算法思想 树型动态规划和状态压缩动态规划
- 格式:ppt
- 大小:175.00 KB
- 文档页数:18
算法设计与分析中的动态规划动态规划是一种常用的算法设计与分析技术,通常用于求解具有重叠子问题和最优子结构性质的问题。
它的核心思想是将原问题分解为更小的子问题,并通过递推关系式将子问题的解整合为原问题的解。
在算法设计与分析领域,动态规划广泛应用于优化问题、最短路径问题、序列比对问题等。
一、动态规划的基本特征动态规划算法的正确性基于两个重要的特征:重叠子问题和最优子结构。
1. 重叠子问题重叠子问题是指在求解原问题时,子问题之间存在相互重叠的情况。
也就是说,子问题之间不是独立的,它们具有一定的重复性。
动态规划算法利用这个特征,通过保存已经求解过的子问题的解,避免重复计算,提高算法的效率。
2. 最优子结构最优子结构是指问题的最优解可以通过子问题的最优解推导得到。
也就是说,原问题的最优解可以通过一系列子问题的最优解进行构造。
这个特征是动态规划算法能够求解最优化问题的关键。
二、动态规划的基本步骤1. 确定状态动态规划算法需要明确问题的状态,即问题需要用哪些参数来描述。
状态一般与原问题和子问题的解相关。
2. 定义状态转移方程状态转移方程描述原问题与子问题之间的关系。
通过递推关系式,将原问题分解为更小的子问题,并将子问题的解整合为原问题的解。
3. 初始化根据问题的实际需求,对初始状态进行设定,并计算出初始状态的值。
这一步骤是递推关系式的起点。
4. 递推计算根据状态转移方程,通过递推关系式计算出子问题的解,并将子问题的解整合为原问题的解。
这一步骤通常采用迭代的方式进行。
5. 求解目标问题通过递推计算得到原问题的解,即为最优解或者问题的答案。
三、动态规划的应用动态规划算法在实际问题中具有广泛的应用。
下面以两个经典问题为例,介绍动态规划在实际中的应用。
1. 背包问题背包问题是一种经典的优化问题,主要包括0/1背包问题和完全背包问题。
其核心思想是在限定的背包容量下,选择一些具有最大价值的物品放入背包中。
2. 最长公共子序列问题最长公共子序列问题是指给定两个序列,求解它们的最长公共子序列的长度。
算法分析与设计技巧:动态规划汇报人:日期:•引言•动态规划的基本原理•动态规划的经典问题与应用目录•动态规划的优化技巧与策略•动态规划的扩展与进阶•总结与展望引言01动态规划是一种求解最优化问题的算法思想,它通过将问题拆分为若干个子问题,并对子问题进行逐一求解,最终得到原问题的解。
定义动态规划对于解决重叠子问题和最优子结构的问题具有高效性,可以避免重复计算,提高算法效率。
同时,动态规划也是很多实际问题的基础,如资源分配、最短路径、背包问题等。
重要性动态规划的定义与重要性动态规划与其他算法的关系动态规划与分治法类似,都是通过将原问题拆分为子问题来求解。
但是,动态规划适用于子问题之间存在重叠的情况,而分治法适用于子问题相互独立的情况。
与贪心算法的关系贪心算法也是一种求解最优化问题的算法,但是贪心算法在每一步选择时都选择当前状态下的最优解,而不考虑全局最优。
动态规划则通过保存子问题的解,以达到全局最优。
以上只是动态规划的一部分应用领域,实际上动态规划的应用非常广泛,几乎涉及到计算机科学和工程领域的各个方面。
序列比对问题:在生物信息学中,用于比对两个或多个序列,找出它们之间的最优匹配。
背包问题:给定一组物品,每种物品都有自己的重量和价值,在限定的总重量内,如何选择物品才能使得物品的总价值最大。
资源分配问题:在有限的资源下,如何分配资源以达到最大效益。
最短路径问题:在图中寻找从起点到终点的最短路径。
动态规划的应用领域动态规划的基本原02理最优子结构是指问题的最优解可以由其子问题的最优解组合得到。
定义重要性例子最优子结构是动态规划的基础,只有当一个问题具有最优子结构性质时,才能用动态规划来解决。
例如,在背包问题中,问题的最优解就是由每个物品是否装入背包的子问题的最优解组合而来。
030201最优子结构边界条件是指子问题的最小情况,即子问题不能再继续分解时的解。
定义边界条件是动态规划的起点,它确定了递推的基础情况,使得状态转移方程得以进行。