几种特殊四边形的性质
- 格式:ppt
- 大小:1.78 MB
- 文档页数:12
特殊四边形的性质和判定定理名称 性质判定平行四边形1、对边平行且相等。
2、对角相等。
3、对角线互相平分。
4、是中心对称图形。
5、S=a b (a 、b 分别表示底和这一底上的高)推论:三角形的中位线平行于三角形的第三边.并且等于第三边的一半。
1、两组对边分别平行的四边形叫做平行四边形。
(定义)2、两组对边分别相等的四边形是平行四边形。
3、对角线互相平分的四边形是平行四边形。
4、一组对边平行且相等的四边形叫做平行四边形。
矩形矩形除了具有平行四边形的所有性质外.还有以下性质:1、四个角都是直角。
2、对角线相等。
3、既是中心对称图形.又是轴对称图形。
4、S= a b (a 、b 分别表示长和宽)推论:直角三角形斜边上的中线等于斜边的一半。
1、有一个角是直角的平行四边形叫做矩形。
2、对角线相等的平行四边形是矩形。
3、有三个角是直角的四边形是矩形。
菱形菱形除了具有平行四边形的所有质外.还有以下性质:1、四条边都相等。
2、两条对角线互相垂直。
并且每一条对角线平分一组对角。
3、既是中心对称图形.又是轴对称图形。
4、S= a b (a 、b 分别表示两条对角线长。
)1、有一组邻边相等的平行四边形叫做菱形。
(定义)2、对角线互相垂直的平行四边形是菱形。
3、边相等到的四边形是菱形。
正方形除了具有平行四边形、矩形、菱形的所有性质外.还有以下性质: 1、对角线和边的夹角是45º。
2、S= a ²(a 表示两边长。
) 1、一组邻边相等的矩形是正方形。
2、有一个是直角的菱形是正方形。
3、对角线相垂直的矩形是正方形。
4、对角线相等的菱形是正方形。
等腰梯形1、两腰相等。
2、同一底上的两个角相等。
3、对角线相等。
4、轴对称图形1、对角线相等的梯形是等腰梯形。
2、同一底上两个角相等的梯形是等腰梯形。
梯形中常见辅助线AB CDABCDABC DABCD A BCD例1 如图.E 、F 分别为正方形ABCD 的边BC 、CD 上的一点.AM ⊥EF.垂足为M.若AM=AB.求证:EF=BE+CF例2 已知:如图.正方形ABCD 中.延长AD 到E.使DE=AD.再延长DE 到F.使DF=BD.连接BF 交CD 于Q.交CE 于P 。
数学特殊四边形的归纳总结在数学中,四边形是指由四条线段组成的图形。
然而,有一些特殊的四边形具有独特的性质和特征。
本文将对几种常见的数学特殊四边形进行归纳总结,包括矩形、正方形、菱形、平行四边形和梯形。
一、矩形矩形是一种特殊的四边形,它具有以下性质:1. 两组对边相等且平行。
2. 对角线相等。
3. 内角为直角(90度)。
矩形是一种常见的四边形,它有许多实际应用,如建筑设计中的房间布局和绘画中的画框。
二、正方形正方形是一种特殊的矩形,它具有以下性质:1. 所有边相等且平行。
2. 所有角为直角(90度)。
3. 对角线相等且相互平分。
正方形是一种非常对称且稳定的四边形,它在几何学和工程学中经常被使用。
三、菱形菱形是一种特殊的四边形,它具有以下性质:1. 所有边相等。
2. 对角线相互垂直且相等。
菱形是一种具有双重对称性的四边形,它在纺织品设计和室内装饰中经常出现。
四、平行四边形平行四边形是一种特殊的四边形,它具有以下性质:1. 对边相等且平行。
2. 对角线不相交。
3. 相对角相等。
平行四边形是一种常见的四边形,它在计算机图形学和建筑设计中得到广泛应用。
五、梯形梯形是一种特殊的四边形,它具有以下性质:1. 有两条平行边。
2. 其他两条边不平行。
3. 对角线不相交。
梯形是一种常见的四边形,它在建筑设计和地形测量中具有重要意义。
综上所述,数学特殊四边形包括矩形、正方形、菱形、平行四边形和梯形,每种特殊四边形都有独特的性质和特征。
熟练掌握这些特殊四边形的性质,对于解决与几何学相关的问题和应用具有重要意义。
无论是在学习数学知识还是日常生活中,这些特殊四边形都有广泛的应用和重要性。
四边形的分类与性质四边形是平面几何中常见的一种图形,它由四条线段组成,连接成一个封闭的四边形。
四边形有许多不同的分类方式,每种分类都对应着不同的性质和特点。
本文将介绍四边形的分类以及它们各自的性质。
1. 矩形矩形是一种特殊的四边形,它的四条边都相互平行且相等,且四个角均为直角。
矩形的性质包括:- 所有对角线相等;- 任意两条相邻边垂直,即角为直角;- 对角线相互平分。
2. 正方形正方形也是一种特殊的矩形,它的四边相等且相互平行,并且四个角均为直角。
正方形的性质有:- 所有边相等;- 对角线相等且相互平分;- 任意两条对边平行且垂直。
3. 平行四边形平行四边形是指四边形的对边都平行。
平行四边形的特点包括:- 对边相等;- 对角线不相等;- 对角线互相分割,并且分割出的线段相等。
4. 长方形长方形是特殊的平行四边形,它的四个角均为直角,且相邻两边相等。
长方形的性质有:- 对边相等;- 对角线不相等;- 对角线互相分割,分割出的线段相等。
5. 梯形梯形是指仅有一对对边平行的四边形。
梯形的特性包括:- 一对对边平行;- 一对对边不平行,且不相等;- 两组对边有可能相等。
6. 菱形菱形是指四边形的四边都相等,但并不一定有直角。
菱形的性质有:- 所有边相等;- 对角线互相垂直;- 对角线有可能相等。
7. 不规则四边形不规则四边形不符合以上分类中的任何一种,它的边长和角度都有可能不相等,没有明显的特殊性质。
总结:通过以上的分类与性质的介绍,我们可以发现每种四边形都有其独特的性质和特点。
在解题或者实际应用中,对于四边形的分类和性质的理解十分重要。
正确理解四边形的分类和性质可以帮助我们解决平面几何中与四边形相关的问题,更好地理解几何图形之间的关系,并且应用到实际生活中的各种场景中。
四边形的分类与性质是数学中的一项基本内容,对于学习几何学的人来说具有重要的意义。
希望通过本文的介绍,能够帮助读者更好地理解并运用四边形的分类与性质。
四边形的性质四边形是几何学中常见的图形,具有独特的性质和特点。
在本文中,我们将探讨四边形的性质,并深入了解它们的定义、分类以及相关的公式和定理。
定义四边形是由四条线段所围成的平面图形。
它有四个顶点、四条边和四个内角。
四边形的顶点分别连接而成的线段叫做对角线。
分类根据四边形的特点和性质,我们将其分为以下几类:1. 矩形:矩形是四边形的一种特殊形式,具有两对平行且相等的边以及四个直角。
矩形的对角线相等且互相平分。
2. 正方形:正方形也是四边形的一种特殊形式,具有四条相等的边和四个直角。
正方形的对角线相等且互相平分。
3. 平行四边形:平行四边形是具有两对平行边的四边形。
它的对角线不相等且互相平分。
4. 梯形:梯形是具有一对平行边的四边形。
根据非平行边的长度,梯形又可以分为等腰梯形和一般梯形。
5. 菱形:菱形是具有四条相等的边的四边形。
菱形的对角线互相垂直,且互相平分。
公式和定理与四边形相关的一些重要公式和定理包括:1. 周长:四边形的周长等于四条边长的和。
2. 面积:不同类型的四边形有不同的求面积公式。
例如,矩形的面积等于两个相邻边的乘积,菱形的面积等于对角线的乘积除以2。
3. 内角和:四边形的内角和等于360度。
4. 对角线长度关系:在平行四边形中,对角线互相平分且相等。
5. 矩形对角线定理:矩形的对角线相等。
6. 菱形对角线定理:菱形的对角线互相垂直。
应用四边形的性质广泛应用于日常生活和工程领域。
例如,建筑师需要了解平行四边形的性质以设计房屋的蓝图。
同时,平面图形的测量和计算需要根据不同类型的四边形应用相应的公式和定理。
结论四边形作为常见的几何图形,具有丰富的性质和特点。
通过了解不同类型的四边形以及它们的公式和定理,我们可以更好地应用于实际问题中,并通过几何方法解决相关的计算和设计。
因此,对于几何学的学习来说,掌握四边形的性质是至关重要的。
一、几种常见的特殊四边形的性质平行四边形:①对边平行且相等;②对角相等、邻角互补;③对角线互相平分;④是中心对称图形。
矩形:①对边平行且相等;②四个角都是直角;③对角线相等且平分;④既是轴对称图形、又是中心对称图形。
菱形:①对边平行、四条边都相等;②对角线相等、邻角互补;③对角线垂直且平分、平分一组对角;④既是轴对称图形、又是中心对称图形。
正方形:①对边平行、四条边都相等;②四个角都是直角;③对角线互相垂直相等且平分;④既是轴对称图形、又是中心对称图形。
等腰梯形:①两底平行、两腰相等;②同一底边上的两个角相等;③对角线相等;④是轴对称图形。
二、几种常见的特殊四边形的判定:平行四边形:①两组对边分别平行的四边形;②两组对边分别相等的四边形;③两组对角分别相等的四边形;④对角线互相平分的四边形;⑤一组对边平行且相等的四边形。
矩形:①有一个是直角的平行四边形;②对角线相等的平行四边形;③有三角是直角的四边形。
菱形:①一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边相等的四边形。
正方形:①四条边相等、四个角相等的四边形;②有一组邻边相等且有一个直角的平行四边形;③一组邻边相等的矩形;④有一个角是直角的菱形;⑤对角线互相垂直且相等的平行四边形;⑥对角线互相垂直的矩形;⑦对角线相等的菱形;⑧对角线垂直平分且相等的四边形。
等腰梯形:①对角线相等的梯形;②同一底上两个角相等的梯形。
三、其它知识点:1. 三角形中位线定义:连接三角形两边中点的线段叫三角形的中位线三角形中位线定理:平行且等于第三边的一半。
2. 梯形中位线定义:连接梯形两腰中点的线段叫梯形的中位线。
梯形中位线定理:平行于梯形的两底且等于上下底和的一半。
3. 直角三角形斜边的中线等于斜边的一半。
4. 线段的重心是中点;平行四边形的重心是对角线的交点。
5. 三角形的重心是三边中线的交点。
这点到顶点的距离是它到对边中点距离的2倍。
四边形的性质四边形是平面几何中特殊的图形,有着独特的性质和特点。
本文将探讨四边形的各种性质,包括角度、边长、对角线等方面,以便更好地理解和应用四边形。
1. 角度性质四边形的内角和等于360度。
任意四边形的四个内角之和为360度,这是四边形性质中最基本的一个规律。
而具体的角度大小则与四边形的种类有关。
2. 边长性质四边形的边长可以是相等的,也可以是不相等的。
根据边长的关系,四边形可以分为以下几种形式:(1) 矩形:具有四个边相等、四个角均为直角的四边形;(2) 正方形:具有四条边相等、四个角均为直角的矩形;(3) 平行四边形:具有两对边平行的四边形;(4) 菱形:具有四条边相等的四边形。
3. 对角线性质对角线是四边形内部的一条直线,连接四边形的两个非相邻顶点。
根据对角线的性质,我们可以得出以下结论:(1) 矩形和正方形的对角线相等且相互平分;(2) 平行四边形的对角线互相平分;(3) 菱形的对角线互相垂直且相等。
4. 对边性质四边形的对边可以分为两对,相邻边和非相邻边。
对于相邻边,我们有以下发现:(1) 矩形和正方形的相邻边相等;(2) 平行四边形的相邻边相等。
5. 其他性质除了上述角度、边长、对角线和对边的性质外,还有一些其他值得注意的性质:(1) 矩形和正方形的两组相对边平行且相等;(2) 平行四边形的两组相对边平行;(3) 菱形的两组相对边相等。
综上所述,四边形的性质包括了角度、边长、对角线、对边和其他特殊性质。
了解这些性质,能够帮助我们更好地识别和分类四边形,并在解题和实际应用中灵活运用。
(以上内容仅供参考,具体内容可根据需要进行补充和修改)。
特殊的四边形及三角形的定义、性质、判定、相关计算公式平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质:1平行四边形是中心对称图形,对称中心是两条对角线的交点,不是轴对称图形;关于对称性的2平行四边形的对角相等;关于角的3平行四边形的邻角互补;关于角的4平行四边形的对边相等;推论:夹在两条平行线间的平行线段;关于边的5平行四边形的对边平行;关于边的6平行四边形的对角线互相平分;关于对角线的7连接平行四边形各边的中点所得图形是平行四边形;关于中点四边形的3.平行四边形的判定方法:1两组对边分别平行的四边形是平行四边形;定义判定法2两组对边分别相等的四边形是平行四边形;3一组对边平行且相等的四边形是平行四边形;4两组对角相等的四边形是平行四边形;5对角线互相平分的四边形是平行四边形;4. 相关计算公式:平行四边形的面积公式:底×高;如用“h”表示高,“a”表示底,“s”表示平行四边形面积,则S=ah平行四边形周长:2×底1+底2;如用“a"表示底1,“b”表示底2,“c“表示平行四边形周长,则C=2a+b5.平行四边形中常用辅助线的添法:1连结对角线或平移对角线;2过顶点作对边的垂线构成直角三角形;3连结对角线交点与一边中点,或过对角线交点作一边的平行线,构成线段平行或中位线;4连结顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;5过顶点作对角线的垂线,构成线段平行或三角形全等;矩形1.矩形的定义:有一个角是直角的平行四边形是矩形;2.矩形的性质:1矩形是中心对称图形,也是轴对称图形,对称轴是通过对边中点的直线,对称轴共有两条;关于对称性的2矩形的对角相等;关于角的3矩形的邻角互补;关于角的4矩形的对边相等;关于边的5矩形的对边平行;关于边的6矩形的对角线互相平分;关于对角线的7矩形的四个角都是直角;关于角的8矩形的对角线相等;关于对角线的9矩形所在平面内任一点到其两对角线端点的距离的平方和相等3.矩形的判定方法:1有一个角是直角的平行四边形是矩形;定义判定法2对角线相等的平行四边形是矩形;3关于任何一组对边中点的连线成轴对称图形的平行四边形是矩形4对于平行四边形,若存在一点到两双对顶点的距离的平方和相等,则此平行四边形为矩形5有三个角是直角的四边形是矩形;6四个内角都相等的四边形为矩形;7对角线互相平分且相等的四边形是矩形;8对角线互相平分且有一个内角是直角的四边形是矩形;4.相关计算公式矩形面积:S=ah注:a为边长,h为该边上的高S=ab注:a为长,b为宽矩形周长:C=2a+b注:a为长,b为宽顺次连接矩形各边中点得到的四边形是菱形;菱形1.菱形的定义:有一组邻边相等的平行四边形是菱形;2.菱形的性质:1菱形既是,是两条对角线所在直线,也是中心对称图形;2在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍;3菱形的对角相等;关于角的4菱形的邻角互补;关于角的5菱形的对边相等;关于边的6菱形的对边平行;关于边的7菱形的对角线互相平分;关于对角线的8菱形的四边都相等;关于边的9菱形的对角线互相垂直,且平分各内角;关于对角线的10顺次连接菱形各边中点得到的四边形是矩形;关于中点四边形的3.菱形的判定方法:1一组邻边相等的平行四边形是菱形;定义判定法2对角线相互垂直的平行四边形是菱形;3关于两条对角线都成轴对称的四边形是菱形;4四条边都相等的四边形是菱形;4. 相关计算公式:菱形的面积:菱形的面积等于两对角线乘积的一半;只要是对角线互相垂直的四边形都可用正方形1.正方形的定义:1四条边都相等且四个角都是直角的四边形叫做正方形;2有一组邻边相等的矩形是正方形;3有一组邻边相等且一个角是直角的平行四边形是正方形;4有一个角为直角的菱形是正方形;5对角线平分,垂直且相等,并且交角为直角的四边形为正方形;2.正方形的性质:1既是中心对称图形,又是有四条对称轴;关于对称性的2正方形的对角相等;关于角的3正方形的邻角互补;关于角的4正方形的对边相等;关于边的5正方形的相邻边互相垂直;关于边的6正方形的对边平行;关于边的7正方形的对角线互相平分;关于对角线的8正方形的四个角都是直角;关于角的9正方形的对角线相等;关于对角线的10正方形的四边都相等;关于边的(11)正方形的对角线互相垂直,且平分各内角;关于对角线的3.正方形的判定方法:1有一组邻边相等的矩形是正方形;2对角线互相垂直的矩形是正方形;3有一个角为直角的菱形是正方形;4对角线相等的菱形是正方形;5一组邻边相等且有一个角是直角的平行四边形是正方形;6四边均相等,对角线互相垂直平分且相等的平行四边形是正方形;7四边相等,有三个角是直角的四边形是正方形;8对角线相互垂直平分且相等的四边形为正方形;4.相关计算公式:面积计算公式:S=边长×边长或:S=对角线×对角线÷2周长计算公式: C=4×边长顺次连接正方形各边中点得到的四边形是正方形;等腰三角形1.等腰三角形的定义:有两边相等的三角形是等腰三角形;2. 等腰三角形的性质:1等腰三角形的两个底角相等;简写成“等边对等角”2等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合;简写成“三线合一”3等腰三角形的两底角的平分线相等;两条腰上的中线相等,两条腰上的高相等4等腰三角形底边上的垂直平分线到两条腰的距离相等;5等腰三角形的一腰上的高与底边的夹角等于顶角的一半;6等腰三角形底边上任意一点到两腰距离之和等于一腰上的高;需用等面积法证明7等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴;3. 等腰三角形的判定方法:1有两条边相等的三角形是等腰三角形2有两个角相等的三角形是等腰三角形简称:等角对等边等边三角形1.等边三角形的定义:三边都相等的三角形是等边三角形;等边三角形是特殊的等腰三角形;注意:若三角形三边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形2.等边三角形的性质:1等边三角形的内角都相等,且为60度;2等边三角形底角边上的中线、底角边上高线和所对顶角的角的平分线互相重合;三线合一3等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线;3.等边三角形的判定方法:首先考虑判断三角形是等腰三角形1三边相等的三角形是等边三角形;定义2三个内角都相等的三角形是等边三角形;3有一个角是60度的等腰三角形是等边三角形;4等边三角形是锐角三角形;5有两个角等于60度的等腰三角形是等边三角形;等腰梯形1.等腰梯形的定义:一组对边平行不相等,另一组对边不平行但相等的四边形是等腰梯形;2.等腰梯形的性质:1等腰梯形只有一条对称轴,上底和下底的中垂线就是它的对称轴;2等腰梯形在同一底上的两个角相等;3等腰梯形的两腰相等;4等腰梯形的两底平行;5等腰梯形的两个底角相等;6等腰梯形的对角线相等;7等腰梯形内接于圆;3. 等腰梯形的判定方法:1一组对边不平行边相等的梯形是等腰梯形;2同一底上的两个角相等的梯形是等腰梯形;3对角线相等的梯形是等腰梯形;4一组对边平行不相等,另一组对边相等不平行的四边形是等腰梯形;5对角线相等,形成两个等腰三角形;4.相关计算公式等腰梯形的中位线长是上下底边长度和的一半;等腰梯形的面积公式等于上底加下底和一半乘高,也等于中位线乘高;直角三角形1.直角三角形的定义:有一个角为90°的三角形,叫做直角三角形;2.直角三角形的性质直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:1直角三角形两直角边的平方和等于斜边的平方;2在直角三角形中,两个锐角互余;3在直角三角形中,斜边上的中线等于斜边的一半即直角三角形的外心位于斜边的中点,外接圆半径R=C/2;4直角三角形的两直角边的乘积等于斜边与斜边上高的乘积;5在直角三角形中,30°角所对直角边等于斜边的一半;3.直角三角形的判定方法:1有一个角为90°的三角形是直角三角形;2一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形;3若a的平方+b的平方=c的平方,则以a、b、c为边的三角形是以c为斜边的直角三角形;勾股定理的逆定理;4若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形;5两个锐角互余的三角形是直角三角形;。
平行四边形与菱形的性质平行四边形和菱形是几何学中常见的两种特殊四边形。
它们具有一些独特的性质和特征,下面将逐一探讨。
一、平行四边形的性质1. 对角线性质:平行四边形的对角线互相平分,即两条对角线的交点同时是它们的中点。
2. 相邻角性质:平行四边形中相邻的内角互补,即相邻内角的和为180度。
3. 对边性质:平行四边形的对边相等且平行,即所对的边长相等,且两边互相平行。
4. 同位角性质:平行四边形中同位角相等,即同位角对应的角度相等。
5. 临补角性质:平行四边形的临补角互补,即两对临补角的和为180度。
二、菱形的性质1. 对角线性质:菱形的对角线相互垂直,且互相平分,即两条对角线的交点同时是它们的中点。
2. 边长性质:菱形的四条边长相等。
3. 相邻角性质:菱形中相邻的内角互补,即相邻内角的和为180度。
4. 同位角性质:菱形中同位角相等,即同位角对应的角度相等。
5. 对边性质:菱形的对边平行且相等,即对边的长度相等且互相平行。
综上所述,平行四边形和菱形都有其各自独特的性质和特征。
它们在几何学中应用广泛,不仅仅是理论性质,还可以通过它们的性质来解决实际问题。
因此,对于学习和理解几何学的同学们来说,掌握并熟练运用平行四边形和菱形的性质是非常重要的。
无论是在计算平行四边形和菱形的面积、周长,还是在证明几何定理方面,了解它们的性质都会为我们的解题提供很大的帮助。
因此,在学习几何学的过程中,我们应该充分理解并掌握平行四边形和菱形的性质,灵活运用它们来解决各种问题。
总而言之,平行四边形和菱形作为几何学中的特殊四边形,具有一些独特的性质和特征。
掌握并熟练运用它们的性质,可以帮助我们解决各种几何问题,提高解题能力。
因此,在学习几何学的过程中,我们应该注重对平行四边形和菱形的性质的学习和理解,以便在实际应用中灵活运用。
知识点总结一、特殊的平行四边形1.矩形:(1)定义:有一个角是直角的平行四边形。
(2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。
(3)判定定理:①有一个角是直角的平行四边形叫做矩形。
②对角线相等的平行四边形是矩形。
③有三个角是直角的四边形是矩形。
直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。
2.菱形:(1)定义:邻边相等的平行四边形。
(2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
(3)判定定理:①一组邻边相等的平行四边形是菱形。
②对角线互相垂直的平行四边形是菱形。
③四条边相等的四边形是菱形。
(4)面积:3.正方形:(1)定义:一个角是直角的菱形或邻边相等的矩形。
(2)性质:四条边都相等,四个角都是直角,对角线互相垂直平分。
正方形既是矩形,又是菱形。
(3)正方形判定定理:①对角线互相垂直平分且相等的四边形是正方形;②一组邻边相等,一个角为直角的平行四边形是正方形;③对角线互相垂直的矩形是正方形;④邻边相等的矩形是正方形⑤有一个角是直角的菱形是正方形;⑥对角线相等的菱形是正方形。
二、矩形、菱形、正方形与平行四边形、四边形之间的联系:1.矩形、菱形和正方形都是特殊的平行四边形,其性质都是在平行四边形的基础上扩充来的。
矩形是由平行四边形增加“一个角为90°”的条件得到的,它在角和对角线方面具有比平行四边形更多的特性;菱形是由平行四边形增加“一组邻边相等”的条件得到的,它在边和对角线方面具有比平行四边形更多的特性;正方形是由平行四边形增加“一组邻边相等”和“一个角为90°”两个条件得到的,它在边、角和对角线方面都具有比平行四边形更多的特性。
2.矩形、菱形的判定可以根据出发点不同而分成两类:一类是以四边形为出发点进行判定,另一类是以平行四边形为出发点进行判定。
而正方形除了上述两个出发点外,还可以从矩形和菱形出发进行判定。
三、判定一个四边形是特殊四边形的步骤:常见考法(1)利用菱形、矩形、正方形的性质进行边、角以及面积等计算;(2)灵活运用判定定理证明一个四边形(或平行四边形)是菱形、矩形、正方形;(3)一些折叠问题;(4)矩形与直角三角形和等腰三角形有着密切联系、正方形与等腰直角三角形也有着密切联系。