性质和几何意义,以确定y =m ,h (x )与其切线y =h 1(x )、y =h 2(x )的交点之间的大小关系,从而证明不等式.函数零点问题一般都可以转化为方程问题或函数单调性问题.因此在解答函数零点问题时,需根据题意构造出相应的方程和函数,灵活运用方程思想和数形结合思想,通过研究该函数的图象与性质、方程的根来求得问题的答案.(作者单位:江苏省如皋市搬经中学)50。
最全函数零点问题处理74页WORD版在74页的WORD文档中,我们可以找到最全的函数零点问题处理方法。
函数零点问题是指在一个函数中,寻找让函数取零值的变量值或者变量区间的问题。
这在数学、物理和工程等领域中经常出现,并且在实际问题中具有重要的意义。
以下是一些常见的函数零点问题处理方法:1.图像法:这是一种直观的方法,通过函数的图像来估计函数的零点。
我们可以使用计算机软件或者手绘的方法绘制函数的图像,通过观察图像来判断零点的位置。
这种方法的优点是直观易懂,但是在精确性上可能存在一定的误差。
2. 代数法:这是一种通过代数运算来求解函数零点的方法。
对于一些简单的函数,可以通过代数运算找到确切的零点。
例如,对于一次函数f(x)=ax+b,可以直接解方程ax+b=0来求解零点。
对于高次函数,我们可以使用一些代数方法,如因式分解、配方法等来求解零点。
3.迭代法:这是一种通过不断迭代逼近零点的方法。
迭代法的基本思想是,从一个初始值开始,通过一定的递推公式不断逼近函数的零点。
例如,常见的迭代法有牛顿迭代法、二分法、弦截法等。
这些方法本质上都是通过不断迭代来逼近函数零点,直到满足一定的收敛条件。
4.数值法:这是一种通过数值计算来求解函数零点的方法。
数值法通过一定的数值计算方法,如插值法、拟合法等,根据已知的函数值,求解函数的零点。
数值法的优点是不依赖于函数的解析形式,对于任意函数均可以求解。
但是数值法在精度和计算时间上可能存在一定的限制。
5.综合法:综合法是指综合使用多种方法来求解函数零点的方法。
在实际问题中,往往需要通过多种方法的综合来求解函数的零点。
综合法可以充分发挥各种方法的优点,提高求解的准确性和效率。
在处理函数零点问题时,需要根据具体的问题选择合适的方法。
不同的方法在不同的问题中可能具有不同的适用性和优缺点。
因此,熟悉和掌握各种函数零点问题处理方法是非常重要的。
通过不断的学习和实践,我们可以提高对函数零点问题的处理能力,解决实际问题。
函数零点的题型归纳与解题技巧函数零点是指函数取值为零的点,即f(x)=0的解。
在高中数学、大学数学以及各类数学竞赛中,函数零点常见的题型有很多种,这里我们将从题型归纳与解题技巧两方面进行探讨。
一、题型归纳1. 求解一元函数零点:例如求解f(x) = x^3-2x^2-x+2=0的零点。
2. 求解二元函数零点:例如求解f(x,y) = x^2+y^2-1=0的零点。
3. 求解多项式方程零点:例如求解f(x) = x^3-x^2+2x-2=0的零点。
4. 求解参数方程零点:例如求解x(t) = t^2-t+2,y(t) =t^3-t^2+2t-2,求解当f(x,y)=0时对应的参数t。
5. 利用零点求解函数的性质:例如已知f(x)的零点及其性质,求解f'(x)或f''(x)的零点。
6. 证明存在或不存在零点:例如证明函数f(x)在区间(a,b)上存在唯一零点。
二、解题技巧1. 分类讨论:对于不同的函数类型,采用不同的方法求解零点。
例如线性函数、二次函数、三次函数、对数函数等,都有相应的求解方法。
2. 利用代数方法:通过代数运算,将原方程转化为容易求解的方程。
例如将原方程化为因式分解的形式,利用韦达定理等。
3. 利用几何方法:将方程与几何图形进行关联,求解图形的相交点即为零点。
例如将方程与直线、圆、椭圆、抛物线等几何图形关联起来。
4. 利用数学分析方法:利用微积分知识,如导数、二分法、牛顿法等,求解零点。
例如,求解f'(x)=0的零点,可以找到函数的拐点;二分法则多用于求解逼近零点。
5. 利用数值方法:通过计算机进行数值逼近求解零点。
例如求解非线性方程组零点时,可以采用牛顿法、拟牛顿法等。
6. 利用泰勒展开:对于非常复杂的函数,可以考虑将其在某一点附近进行泰勒展开,将高次函数近似为低次函数(如线性、二次),再求解零点。
7. 利用解析几何方法:通过解析几何知识,求解平面或空间上的几何问题。
思路探寻函数的零点问题是函数中较为常见的一类问题.此类问题考查的范围较广、考查的方式灵活,对同学们的逻辑思维能力和应变能力都有较高的要求.下面,我就结合实例来谈一谈求解函数零点问题的常用方法.一、因式分解法因式分解是一种比较直接的方法.在求函数的零点时,我们根据函数的零点的定义将函数y =f (x )的零点问题转化为求方程f (x )=0的实数根的问题,通过因式分解求得方程f (x )=0的实数根,便能求出函数的零点.例1.求函数y =2x 3-3x 2+1的零点.解:2x 3-3x 2+1=(x -1)(2x 2-x -1)=(x -1)(x -1)(2x +1)=(x -1)2(2x +1),令2x 3-3x 2+1=0,解得x =1或x =-12则函数y =2x 3-3x 2+1的零点是-12,1.因式分解法一般只适用于解答较为简单且易于分解因式的问题.二、判别式法对于二次函数零点问题,我们可以将其转化为一元二次方程问题,利用方程的判别式来判断方程的根的情况,进而判定函数的零点是否存在、求出零点的个数.例2.已知二次函数y =ax 2+bx +c ,若ac <0,则函数零点的个数是.解:设ax 2+bx +c =0,其判别式为Δ=b 2-4ac .因为ac <0,所以b 2-4ac >0,故方程ax 2+bx +c =0有2个不相等的实数根,即函数y =ax 2+bx +c 的零点个数是2.在解题时,我们要注意将函数的零点与方程的根对应起来.对于二次方程ax 2+bx +c =0,当Δ>0时,方程有2个不相等的实数根,函数y =ax 2+bx +c 有2个零点;当Δ=0时,方程只有一个实数根,函数有1个零点;当Δ<0时,方程没有实数根,函数没有零点.三、图象法图象法也称数形结合法.在处理函数零点问题时,我们可以首先画出函数的图象,然后借助函数的图象来分析函数的零点或交点.在画图时,一定要确保函数图象的准确性,不然就容易得出错误的答案.例3.求函数y =2x -x -1的零点.解:令2x -x -1=0,则2x =x +1,于是函数y =2x -x -1的零点即为函数f (x )=2x 与函数g (x )=x +1的交点的横坐标.由图可知,函数f (x )与g (x )有两个交点,且分别在(0,1),(1,2)内,经验证,函数y =2x -x -1的零点为0和1.运用图象法来求解函数的零点问题较为直接、便捷,能使问题变得更加直观,方便我们快速找到解题的思路.四、二分法若函数y =f (x )在区间[a ,b ]上连续不断且f (a )·f (b )<0,可通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐渐逼近零点,进而求得零点近似值.这种方法叫做二分法.在求函数的零点所在区间或者近似值时,我们可以运用二分法来求解.例4.求函数f (x )=x 3+x 2-2x -2的一个正数零点的近似值(精确到0.1).解:先初步判断零点x 0所在区间,因为f (1)<0,f (2)>0,所以f (1)∙f (2)<0,故函数f (x )在区间(1,2)上必有一个零点.取(1,2)的中点x 1=1.5,可得f (1.5)>0,则f (1)∙f (1.5)<0,所以x 0∈()1,1.5;取(1,1.5)的中点x 2=1.25,可得f (1.25)<0,则f (1.25)∙f (1.5)<0,所以x 0∈(1.25,1.5);取(1.25,1.5)的中点x 3=1.375,可得f (1.375)<0,则f (1.375)∙f (1.5)<0,所以x 0∈(1.375,1.5);取(1.375,1.5)的中点x 4=1.4375,可得f (1.4375)>0,则f (1.375)∙f (1.4375)<0,所以x 0∈(1.375,1.4375).又因为|1.4375-1.375|=0.0625<0.1.所以函数f (x )=x 3+x 2-2x -2的一个正数零点的近似值为1.4375.值得注意的是,只有在区间端点值异号时,才能使用二分法.以上这四种方法都是求解函数零点问题的常用方法.在解题,同学们要首先将函数的零点问题转化为方程、函数图象问题,然后利用方程的根与判别式、结合函数的图象来解题.(作者单位:江苏省沭阳如东高级中学)方海元50Copyright©博看网 . All Rights Reserved.。
求函数零点的四种解题方法函数零点是数学中一个重要的概念,它是指函数图像上单调递增或单调递减部分的交点,而求解函数零点是数学中的重要问题,它是解决各类物理、化学及建筑等工程问题的重要工具。
本文将介绍求解函数零点的四种解题方法,希望能为读者提供参考。
第一,利用极值的思想求解函数零点。
求函数零点的思路就是,从分析函数的极大值和极小值开始,找出函数零点。
比如,设函数y=f(x),其中f(x)是定义在x1<x2<x3<x4关于连续的实数上的函数,函数f(x)在区间(x1,x4)上单调递增(递减),那么函数f(x)在极大值点(最大值点)x2处取得极大值f2,在极小值点(最小值点)x3处取得极小值f3,则可知函数零点处f(x)=0。
第二,根据函数的导数的特性来求解函数零点。
求函数零点的思路就是,分析函数的导数(即导函数),如果函数的导数在某个点有极值,则在此点上函数图像必定有零点,而且函数图像在此点有拐点,因此可以根据函数的导数求函数零点。
第三,利用二分法求解函数零点。
求函数零点的思路就是,将函数的定义域分为两个部分,再将其中一部分分为两个部分,以此类推,直至求出函数零点。
举个例子,设函数y=f(x)是定义在[a,b]上的函数,且函数f(x)在区间[a,b]上单调,那么可以先将定义域[a,b]划分为两部分,[a,(a+b)/2]和[(a+b)/2,b],其中,区间[a,(a+b)/2]上函数f(x)是单调递增,在区间[(a+b)/2,b]上函数f(x)是单调递减,则可知区间[a,(a+b)/2]上或[(a+b)/2,b]上至少有一个零点,然后将[a,(a+b)/2]或[(a+b)/2,b]二分,重复上述步骤,直至求出函数零点。
第四,用牛顿迭代法求解函数零点。
牛顿迭代法又叫牛顿法,是求函数零点的一种数值及其它迭代方法,用于近似求解函数零点。
它的基本思想是,以待求解函数f(x)的定义域上某一点x0为初始值,取函数f(x)的导函数f′(x)的直线作为近似的函数,用它来逐步近似求函数f(x)的零点。
数学零点问题解题技巧
以下是 9 条关于数学零点问题解题技巧:
1. 嘿,你知道吗,判断零点所在区间就像是找宝藏的范围!比如说函数f(x)=x²-2x-3,我们来看看在区间[1,3]是不是有零点呀!这就需要我们计算
f(1)和 f(3)的正负性,简单吧!
2. 哇塞,计算函数的零点,就好像要解开一个神秘的密码!像f(x)=ln(x)-1,怎么找到它的零点呢?嘿嘿,就需要我们动点小脑筋啦!
3. 嘿呀,要想快速找到零点的个数,那可不能瞎碰运气哟!比如
f(x)=sin(x)+,我们通过图像来分析,不就一目了然了嘛,是不是很神奇呀!
4. 哎呀呀,有时候求零点就像是在迷雾中找路,可不能着急!像函数
f(x)=e^x-x,我们要耐心分析它的单调性,然后呢,零点就会乖乖现身啦!
5. 嘿,遇到复杂的函数不要怕,就把它当成一个小怪兽来打败!就拿
f(x)=x³-5x²+6x 来说,一步一步来分析,零点不就被我们找到啦!
6. 哇哦,利用二分法求零点,那可真是个厉害的招数呢!好比说有个函数
f(x)=x^4-3x+1,我们不断缩小范围,不就离零点越来越近了嘛!
7. 哎呀,零点问题有时候就像个调皮的小孩子,可得抓住它的特点!像
f(x)=2^x-3x,观察它的变化趋势,零点就难逃我们的法眼啦!
8. 嘿哟,谁说零点问题很难呀,我们把它当成游戏来玩嘛!比如 f(x)=x-1,通过分段讨论,零点不就显而易见了么!
9. 看呐,解决零点问题其实没那么难,只要我们有耐心和方法!就像探索未知的世界一样,充满了惊喜和挑战呢!总之,掌握了这些技巧,零点问题就不再是难题啦!。
导数与函数零点问题解题方法归纳导函数零点问题一、方法综述导数是研究函数性质的有力工具,其核心是由导数值的正负确定函数的单调性。
应用导数研究函数的性质或研究不等式问题时,绕不开研究$f(x)$的单调性,往往需要解方程$f'(x)=0$。
若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题。
二、解题策略类型一:察“言”观“色”,“猜”出零点例1】【2020·福建南平期末】已知函数$f(x)=x+ax+\frac{1}{e^{2x}}$1)讨论$f(x)$的单调性;2)若函数$g(x)=x+\frac{1}{e^{-mx}-1}$在$[-1,+\infty)$有两个零点,求$m$的取值范围。
分析】1)首先求出函数的导函数因式分解为$f'(x)=(x+a+1)(x+1)e^{-2x}$,再对参数$a$分类讨论可得:①当$a=0$时,$f'(x)=(x+1)e^{-2x}$,当且仅当$x=-1$时,等号成立。
故$f(x)$在$(-\infty,+\infty)$为增函数。
②当$a>0$时,$-10$得$x-1$,由$f'(x)<0$得$-a-1<x<-1$;所以$f(x)$在$(-\infty,-a-1)$,$(-1,+\infty)$为增函数,在$-a-1,-1$为减函数。
③当$aa+1$,由$f'(x)>0$得$x>-a-1$或$x<-1$,由$f'(x)<0$得$-1<x<-a-1$;所以$f(x)$在$(-\infty,-1)$,$-a-1,+\infty$为增函数,在$-1,-a-1$为减函数。
综上,当$a=0$时,$f(x)$在$(-\infty,+\infty)$为增函数;当$a>0$时,$f(x)$在$(-\infty,-a-1)$,$(-1,+\infty)$为增函数,在$-a-1,-1$为减函数;当$a<0$时,$f(x)$在$(-\infty,-1)$,$-a-1,+\infty$为增函数,在$-1,-a-1$为减函数。
函数零点问题的求解策略
广东省普宁第二中学(515300) 邱海泉
摘要:本文探讨了:①利用函数的零点存在性定理研究函数在某区间上零点的存在性;②巧用函数与方程思想,构造函数,数形结合,求解函数零点的个数; ③巧用函数的性质,求函数的零点。
通过渗透数学思想方法,优化学生的思维策略,进一步提高学生分析问题和解决问题的能力。
关键词:函数零点 求解 策略
函数的零点是高中新课标中新增内容,在教材中给出了具体的定义:“对于函数)(x f y =,我们把使0)(=x f 的实数x 叫做函数0)(=x f 的零点,这样函数)(x f y =的零点就是方程0)(=x f 的实数根,也就是函数)(x f y =的图象与X 轴交点的横坐标,所以方程0)(=x f 有实根⇔函数)(x f y =的图象与X 轴有交点
⇔函数)(x f y =有零点”
(必修1.P95.人教版) 对于函数零点问题,我们除了可应用根的存在性定理直接求解外,还可利用“方程0)(=x f 有实根⇔函数)(x f y =的图象与X 轴有交点⇔函数)(x f y =有零点” 题目进行适当转换,得到各种不同的求解策略。
兹总结如下:
一 、函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。
根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如
例1、函数x
x x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。
分析:显然函数x
x x f 2)1ln()(-
+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数x x x f 2)1ln()(-+=的零点
所在的大致区间是(1,2),选B
例2.函数2)(x x f =在下列区间是否存在零点?( )
(A )(-3,-1); (B )(-1,2); (C ) (2,3); (D )(3,4)。
分析:利用函数零点的存在性定理分析,函数2)(x x f =在所给出的四个区间中都不满足条件0)()(<b f a f ,但由函数2)(x x f =的图象可知它一定有零点0=x 。
仅当函数)(x f y =在区间[a,b]上是单调函数时,函数零点的存在性定理才是函数存在零点的充要条件。
二 、求解有关函数零点的个数(或方程根的个数)问题。
函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。
对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。
如:
1.对于求一个陌生函数的零点个数,若能把已知函数分解成两个熟悉的函数,那么可利用构造函数法化归为求两个熟悉函数图象的交点个数求解,如:
例3.求x x x f 2)(2-=零点的个数。
分析:本题直接求解,无法下手,由函数x x x f 2)(2-=
02)(2=-=x x x f 的根,即方程x x 22=的解,但这个方程不是 熟悉的常规方程,由方程的解与两函数图象交点的关系,可构 造函数21x y =、x y 22=,在同一坐标系中作出它们的图象,可得
出它们有三个交点,所以x x x f 2)(2-=零点的个数有三个。
2对于一元高次函数,可利用导数法研究函数图象的特征,作出函数的图象,确定图象与X 轴交点的情况求解。
如:
例4.函数1096)(23-+-=x x x x f 零点的个数为
分析: 1096)(23-+-=x x x x f ,∴)3)(1(39123)(2/--=+-=x x x x x f 令0)(=x f ,得3,121==x x 列出x,y /,y 的对应值表如下:
y x
作出函数1096)(23-+-=x x x x f 的草图可知,函数)(x f 的图
象与X 轴仅有一个交点,则)(x f 仅有一个零点。
注意:本类型题的特点是找出函数)(x f 的图象与X 轴交点,实质上仍是求函数)(x f y =与函数0=y 交点的情况。
若把0=y
换成a y =,相当在原题中引入参数a ,得出一般情况下的解法,如:
例5、(例4变式题)试讨论函数a x x x x f --+-=1096)(23(R a ∈)零点的个数。
分析:方法1:直接模仿例4的解法,可得如下表格:
然后再结合函数)(x f 的图象与X 轴的关系,确定分类讨论的标准,由极大值、极小值与零的关系,讨论图象与X 轴交点情况,得出如下结论:
当010>--=a y 极小值即10-<a 时有一个交点;当010=--=a y 极小值即10-=a 时有两个交点;当010<--=a y 极小值且06>--=a y 极大值即610-<<-a 时有三个交点;当06=--=a y 极大值即6-=a 时有两个交点;当06<--=a y 极大值即6->a 时有一个交点.
方法2:通过构造函数1096)(23-+-=x x x x f 与a x g =)(转化求解,利用例
可得出结论:当)10,(--∞∈a 仅有一个零点;
当10-=a 有二个零点;当)6,10(--∈a 有三个零点;
当6-=a 时有二个零点;当),6(+∞-∈a 仅有一个零点。
例6、已知5>a ,函数1)(23+-=ax x x f 在区间(0,3)内零点的个数为 。
分析:本题利用导数法可得出)(x f y =在区间(0,3)上是单调递减函数,且01)0(>=f ,)5(0928)3(><-=a a f ,由函数的图象可知仅有一个零点。
三.求函数的具体零点或求方程的根。
对于某些特殊类型的函数,可通过研究式子的特征,构造新函数,转化求解。
如:
例7、求函数36)35()(55++++=x x x x f 的零点。
分析:考察036)35()(55=++++=x x x x f 的特点,直接求解难以入手,可转化为求)()35()35(55x x x x +-=+++的解,根据式子特点构造函数x x x g +=5)(,显然)(x g 为奇函数,且在R 上单调递增,由)()35()35(55x x x x +-=+++可化为)()()35(x g x g x g -=-=+,故利用函数)(x g 的性质可得x x -=+35,则21-=x ,所以函数)(x f 的零点为2
1-=x 综上所述,对于函数的零点问题,我们除了要掌握利用函数的零点存在性定理判断外,还要更好地懂得利用函数与方程思想,构造函数,数形结合,优化解题的策略,提高学生分析问题、解决问题的能力。