甘肃省嘉峪关市一中2017_2018学年高二数学下学期期末考试试题文
- 格式:doc
- 大小:10.08 MB
- 文档页数:3
嘉峪关市一中2018
5 c 嘉峪关市一中ABc的底面边长为2,侧棱长为3,过底面AB的截面交侧棱Vc于P,截面PAB的最小面积是()A. B c. D.
二填空题(4*5=c为120°,则点A到△BcD所在平面的距离等于
三解答题
17(10分)
求(1)…+
(2)︱︱+︱︱+ … +︱︱
18.(12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为.
(1)求乙投球的命中率;
(2)求甲投球2次,至少命中1次的概率;
(科)(3)若甲、乙两人各投球2次,求两人共命中2次的概率.(理科)(3)若投进1球得2分,未投进得0分,求甲乙两人得分相等的概率
19(12分)如图,长方体中,
,,点为的中点.
(1)求证面∥平面;
(2)求二面角P—Ac—D的大小
20 (12分)袋中有大小相同的3个白球,4个红球,3个黄球,现从袋中随机取出3个球,计算下列问题
(1)取出的3个球的颜色都不同的概率
(2)取出的3个球颜色相同的概率
(3)取出的3个球中至少有1个白球的概率
21 (12分)如图所示,四棱锥P-ABcD底面为直角梯形,。
嘉峪关市一中2017-2018学年第二学期期末考试高二理科数学试卷一、选择题(本大题共12个小题,每小题5分,共60分)1.已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P = ( ) A .[)3,4 B .(]2,3 C .()1,2- D .(]1,3- 2. 复数iiz -=12(i 是虚数单位),则复数z 的虚部为( ) A.i B. i - C. 1 D. 1-3. 已知向量(1,2),=a (2,)t =b , 且0⋅=a b ,则=|b |( )B.C. D.54.已知,x y 满足约束条件10210230x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩,则34z x y =--的最小值为( )A .373-B .9-C .4-D .113-5.如图,已知某地一天从6时至14时的温度变化曲线近似满足函数sin()y A x b ωϕ=++(其中0A >,0ω>,ππ2ϕ<<),那么12时温度的近似值(精确到1C ︒)是 ( )A.25CB.26CC.27CD.28C6.甲、乙、丙三位大学生毕业后选择自主创业,三人分别做淘宝店、微商、实体店.某次同学聚会时,甲说:我做淘宝店、乙做微商;乙说:甲做微商、丙做淘宝店;丙说:甲做实体店、乙做淘宝店.事实上,甲、乙、丙三人的陈述都只对了一半.其他同学根据如上信息,可判断下列结论正确的是( ) A .甲做微商B .乙做淘宝店C .丙做微商D .甲做实体店7.函数()1ln1xf x x+=-的大致图像是( )A B C D8.执行如下图所示的程序框图,则输出的S 的值为( )A .20172018B .12018C .20182019D .120199.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A.1 B.2- CD1-10.函数的图象如图所示,下列结论正确的是( ) A .'(3)(3)(2)'(2)f f f f <-< B .'(3)'(2)(3)(2)f f f f <<- C .'(2)'(3)(3)(2)f f f f <<- D .(3)(2)'(2)'(3)f f f f -<<11.在三棱柱111ABC A B C -中,已知1AA ⊥底面ABC ,AB BC ⊥,且1AA AB BC ==,若D ,M 分别是11A B ,1BB 的中点,则异面直线AD 与MC 所成角的余弦值为( ) A .23 B .25C .34D .5612. 圆O :224x y +=上到直线l :0x y a -+=的距离等于1的点恰好有4个,则a 的取值范围为( )A. [B. (C. [1,1]-D. (1,1)-二、填空题:本题共4小题,每小题5分,共20分。
2017-2018学年甘肃省高二数学下学期期末模拟试题(文)一.选择题 (共10题,每题3分)1.已知集合}12|{},31|{<<-=<<-=x x B x x M ,则=⋂B M ( ))1,2.(-A )1,1.(-B )3,1.(C )3,2.(-D2.命题“对任意的01,23≤+-∈x x R x ”的否定是 ( ).A 不存在01,23≤+-∈x x R x .B 存在01,23≥+-∈x x R x .C 存在01,23>+-∈x x R x .D 对任意的01,23>+-∈x x R x3.已知某程序框图如图所示,则执行该程序后输出的结果是 ( ).A 1- .B 21 .C2 .D 14.如图在△ABC 中,MN ∥BC ,MC ,NB 交于点O ,则图中相似三角形的对数为A .1B .2C .3D .45.经过点M (1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是A .⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211B .⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211C .⎪⎪⎩⎪⎪⎨⎧-=-=t y t x 235211D .⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 2352116.园的极坐标方程分别是θρcos 2=和θρsin 4=,两个圆的圆心距离是A .2 BC . 5D .57.函数46y x x =-+-的最小值为A .2 BC .4D .68.下列四个不等式:①12(0)x x x+≥≠;②(0)c c a b c ab<>>>;③(,,0)a m aa b m b m b+>>+, ④222()22a b a b ++≥恒成立的是 A .3 B .2 C .1 D .09.若曲线 02sin 301sin 30x t y t ⎧=-⎪⎨=-+⎪⎩ (t 为参数) 与曲线ρ=B ,C 两点,则||BC 的值为A .72 BC .27D .30 10.如图,过圆内接四边形ABCD 的顶点C 引圆的切线MN ,AB 为圆直径,若∠BCM=038,则∠ABC =A .038 B .052 C .068 D .042二.填空题(共5题,每题4分)11.已知直线112:2x tl y kt =-⎧⎨=+⎩(t 为参数),2,:12.x s l y s =⎧⎨=-⎩(s 为参数), 若12l l ⊥,则实数k = .12.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为______A13.设函数⎪⎩⎪⎨⎧≥<=-1,1,)(311x x x e x f x ,则使得2)(≤x f 成立的x 的取值范围是14.已知)3,1(,)2()(2-∈-=x x x f ,函数)1(+x f 的单调减区间为 15.函数1]3,0[142≠∈-+=x x x x y 且的值域为二. 填空题(共5题,每题4分) 11则AB =____ __,CD =___ __.15. 如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC 于点M .若OC =,1OM =,则MN 的长为 .三.解答题(共5题,50分)16.(10分) 设函数()|21||3|f x x x =+--. (1)解不等式()0f x >;(2)已知关于x 的不等式3()a f x +<恒成立,求实数a 的取值范围.A17.(10分) 已知函数()3f x x =-.(1)若不等式(1)()f x f x a -+<的解集为空集,求a 的范围; (2)若1,1<<b a ,且0≠a ,求证:)()(ab f a ab f >.18. (10分)在平面直角坐标系xOy中,已知直线l 的参数方程为12x y ⎧=⎪⎨⎪=⎩,(t 为参数),直线l 与抛物线24(4x t t y t =⎧⎨=⎩为参数)交于,A B 两点,求线段AB 的长.19.(10分)[在直角坐标系xoy 中,曲线1C 的参数方程为⎩⎨⎧==ααsin cos 3y x ,(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为24)4sin(=+πθρ.(1) 求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2) 设P 为曲线1C 上的动点,求点P 到2C 上点的距离的最小值,并求此时点P 的坐标.20.(10分)如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于B 、C 两点,弦CD ∥AP ,AD 、BC 相交于点E ,F为CE 上一点,且2DE EF EC =⋅.(1)求证:CE EB EF EP ⋅=⋅;(2)若:3:2CE EB =,3DE =,2EF =,求PA 的长.参考答案一.选择题 (共10题,每题3分)二.填空题(共5题,每题4分)三.解答题(共5题,50分)16. 解 (1) ()0f x >的解集为:2(,4)(,)3-∞-⋃+∞ · 5分 (2) 132a <-· 10分而0)1)(1(1)()1(22222222>--=+--=---b a b a b a a b ab ,从而原不等式成立.- ---------------------------------10分为:08=-+y x ...........5分 (2) 由(1)知椭圆1C 与直线2C 无公共点,椭圆上的点)sin ,cos 3(ααP 到直线08=-+y x 的距离为28)3sin(228sin cos 3-+=-+=παααd所以当1)3sin(=+πα时,d 的最小值为23,此时点P 的坐标为)21,23( ----10分20.(I )∵EC EF DE ⋅=2,∴C EDF ∠=∠,又∵C P ∠=∠,∴P EDF ∠=∠,∴EDF ∆∽PAE ∆∴EP EF ED EA ⋅=⋅又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅ ·5分 (II )3=BE ,29=CE ,415=BP PA 是⊙O 的切线,PC PB PA ⋅=2,4315=PA ·10分。
2017-2018学年甘肃省兰州一中高二(下)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)直线x﹣y﹣3=0的倾斜角是()A.30°B.60°C.120°D.150°2.(5分)设集合A={x|﹣2≤x≤2},集合B={x|x2﹣2x﹣3>0},则A∪B=()A.(﹣∞,﹣1)∪(3,+∞)B.(﹣1,2]C.(﹣∞,2]∪(3,+∞)D.[﹣2,﹣1)3.(5分)等差数列{a n}的前n项和为S n,且满足a4+a10=20,则S13=()A.6B.130C.200D.2604.(5分)若命题“∃x0∈R,x02+(a﹣1)x0+1<0”是真命题,则实数a的取值范围是()A.[﹣1,3]B.(﹣1,3)C.(﹣∞,﹣1]∪[3,+∞)D.(﹣∞,﹣1)∪(3,+∞)5.(5分)已知a=0.52.1,b=20.5,c=0.22.1,则a、b、c的大小关系是()A.a<c<b B.b>a>c C.b<a<c D.c>a>b6.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半7.(5分)已知向量,满足||=||=2,•(﹣)=﹣2,则|2|=()A.2B.2C.4D.88.(5分)若执行如图所示的程序框图,输出S的值为3,则判断框中应填入的条件是()A.k<6?B.k<7?C.k<8?D.k<9?9.(5分)已知实数x,y满足条件,则z=x+2y的最小值为()A.B.4C.2D.310.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.211.(5分)已知函数f(x)=cos(2x﹣φ)﹣sin(2x﹣φ)(|φ|<)的图象向右平移个单位后关于y轴对称,则φ的值为()A.B.C.﹣D.12.(5分)已知函数f(x)=,则不等式f(x2﹣2x)<f(2x)的解集为()A.(﹣∞,0)∪(4,+∞)B.(﹣∞,0)∪(2,+∞)C.(﹣∞,2)D.(2,4)二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)若lgx+lgy=1,则的最小值为.14.(5分)直线l1:x+my+6=0与直线l2:(m﹣2)x+3y+2m=0互相平行,则m的值为.15.(5分)已知定义在实数集R上的偶函数f(x)在区间(﹣∞,0]上是减函数,则不等式f(1)<f(lnx)的解集是.16.(5分)半径为4的球的球面上有四点A,B,C,D,已知△ABC为等边三角形且其面积为9,则三棱锥D﹣ABC体积的最大值为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知在等比数列{a n}中,a1=1,a2是a1和a3﹣1的等差中项,(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=2n+1+a n(n∈N*),求数列{b n}的前n项和S n.18.(12分)已知函数f(x)=4cos x sin(x+)﹣1.(Ⅰ)求f(x)的最小正周期和单调递增区间;(Ⅱ)求f(x)在区间[﹣,]上的最大值及取得最大值时x的值.19.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知.(1)求角C;(2)若点D在边BC上,且AD=CD=4,△ABD的面积为,求边c的长.20.(12分)某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如表:(1)求出表中数据b,c;(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.附:,21.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PD⊥DA,PD⊥DC.(Ⅰ)若E是P A的中点,求证:PC∥平面BED;(Ⅱ)若PD=AD=4,PE=AE,求三棱锥A﹣BED的高.22.(12分)已知直线l:,半径为4的圆C与直线l相切,圆心C在x轴上且在直线l的右上方.(1)求圆C的方程;(2)过点M(2,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.2017-2018学年甘肃省兰州一中高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:设直线的倾斜角为θ,θ∈[0,180°).∴tanθ=.∴θ=60°.故选:B.2.【解答】解:由x2﹣2x﹣3>0,解得x<﹣1或x>3.∴B={x|x<﹣1或x>3}=(﹣∞,﹣1)∪(3,+∞)又集合A={x|﹣2≤x≤2}=[﹣2,2],∴A∪B=(﹣∞,2]∪(3,+∞)故选:C.3.【解答】解:∵等差数列{a n}的前n项和为S n,且满足a4+a10=20,∴S13=(a1+a13)=(a4+a10)=20=130.故选:B.4.【解答】解:∃x0∈R,x02+(a﹣1)x0+1<0,则△=(a﹣1)2﹣4>0,解得:a>3或a<﹣1,故选:D.5.【解答】解:a=0.52.1∈(0,1),b=20.5>1,c=0.22.1,∵y=x2.1为增函数,∴0.52.1>0.22.1,∴a>c,∴b>a>c.故选:B.6.【解答】解:设建设前经济收入为a,建设后经济收入为2a.A项,种植收入37%×2a﹣60%a=14%a>0,故建设后,种植收入增加,故A项错误.B项,建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故B项正确.C项,建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故C项正确.D项,建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故D项正确.因为是选择不正确的一项,故选:A.7.【解答】解:向量,满足||=||=2,•(﹣)=﹣2,可得:•=2,|2|====2.故选:B.8.【解答】解:根据程序框图,运行结果如下:S k第一次循环log23 3第二次循环log23•log34 4第三次循环log23•log34•log45 5第四次循环log23•log34•log45•log56 6第五次循环log23•log34•log45•log56•log67 7第六次循环log23•log34•log45•log56•log67•log78=log28=3 8故如果输出S=3,那么只能进行六次循环,故判断框内应填入的条件是k<8.故选:C.9.【解答】解:由约束条件写出可行域如图,化z=x+2y为y=,由图可知,当直线y=过A(2,0)时,直线在y轴上的截距最小,z有最小值等于z=2+2×0=2.故选:C.10.【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:=2.故选:B.11.【解答】解:函数f(x)=cos(2x﹣φ)﹣sin(2x﹣φ)=2cos(2x﹣φ+)图象向右平移个单位后,可得2cos[2()﹣φ+]=2cos(2x﹣φ)关于y轴对称,即﹣φ=kπ,k∈Z,φ=﹣kπ,当k=0时,可得φ=.故选:B.12.【解答】解:函数f(x)=,可得x≥0,f(x)=﹣1+递减;x<0时,f(x)=2;且x=0时函数连续,不等式f(x2﹣2x)<f(2x),即有或,解得x>4或x<0,则原不等式的解集为(﹣∞,0)∪(4,+∞),故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.【解答】解:∵lgx+lgy=1,∴lgxy=1,且x>0,y>0,即xy=10,∴,当且仅当,即x=2,y=5时取等号,故答案为:214.【解答】解:由于直线l1:x+my+6=0与直线l2:(m﹣2)x+3y+2m=0互相平行,∴,∴m=﹣1,故答案为﹣1.15.【解答】解:∵偶函数f(x)在区间(﹣∞,0]上是减函数,∴函数f(x)在区间[0,+∞)上是增函数,则不等式等价为f(1)<f(|lnx|),即|lnx|>1,即lnx>1或lnx<﹣1,解得x>e或,即不等式f(1)<f(lnx)的解集是;故答案为:16.【解答】解:△ABC为等边三角形且面积为9可得,解得AB=6,球心为O,三角形ABC的外心为O′,显然D在O′O的延长线与球的交点如图:O′C==2,OO′=,则三棱锥D﹣ABC高的最大值为6,则三棱锥D﹣ABC体积的最大值为××63=18,故答案为:.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.【解答】解:(1)设等比数列{a n}的公比为q,∵a2是a1和a3﹣1的等比中项,∴2a2=a1+(a3﹣1)=a3,∴q==2,∴a n=a1q n﹣1=2n﹣1,(n∈N*);(2)∵b n=2n﹣1+a n,∴S n=(1+1)+(3+2)+(5+22)+…+(2n﹣1+2n﹣1)=(1+3+5+…+2n﹣1)+(1+2+22+…+2n﹣1)=•n+=n2+2n﹣1.18.【解答】解:(Ⅰ)由f(x)=4cos x sin=4cos x sin x cos+4cos2x sin﹣1=,故f(x)最小正周期T==π;由,k∈Z.得,故f(x)的单调递增区间是.(Ⅱ)因为,所以.于是,当,即时,f(x)取得最大值2.19.【解答】解:(1)由及正弦定理可得:,故:,而:sin C=sin(A+B)>0,所以:,即.(2)由AD=CD=4及可得:△ACD是正三角形.由△ABD的面积为,可得,即,故BD=8,在△ABD中,由余弦定理可得:,即.20.【解答】解:(1)根据分层抽样方法抽得女生50人,男生75人,所以b=50﹣20=30(人),c=75﹣25=50(人)………………………………………………………………(2分)(2)因为,所以有99%的把握认为观看2018年足球世界杯比赛与性别有关.…………………………………………(7分)(说明:数值代入公式(1分),计算结果(3分),判断1分)(3)设5名男生分别为A、B、C、D、E,2名女生分别为a、b,由题意可知从7人中选出5人接受电视台采访,相当于从7人中挑选2人不接受采访,其中一男一女,所有可能的结果有:{A,B}{A,C}{A,D}{A,E}{A,a}{A,b}{B,C}{B,D}{B,E}{B,a}{B,b}{C,D}{C,E}{C,a}{C,b}{D,E}{D,a}{D,b}{E,a}{E,b}{a,b},共21种,……………………………………(9分)其中恰为一男一女的包括,{A,a}{A,b}{B,a}{B,b}{C,a}{C,b}{D,a}{D,b}{E,a}{E,b},共10种.…………………………………(10分)因此被推选出的5人中恰有四名男生、一名女生的概率为.……………………………………………………………………(12分)21.【解答】证明:(Ⅰ)连接AC交BD于G,连接EG,在△ACP中,∵E是P A的中点,∴EG∥PC,∵EG⊂平面BED,PC⊄平面BED,∴PC∥平面BED.解:(Ⅱ)在Rt△P AD中,设AD的中点为O,连接EO,则EO=PD=2,又PD=AD=4,∴,设三棱锥A﹣BED的高为h.又∵V A﹣BDE=V E﹣ABD,∴,∴,解得h=.∴点A到平面BED的距离为.22.【解答】(本小题满分12分)解:(1)设圆心C(a,0),由圆心C在x轴上且在直线l的右上方可得,则由直线与圆相切的性质可知,解可得,a=0或a=(舍).所以圆C的方程为x2+y2=16.……………(4分)(2)当直线AB⊥x轴时,x轴平分∠ANB.当直线AB的斜率存在时,设直线AB的方程为y=k(x﹣2),假设N(t,0)(t>0)符合题意,又设A(x1,y1),B(x2,y2),由得(k2+1)x2﹣4k2x+4k2﹣16=0,所以x1+x2=,x1x2=.……………(6分)若x轴平分∠ANB,则k AN=﹣k BN…………(8分)∴+=0⇒+=0⇒2x1x2﹣(t+2)(x1+x2)+4t=0⇒﹣+4t=0⇒t=8.…………(11分)所以存在点N为(8,0)时,能使得∠ANM=∠BNM总成立.…………(12分)。
兰州一中2017-2018-2学期高二年级期末考试试题数 学(文)选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线x -y +3=0的倾斜角为 A. 30° B. 60° C. 120° D. 150° 【答案】B【解析】分析:先求直线的斜率,再求直线的倾斜角. 详解:由题得直线的斜率为所以.故答案为:B.点睛:(1)本题主要考查直线倾斜角和斜率的计算,意在考查学生对这些知识的掌握水平.(2)直线ax+by+c=0(b≠0)的斜率为2. 设集合,集合,则A. B.C.D.【答案】D【解析】分析:先化简集合B,再求A ∪B. 详解:由题得,所以A ∪B=,故答案为:D.点睛:(1)本题主要考查集合的化简和并集运算,意在考查学生对这些知识的掌握水平.(2)无限集的运算一般通过数轴进行,有限集的运算一般通过韦恩图进行. 3. 等差数列的前项和为,且满足,则A.B.C.D.【答案】A【解析】分析:先根据等差数列的性质得到再求.详解:由题得所以.故答案为:A.点睛:(1)本题主要考查等差数列的性质和数列求和,意在考查学生对这些知识的掌握水平.(2)等差数列中,如果,则,特殊地,时,则,是的等差中项.4. 若命题“∃R,使得”是真命题,则实数a的取值范围是A. (-1,3)B. [-1,3]C.D.【答案】C【解析】分析:由题得,解不等式即得实数a的取值范围.详解:由题得,所以.故答案为:C.点睛:本题主要考查一元二次不等式的解和特称命题,意在考查学生对这些知识的掌握水平.5. 已知,,,则、、的大小关系是A. B. C. D.【答案】D【解析】因为幂函数在定义域内单调递增,所以,由指数函数的性质可得,故选D.【方法点睛】本题主要考查幂函数单调性、指数函数的单调性及比较大小问题,属于中档题. 解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.6. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.7. 已知向量满足,,则A. 2B.C. 4D. 8【答案】B【解析】分析:先化简,求出的值,再求的值.详解:因为,所以所以.故答案为:B.8. 若执行下面的程序框图,输出的值为3,则判断框中应填入的条件是A. B. C. D.【答案】D【解析】分析:根据程序框图,写出运行结果,根据程序输出的结果是S=3,可得判断框内应填入的条件.详解:根据程序框图,运行结果如下:S k第一次循环 log23 3第二次循环 log23•log34 4第三次循环 log23•log34•log45 5第四次循环 log23•log34•log45•log56 6第五次循环 log23•log34•log45•log56•log67 7第六次循环 log23•log34•log45•log56•log67•log78=log28=3 8故如果输出S=3,那么只能进行六次循环,故判断框内应填入的条件是k<8.故答案为:D.点睛:本题考查程序框图,尤其考查循环结构,对循环体每次循环需要进行分析并找出内在规律是解题关键.9. 已知实数满足,则的最小值是A. B. C. 4 D.【答案】A【解析】分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.详解:由约束条件,写出可行域如图,化z=x+2y为y=,由图可知,当直线y=过A(2,0)时,直线在y轴上的截距最小,z有最小值等于z=2+2×0=2.故答案为:A.点睛:(1)本题主要考查线性规划求函数的最值,意在考查学生对这些知识的掌握水平和数形结合思想方法.(2) 解答线性规划时,要加强理解,不是纵截距最小,就最小,要看函数的解析式,如:,直线的纵截距为,所以纵截距最小时,最大.10. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A. 2B. 3C.D.【答案】C【解析】分析:先画出三视图对应的原图,再展开求从M 到N 的路径中的最短路径的长度. 详解:先画出圆柱原图再展开得,由题得数形结合得M,N 的最短路径为故答案为:C.点睛:(1)本题主要考查三视图和圆柱中的最值问题,意在考查学生对这些知识的掌握水平和数形结合的思想方法. (2)对于曲面的最值问题,由于用直接法比较困难,一般利用展开法来分析解答. 11. 已知函数()的图象向右平移个单位后关于轴对称,则的值为A.B. C.D.【答案】B【解析】分析:先求出图像变换后的解析式y=2cos (2x ﹣φ+),再令﹣φ+=kπ,k ∈Z ,求得的值.详解:由题得函数f (x )=cos (2x ﹣φ)﹣sin (2x ﹣φ)=2cos (2x ﹣φ+),(|φ|<)所以函数的图象向右平移个单位后,可得y=2cos(2x﹣﹣φ+)=2cos(2x﹣φ+)的图象,由于所得图象关于y轴对称,可得﹣φ+=kπ,k∈Z,故φ=.故答案为:B.12. 已知函数,则不等式的解集为A. B. C. D.【答案】A【解析】分析:先分析出函数f(x)的性质,再根据函数f(x)的图像解不等式.详解:由题得y==,所以当x≥0时,函数单调递减,所以此时当x=0时,.当x>0时,y=2是一个常数函数,所以不等式可以化为,解之得x∈.故答案为:A.点睛:(1)本题主要考查函数的单调性和最值,考查函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力数形结合的思想方法.(2)解答本题的关键有两点,其一是分析出当x≥0时,函数单调递减,所以此时当x=0时,.其二是通过图像分析出.二、填空题:本大题共4小题,每小题5分,共20分.13. 已知,则的最小值是_____________________.【答案】2【解析】分析:先化简已知得到xy=10,再利用基本不等式求的最小值.详解:因为,所以所以,当且仅当即x=2,y=5时取到最小值.故答案为:2.点睛:(1)本题主要考查对数运算和基本不等式,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 利用基本不等式求最值时,一定要注意“一正二定三相等”,三者缺一不可。
甘肃省嘉峪关市第一中学2017-2018学年高二上学期期末考试(文)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线y=x 2的准线方程是( ) A .2x +1=0B .4x +1=0C .2y +1=0D .4y +1=02.已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.已知命题:p x ∀∈R ,20x >,则( )A .:p x ⌝∃∉R ,20x ≤B .:p x ⌝∃∈R ,20x ≤C .:p x ⌝∃∈R ,20x <D .:p x ⌝∃∉R ,20x > 4.函数,则 的值为( )A . 0B .C .D . 5.已知复数21a ii--为纯虚数(其中i 是虚数单位),则a 的值为( ) A .-2 B .2 C .12 D .1-26.下列求导运算正确的是( )2x 22111.()1 B. (lnx)e C.(x cosx)-2xsinx D. ()x x x A x x x xxe e x ''+=+=+''==7. 双曲线229436x y -=-的渐近线方程是( )A .23y x =±B .94y x =±C .32y x =±D .49y x =± 8.椭圆)0(12222>>=+b a by a x 的上顶点B 与两焦点F 1、F 2构成等边三角形,则此椭圆的()sin xf x x e =+()0f '123离心率为( ) A .51 B .43 C .33 D .21 9.在复平面内,复数满足,则的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.已知三次函数32()f x ax bx cx d =+++的图象如图所示, 则(3)(1)f f '-='( ) A .-1 B .2 C .-5 D .-311.已知椭圆x 22+y 2m =1和双曲线y 23-x 2=1有公共焦点F 1,F 2,P 为这两条曲线的一个交点,则|PF 1|·|PF 2|的值等于( )A .3B .2 3C .3 2D .2 6 12.已知函数1()ln 1f x x x =--,则()y f x =的图像大致为( )二、填空题:本题共4小题,每小题5分,共20分。
嘉峪关市一中2017-2018学年第二学期期末考试高一数学试卷一、选择题:(本题共12小题,每小题5分,共60分)1.不等式的解集是( )A .B .C .D .2.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1或4 B .1 C .4 D .8 3.若角︒600的终边上有一点()a ,4-,则a 的值是( ) A. 34 B. 34-C. 34±D. 34.如果实数、满足条件 则的最大值为( )A .1B .C .2D .35.若,则( )A .B .C .D .6.已知,则( )A .B .C .D .7. 如图,已知,点在线段上,且,设 ,则等于( )A .B .3C .D .8.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°9.为得到函数()x x x f 2sin 32cos +=,只需将函数⎪⎭⎫⎝⎛+=42cos 2πx y ( ) A .向左平移12π B .向右平移127π C .向左平移24π D .向右平移247π10.一艘轮船从出发,沿南偏东的方向航行40海里后到达海岛,然后从出发,沿北偏东35°的方向航行了海里到达海岛.如果下次航行直接从出发到,此船航行的方向和路程(海里)分别为( ) A .北偏东, B .北偏东, C .北偏东,D .北偏东,11. 若,,则的值为( )A .B .C .D .12.对于实数和,定义运算:,若对任意,不等式都成立,则实数的取值范围是( )A .B .C .D .二、填空题(本题共4小题,每小题5分,共20分)13.如图,在的方格纸中,若和是起点和终点均在格点的向量,则向量与的夹角余弦值是_________.14.已知0<α<β<π,且,则tan (β-α)的值为 . 15.如图:边长为4的正方形的中心为,以为圆心,1为半径作圆.点是圆上任意一点,点是边上的任意一点(包括端点),则的取值范围为 . 16. 给出下列命题:①存在实数α,使1cos sin =⋅αα; ②函数)23sin(x y +=π是偶函数; ③8π=x 是函数)452sin(π+=x y 的一条对称轴的方程; ④若βα、是第一象限的角,且βα>,则βαsin sin >;⑤函数的图像关于点成对称中心图形.其中正确命题的序号是 .三、解答题17. (本题满分10分)已知. (1) 化简;(2) 若,求的值;(3) 若,且,求的值.18. (本题满分12分)已知、、是同一平面内的三个向量,其中=(1,-2).(1)若||,且,求的坐标;(2)若||=,且与垂直,求与的夹角的余弦值.19.(本题满分12分)在中,角,,所对的边分别为,,,且满足.(1)求角的大小; (2)已知,的面积为,求边长的值.20.(本题满分12分)已知函数(其中)的周期为,其图象上一个最高点为.(1)求的解析式;(2)当时,求的最值及相应的的值.21. (本题满分12分) 已知函数21cos cos sin 3)(2--=x x x x f ,)(R x ∈ (1)讨论函数)(x f 的单调性;(2)设ABC ∆的内角C B A 、、的对边分别是c b a 、、,且3=c ,0)(=C f ,若A C A s in 2)s in(=+,求b a 、的值.22.(本题满分12分)已知ABC ∆的三内角分别为,向量()C A s i n 2,2c o s 1-+=,()C A cos ,tan = ,记函数()A f ⋅=,(1)若()0,2f A b ==,求ABC ∆的面积;(2)若关于A 的方程()f A k =有两个不同的实数解,求实数k 的取值范围.嘉峪关市一中2017—2018学年第二学期期末考试高一数学答案一、选择题:(本题共12小题,每小题5分,共60分)BABDA DBADC AB二、填空题(本题共4小题,每小题5分,共20分)13.14.15.16.②③⑤17、18、19、20、解析:21、(1)1)62sin(21)2cos 1(212sin 23)(--=-+-=πx x x x f ,)(x f 的最大值为0;最小正周期为π(2)01)62sin()(=--=πC C f ,解得3π=C ;又A B C A sin 2sin )sin(==+ ,由正弦定理21=b a ---------------①, 由余弦定理3cos 2222πab b a c -+=,即922=-+ab b a -------------②由①②解得:3=a ,32=b 。
嘉峪关市一中2017-2018学年第二学期期末考试高一数学试题一、选择题:(本题共12小题,每小题5分,共60分)1.sin(-600 )等于( ) A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
2.已知错误!未找到引用源。
,错误!未找到引用源。
,则tan( - )的值为( ) A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
3. 已知向量错误!未找到引用源。
,若a b + 与a b -平行,则实数x 的值是( )A .-2B .2C .1D .错误!未找到引用源。
4.执行如图所示的程序框图,若错误!未找到引用源。
,则输出的结果是( )A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
5.在区间错误!未找到引用源。
上随机取一个数错误!未找到引用源。
的值介于0到2之间的概率为( )A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
6.在△错误!未找到引用源。
中,由已知条件解三角形,其中有两解的是( ) A .错误!未找到引用源。
B .错误!未找到引用源。
C .014,16,45a b A === D .012,15,120a c A ===7.为得到函数错误!未找到引用源。
,只需将函数错误!未找到引用源。
( ) A .向左平移错误!未找到引用源。
B .向右平移错误!未找到引用源。
C .向左平移错误!未找到引用源。
D .向右平移错误!未找到引用源。
8.在△ABC 中,已知sinC =2sin (B +C )cosB ,那么△ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形 D .等边三角形9. 若两个非零向量错误!未找到引用源。
2015*2016学年度第二学期期末考试慕高二数学一、填空题1. 函数f (x) =cos( .X )( ■ • 0)的最小正周期为,则.=•6 52. 已知z=(2-i)2(i为虚数单位),则复数z的虚部为•3.若sin :• =2cos_:>,贝y sin2二亠6cos2〉的值为.4. 某班有学生60人,现将所有学生按1, 2, 3, , , 60随机编号,若采用系统抽样的方法抽取一个容量为5的样本,已知编号为4, a, 28, b , 52的学生在抽取的样本中,则a • b =.5. 从1, 2, 3, 4, 5这5个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是.6. 某老师星期一到星期五收到信件数分别是10, 6, 8, 5, 6,该组数据的标准差为./ Z/1L *ci9.观察下列各式:55-3125 , 56=15625 , 57=78125,…,则52011的末四位数字为.10.在长为12cm的线段AB上任取一点C ,现作一矩形,邻边长分别等于线段AC , CB的长,则该矩形面积小于32cm2的概率为.7.已知函数隈三(0,二),cos.::5’8.阅读如图所示的程序框图,运行相应的程序,若输入n的值为4,则输出S的值为.t| £ = $#2*七上|/Z/11. 已知函数f(x) =sin(• x;;'::「:)(八0,-…::::::::…)图象上每一点的纵坐标不变,横坐标缩短为原来的一半后再向右平移 --个单位长度得到函数y二sin x的图象,贝U f (;) = •12. 若cos ) 3,则cos(5)-sin1 2)=.6 3 6 6113. 函数f(x)=3x3—3x,若方程f(x)=x2F在(U上两个解,则实数m的取值范围为•14. 若对任意的X・D,均有£(X)乞f(X)空f2(X)成立,则称函数f (x)为函数f1(x)到函数f2 (x)在区间f(x)上的“折中函数” •已知函数f (x) =(k -1)) x -1, g(x) =0,h(x) =(x T)ln x,且f (x)是g(x)到h(x)在区间[1,2e] 上的“折中函数”,则实数k的取值范围为.二、解答题15. 设复数z = -3cosv is in v . ( i为虚数单位)4(1 )当时,求| z |的值;3(2)当—[$,二]时,复数吕二COST - isi,且z,z为纯虚数,求二的值.16. 某校为调研学生的身高与运动量之间的关系,从高二男生中随机抽取100名学生的身高数据,得到如下频率分布表:1求频率分布表中①、②位置相应的数据;2为了对比研究学生运动量与身高的关系,学校计划采用分层抽样的方法从第2组和第5组中随机抽取7名学生进行跟踪调研,求第2组和第5组分别抽取的学生数?(3)在(2)的前提下,学校决定从7名学生中随机抽取2名学生接受调研访谈,求至少有1名学生来自第5组的概率?17. 已知函数f(x) = 2sin(x ) cosx.6IT(1 )若0 _ x _㊁,求函数f (x)的值域;(2)设:ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A) =1,b =2,c =3,求cos(A-B)的值.18. 某公园准备建一个摩天轮,摩天轮的外围是一个周长为k米的圆,在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连,经预算,摩天轮上的每个座位与支点相连的钢管的费用为8k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为[(1024 x 20)x■ 2]k元,假设座位等距离分布,且至少100有两个座位,所有座位都视为点,且不考虑其他因素,记摩天轮的总造价为y元.(1)试写出y关于x的函数关系式,并写出定义域;(2)当k -100米时,试确定座位的个数,使得总造价最低?19. 已知函数f (x)二e x -mx k(m,k • R)定义域为(0, •::).(1 )若k=2时,曲线y=f(x)在x=1和x=3处的切线互相平行,求实数m的值;(2 )若k =1时,函数f(x)在(1/::)上有最小值,求实数m的取值范围;(3)若m =1时,函数f(x)在(1,=)上单调递增,求整数k的最大值.20. 已知函数f(x)=2x3 -3(k 1)x2 6kx t,其中k,t 为实数.(1)若函数f (x)在x=2处有极小值0,求k,t的值;(2)已知k _1且t =1-3k,如果存在(1,2],使得「(冷)乞f(x。
嘉峪关市一中2017-2018学年第二学期期末考试
高二文科科数学试卷
一、选择题(本大题共12个小题,每小题5分,共60分) 1.已知集合{
}
2
23x x x P =-≥,{}
Q 24x x =<<,则Q P
=( )
A .[)3,4
B .(]2,3
C .()1,2-
D .(]1,3- 2. 复数i
i
z -=12(i 是虚数单位),则复数z 的虚部为( ) A.
i B. i - C. 1 D. 1-
3. 已知向量(1,2),=a (2,)t =b , 且0⋅=a b ,则=|b |( )
B.
C. D.5
4.已知,x y 满足约束条件10210230x y x y x y +-≥⎧⎪
-+≥⎨⎪+-≤⎩
,则34z x y =--的最小值为( )
A .373
-
B .9-
C .4-
D .113
-
5.如图,已知某地一天从6时至14时的温度变化曲线近似满足函数sin()y A x b ωϕ=++(其中
0A >,0ω>,
π
π2
ϕ<<)
,那么12时温度的近似值(精确到1C ︒)是 (
)
A.25C
B.26C
C.27C
D.28C
6.甲、乙、丙三位大学生毕业后选择自主创业,三人分别做淘宝店、微商、实体店.某次同学聚会时,甲说:我做淘宝店、乙做微商;乙说:甲做微商、丙做淘宝店;丙说:甲做实体店、乙做淘宝店.事实上,甲、乙、丙三人的陈述都只对了一半.其他同学根据如上信息,可判断下列结论正确的是( ) A .甲做微商
B .乙做淘宝店
C .丙做微商
D .甲做实体店
7.函数()1ln
1x
f x x
+=-的大致图像是( )
A B C D 8.执行如下图所示的程序框图,则输出的S 的值为( )
A .
2017
2018 B .
1
2018
C . 20182019
D .1
2019
9.设p 是椭圆22
153
x y +=上的动点,则p 到该椭圆的两个焦点的距离之和为( )
A.
B. C. 4
D. 10.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与1BB 所成角的余弦值为
A .
3
2 B .
3
1 C .
3
2
2 D .
4
2 11.函数的图象如图所示,下列结论正确的是( ) A .'(3)(3)(2)'(2)f f f f <-< B .'(3)'(2)(3)(2)f f f f <<-
C .'(2)'(3)(3)(2)f f f f <<-
D .(3)(2)'(2)'(3)f f f f -<<
12.已知直线20x y a -+=与圆O :2
2
2x y +=相交于A ,B 两点(O 为坐标原点),且AOB ∆为等腰直角三角形,则实数a 的值为( )
A
或 B
D
二、填空题:本题共4小题,每小题5分,共20分。
13. 双曲线14
52
2-=-y x 的渐近线方程为 14. 已知412sin =α,则=+)4
(sin 2
πα
15.空间四个点P 、A 、B 、C 在同一球面上,PA 、PB 、PC 两两垂直,且PA=PB=PC=a ,那么这个球的表面积是 . 16.ABC ∆中,3
B π
∠=
,D 为边AB
上的一点,CD =
AD =4BC =,则AC = .
三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生
都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.已知等差数列{}n a 的公差不为零,1a =25,且13111,,a a a 成等比数列. (1)求{}n a 的通项公式;
(2)求23741......-++++n a a a a 的值.
18. 如图,在四棱锥ABCD P -中, CD AB // , AD CD BA CD ⊥=,2,平面PAD ⊥ 平面
ABCD , PAD ∆为等腰直角三角形, 2==PD PA ,
(1)证明:
BPD ∆为直角三角形;
(2)若三棱锥PCD B -的体积为3
4
,求BPD ∆的面积.
19.某班级50名学生的考试分数x 分布在区间[50,100]内,设分数x 的分布频率是()x f ,且
()⎪⎪⎩⎪⎪⎨⎧+<≤+-=+<≤-=.9,8,)1(1010,5
,7,6,5,)1(1010,4.010
n x n b n n n x n n
x f
(1)求实数b 的值;
(2)估算班级的考试平均分数;
(3)考试成绩采用“5分制”,规定:考试分数在[50,60)内的成绩记为1分,考试分数在[60,70)内的成绩记为2分,考试分数在[70,80)内的成绩记为3分,考试分数在[90,100)内的成绩记为5分. 用分层抽样的方法,在50名学生中选取成绩为1分,2分及3分中随机抽取6人,再从这6人中抽出2人,试求这2人的成绩之和为4分的概率。
20. 已知抛物线C :2
x ay =(0a >)的焦点为(0,1)F ,过F 点的直线l 交抛物线C 于A ,B 两点,且
点(1,2)D -. (1)求a 的值;
(2)求AD BD ⋅uuu r uu u r
的最大值.
21.已知2
()e x
f x x ax =--.
(1)若函数)(x f 在R 上单调递增,求实数a 的取值范围; (2)若0=a ,证明:当0>x 时,1)(>x f . 参考数据:e 2.71828≈,69.02ln ≈. (二)
选考题:共10分。
22.选修4-4:坐标系与参数方程
以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为
2sin()306π
ρθ+-=,曲线C 的参数方程是2cos 2sin x y ϕϕ
=⎧⎨
=⎩(ϕ为参数). (Ⅰ)求直线l 和曲线C 的普通方程;
(Ⅱ)直线l 与x 轴交于点P ,与曲线C 交于A ,B 两点,求PA PB +.
23.选修4-5:不等式选讲 已知函数()2f x x a x =-++. (Ⅰ)当1a =时,解不等式()4f x ≥;
(Ⅱ)若不等式()3f x x ≤+的解集包含[0,1],求实数a 的取值范围.。