2019版高考数学大一轮复习 第九章第3节 圆的方程学案 文 新人教A版
- 格式:doc
- 大小:278.71 KB
- 文档页数:10
第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
第3讲圆的方程1.圆的定义及方程点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)确定圆的几何要素是圆心与半径.( )(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.( )(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A =C≠0,B=0,D2+E2-4AF>0.( )(4)方程x2+2ax+y2=0一定表示圆.( )(5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.( )答案:(1)√(2)√(3)√(4)×(5)√[教材衍化]1.(必修2P132A组T3改编)以点(3,-1)为圆心,并且与直线3x+4y=0相切的圆的方程是( )A.(x-3)2+(y+1)2=1B.(x-3)2+(y-1)2=1C.(x+3)2+(y-1)2=1D.(x+3)2+(y+1)2=1答案:A2.(必修2P124A组T1改编)圆x2+y2-4x+6y=0的圆心坐标为________,半径为________.解析:x2+y2-4x+6y=0,得(x-2)2+(y+3)2=13.所以圆心坐标为(2,-3),半径为13.答案:(2,-3) 133.(必修2P124A组T4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.解析:设圆心坐标为C(a,0),因为点A(-1,1)和B(1,3)在圆C上,所以|CA|=|CB|,即(a+1)2+1=(a-1)2+9,解得a=2,所以圆心为C(2,0),半径|CA |=(2+1)2+1=10,所以圆C 的方程为(x -2)2+y 2=10.答案:(x -2)2+y 2=10[易错纠偏](1)忽视表示圆的充要条件D 2+E 2-4F >0;(2)错用点与圆的位置关系;(3)不能正确确定圆心坐标.1.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是________.解析:将x 2+y 2+mx -2y +3=0化为圆的标准方程得⎝ ⎛⎭⎪⎫x +m 22+(y -1)2=m 24-2. 由其表示圆可得m 24-2>0,解得m <-22或m >2 2. 答案:(-∞,-22)∪(22,+∞)2.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是________.解析:因为点(1,1)在圆内,所以(1-a )2+(a +1)2<4,即-1<a <1.答案:(-1,1)3.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是________.解析:由于圆心在第一象限且与x轴相切,可设圆心为(a,1)(a>0),又圆与直线4x-3y=0相切,所以|4a-3|5=1,解得a=2或a=-12(舍去).所以圆的标准方程为(x-2)2+(y-1)2=1.答案:(x-2)2+(y-1)2=1求圆的方程(高频考点)求圆的方程是高考命题的热点,多以选择题、填空题的形式呈现,试题难度较小.主要命题角度有:(1)由已知条件求圆的方程;(2)由圆的方程确定参数的值(范围).角度一由已知条件求圆的方程(1)圆心在曲线y=2x(x>0)上,且与直线2x+y+1=0相切的面积最小的圆的方程为( )A.(x-1)2+(y-2)2=5B.(x-2)2+(y-1)2=5C.(x-1)2+(y-2)2=25D.(x-2)2+(y-1)2=25(2)(2020·浙江百校联盟联考)经过点A(5,2),B(3,-2),且圆心在直线2x-y-3=0上的圆的方程为________.【解析】(1)由圆心在曲线y=2x(x>0)上,设圆心坐标为⎝ ⎛⎭⎪⎫a ,2a ,a >0.又因为圆与直线2x +y +1=0相切,所以圆心到直线的距离d =2a +2a +15≥4+15=5,当且仅当2a =2a ,即a =1时取等号.所以圆心坐标为(1,2),圆的半径的最小值为5,则所求圆的方程为(x -1)2+(y -2)2=5.(2)因为圆过A (5,2),B (3,-2)两点,所以圆心一定在线段AB 的垂直平分线上.易知线段AB 的垂直平分线方程为y =-12(x -4). 设所求圆的圆心为C (a ,b ),则有⎩⎪⎨⎪⎧2a -b -3=0,b =-12(a -4),解得⎩⎪⎨⎪⎧a =2,b =1, 所以C (2,1),所以半径r =|CA |=(5-2)2+(2-1)2=10,所以所求圆的方程为(x -2)2+(y -1)2=10.【答案】 (1)A (2)(x -2)2+(y -1)2=10角度二 由圆的方程确定参数的值(范围)(1)设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是( )A .原点在圆上B .原点在圆外C .原点在圆内D .不确定 (2)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是__________,半径是__________.【解析】 (1)将圆的一般方程化成标准方程为(x +a )2+(y +1)2=2a ,因为0<a <1,所以(0+a )2+(0+1)2-2a =(a -1)2>0,即(0+a )2+(0+1)2>2a ,所以原点在圆外.(2)由二元二次方程表示圆的条件可得a 2=a +2,解得a =2或-1.当a =2时,方程为4x 2+4y 2+4x +8y +10=0,即x 2+y 2+x+2y +52=0,配方得⎝ ⎛⎭⎪⎫x +122+(y +1)2=-54<0,不表示圆; 当a =-1时,方程为x 2+y 2+4x +8y -5=0,配方得(x +2)2+(y +4)2=25,则圆心坐标为(-2,-4),半径是5.【答案】 (1)B (2)(-2,-4) 5求圆的方程的两种方法(1)直接法根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.1.(2020·宁波十校联考)若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3 解析:选B.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,所以仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆.2.圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为__________________.解析:设圆C 的圆心为(a ,b )(b >0),由题意得a =2b >0,且a 2=(3)2+b 2,解得a =2,b =1.所以所求圆的标准方程为(x -2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=43.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.解析:因为圆C 的圆心在x 轴的正半轴上,设C (a ,0),且a >0,所以圆心到直线2x -y =0的距离d =2a 5=455, 解得a =2,所以圆C 的半径r =|CM |=4+5=3,所以圆C 的方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=9与圆有关的最值问题(高频考点)与圆有关的最值问题是高考命题的热点,多以选择题,填空题的形式出现,试题难度为中等.主题命题角度有:(1)借助几何性质求最值;(2)建立函数关系求最值.角度一 借助几何性质求最值已知实数x ,y 满足方程x 2+y 2-4x +1=0. (1)求y x的最大值和最小值; (2)求y -x 的最大值和最小值.【解】 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)y x的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =kx . 当直线y =kx 与圆相切时,斜率k 取得最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3(如图1).所以y x 的最大值为3,最小值为- 3. (2)y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x+b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6(如图2).所以y -x 的最大值为-2+6,最小值为-2- 6.(变问法)在本例条件下,求x 2+y 2的最大值和最小值. 解:x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图).又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.角度二 建立函数关系求最值(2020·义乌模拟)设点P (x ,y )是圆:x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则PA →·PB →的最大值为________.【解析】 由题意,知PA →=(2-x ,-y ),PB →=(-2-x ,-y ),所以PA →·PB →=x 2+y 2-4,由于点P (x ,y )是圆上的点,故其坐标满足方程x 2+(y -3)2=1,故x 2=-(y -3)2+1,所以PA →·PB →=-(y-3)2+1+y 2-4=6y -12.易知2≤y ≤4,所以,当y =4时,PA →·PB →的值最大,最大值为6×4-12=12.【答案】 12求解与圆有关的最值问题的方法1.由直线y =x +1上的一点向圆x 2-6x +y 2+8=0引切线,则切线长的最小值为________.解析:切线长的最小值在直线y =x +1上的点与圆心距离最小时取得,圆心(3,0)到直线的距离为d =|3-0+1|2=22,圆的半径为1,故切线长的最小值为d 2-r 2=8-1=7.答案:72.(2020·杭州学军中学高三调研)已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点,则n -3m +2的最大值为________,最小值为________.解析:因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22,记点Q (-2,3).因为n -3m +2表示直线MQ 的斜率,设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0,则n -3m +2=k .由直线MQ 与圆C 有公共点,所以|2k -7+2k +3|1+k 2≤2 2.可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.答案:2+ 3 2-33.设圆x 2+y 2=2的切线l 与x 轴正半轴,y 轴正半轴分别交于点A ,B ,当|AB |取最小值时,切线l 的方程为________________.解析:设点A ,B 的坐标分别为A (a ,0),B (0,b )(a >0,b >0),则直线AB 的方程为x a +yb=1,即bx +ay -ab =0.因为直线AB 和圆相切,所以圆心到直线AB 的距离d =|-ab |a 2+b 2=2,即2(a 2+b 2)=(ab )2≥4ab ,所以ab ≥4,当且仅当a =b 时取等号.又|AB |=a 2+b 2=ab2≥22,所以|AB |的最小值为22,此时a =b ,即a=b =2,切线l 的方程为x 2+y2=1,即x +y -2=0.答案:x +y -2=0与圆有关的轨迹问题已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程.【解】 (1)由x 2+y 2-6x +5=0得(x -3)2+y 2=4, 所以圆C 1的圆心坐标为(3,0). (2)设M (x ,y ),因为点M 为线段AB 的中点,所以C 1M ⊥AB ,所以kC 1M ·k AB =-1,当x ≠3时可得yx -3·yx =-1,整理得⎝⎛⎭⎪⎫x -322+y 2=94,又当直线l 与x 轴重合时,M 点坐标为(3,0),代入上式成立.设直线l 的方程为y =kx ,与x 2+y 2-6x +5=0联立, 消去y 得:(1+k 2)x 2-6x +5=0.令其判别式Δ=(-6)2-4(1+k 2)×5=0,得k 2=45,此时方程为95x 2-6x +5=0,解上式得x =53,因此53<x ≤3.所以线段AB 的中点M的轨迹的方程为⎝ ⎛⎭⎪⎫x -322+y 2=94⎝ ⎛⎭⎪⎫53<x ≤3.求与圆有关的轨迹方程的方法已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ).因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON (图略),则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.[基础题组练]1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程是( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1解析:选A.设圆心为(0,a ), 则(1-0)2+(2-a )2=1,解得a =2,故圆的方程为x 2+(y -2)2=1.故选A. 2.方程|x |-1=1-(y -1)2所表示的曲线是( ) A .一个圆 B .两个圆 C .半个圆D .两个半圆解析:选 D.由题意得⎩⎪⎨⎪⎧(|x |-1)2+(y -1)2=1,|x |-1≥0,即⎩⎪⎨⎪⎧(x -1)2+(y -1)2=1,x ≥1或⎩⎪⎨⎪⎧(x +1)2+(y -1)2=1,x ≤-1. 故原方程表示两个半圆.3.(2020·金华十校联考)已知圆(x -2)2+(y +1)2=16的一条直径通过直线x -2y +3=0被圆所截弦的中点,则该直径所在的直线方程为( )A .3x +y -5=0B .x -2y =0C .x -2y +4=0D .2x +y -3=0解析:选D.直线x -2y +3=0的斜率为12,已知圆的圆心坐标为(2,-1),该直径所在直线的斜率为-2,所以该直径所在的直线方程为y +1=-2(x -2),即2x +y -3=0.故选D.4.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程是( )A .(x +1)2+y 2=2 B .(x +1)2+y 2=8 C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:选A.直线x -y +1=0与x 轴的交点为⎩⎪⎨⎪⎧y =0,x -y +1=0,即(-1,0).根据题意,圆心为(-1,0).因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离,即r =d =|-1+0+3|12+12=2, 则圆的方程为(x +1)2+y 2=2.故选A.5.圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( )A .1+ 2B .2C .1+22D .2+22解析:选A.将圆的方程化为(x -1)2+(y -1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2距离的最大值为d +1=2+1,选A.6.(2020·杭州八校联考)圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b的最小值是( )A .2 3B.203C .4D.163解析:选D.由圆x 2+y 2+2x -6y +1=0知其标准方程为(x +1)2+(y -3)2=9,因为圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,所以该直线经过圆心(-1,3),即-a -3b +3=0,所以a +3b =3(a >0,b >0).所以1a +3b =13(a +3b )⎝ ⎛⎭⎪⎫1a +3b =13⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥13⎝ ⎛⎭⎪⎪⎫10+23a b ·3b a =163,当且仅当3b a =3a b ,即a =b 时取等号,故选D.7.圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3), 若M (m ,6)在圆C 内,则m 的取值范围为________.解析:设圆心为C (a ,0),由|CA |=|CB |得 (a +1)2+12=(a -1)2+32,所以a =2. 半径r =|CA |=(2+1)2+12=10. 故圆C 的方程为(x -2)2+y 2=10.由题意知(m -2)2+(6)2<10,解得0<m <4. 答案:(0,4)8.已知点P (-2,-3),圆C :(x -4)2+(y -2)2=9,过点P 作圆C 的两条切线,切点为A ,B ,则过P 、A 、B 三点的圆的方程为________________.解析:易知圆C 的圆心为C (4,2),连接AC 、BC , 由题意知PA ⊥AC ,PB ⊥BC ,所以P ,A ,B ,C 四点共圆,连接PC ,则所求圆的圆心O ′为PC 的中点,所以O ′⎝⎛⎭⎪⎫1,-12,所以所求圆的半径r ′=(1+2)2+⎝ ⎛⎭⎪⎫-12+32=614. 所以过P ,A ,B 三点的圆的方程为(x -1)2+⎝⎛⎭⎪⎫y +122=614.答案:(x -1)2+⎝⎛⎭⎪⎫y +122=6149.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点,则点M 的轨迹方程为________________.解析:圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x ,2-y ).由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0. 即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以点M 的轨迹方程是(x -1)2+(y -3)2=2.答案:(x -1)2+(y -3)2=210.已知圆O :x 2+y 2=8,点A (2,0),动点M 在圆上,则∠OMA 的最大值为________.解析:设|MA |=a ,因为|OM |=22,|OA |=2,由余弦定理知cos ∠OMA =|OM |2+|MA |2-|OA |22|OM |·|MA |=(22)2+a 2-222×22a =142·⎝ ⎛⎭⎪⎫4a +a ≥142·24a ·a =22,当且仅当a =2时等号成立. 所以∠OMA ≤π4,即∠OMA 的最大值为π4.答案:π411.求适合下列条件的圆的方程.(1)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2);(2)过三点A (1,12),B (7,10),C (-9,2).解:(1)法一:设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎪⎨⎪⎧b =-4a ,(3-a )2+(-2-b )2=r 2,|a +b -1|2=r , 解得a =1,b =-4,r =2 2.所以圆的方程为(x -1)2+(y +4)2=8.法二:过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).所以半径r =(1-3)2+(-4+2)2=22, 所以所求圆的方程为(x -1)2+(y +4)2=8.(2)设圆的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则⎩⎪⎨⎪⎧1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0. 解得D =-2,E =-4,F =-95.所以所求圆的方程为x 2+y 2-2x -4y -95=0.12.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上, 得a +b -3=0.①又因为直径|CD |=410,所以|PA |=210, 所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧a =-3b =6或⎩⎪⎨⎪⎧a =5,b =-2.所以圆心P (-3,6)或P (5,-2). 所以圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.[综合题组练]1.(2020·台州市书生中学高三模拟)在△ABC 中,BC =6,AB =2AC ,则△ABC 面积的最大值为( )A .10B .11C .12D .14解析:选C.以B 为原点,BC 所在的直线为x 轴,建立直角坐标系(图略),则C (6,0).设A (x ,y ).由AB =2AC 得x 2+y 2=4[(6-x )2+y 2],即(x -8)2+y 2=16.则A 的轨迹是以(8,0)为圆心,半径为4的圆(除去(12,0)和(4,0)),所以A 到BC 的距离的最大值为4.所以△ABC 面积的最大值为S =12BC ×4=12.故选C.2.已知实数x ,y 满足x 2+y 2=4(y ≥0),则m =3x +y 的取值范围是( )A .(-23,4)B .[-23,4]C .[-4,4]D .[-4,23]解析:选B.由于y ≥0,所以x 2+y 2=4(y ≥0)为上半圆.3x +y -m =0是直线(如图),且斜率为-3,在y 轴上截距为m ,又当直线过点(-2,0)时,m =-23,设圆心O 到直线3x +y -m =0的距离为d ,所以⎩⎪⎨⎪⎧m ≥-23,d ≤r ,即⎩⎪⎨⎪⎧m ≥-23,|-m |2≤2,解得m ∈[-23,4].3.设命题p :⎩⎪⎨⎪⎧4x +3y -12≥0,k -x ≥0,x +3y ≤12(x ,y ,k ∈R 且k >0);命题q :(x -3)2+y 2≤25(x ,y ∈R ).若p 是q 的充分不必要条件,则k的取值范围是________.解析:如图所示:命题p 表示的范围是图中△ABC 的内部(含边界),命题q 表示的范围是以点(3,0)为圆心,5为半径的圆及圆内部分,p 是q 的充分不必要条件,实际上只需A ,B ,C 三点都在圆内(或圆上)即可.由题知B ⎝ ⎛⎭⎪⎫k ,4-43k ,则⎩⎪⎨⎪⎧k >0,(k -3)2+169(3-k )2≤25, 解得0<k ≤6.答案:(0,6]4.(2020·宁波镇海中学高考模拟)已知圆C:x2+y2-2x-4y +1=0上存在两点关于直线l:x+my+1=0对称,经过点M(m,m)作圆C的切线,切点为P,则m=________; |MP|=________.解析:因为圆C:x2+y2-2x-4y+1=0上存在两点关于直线l:x+my+1=0对称,所以直线l:x+my+1=0过圆心C(1,2),所以1+2m+1=0.解得m=-1.圆C:x2+y2-2x-4y+1=0,可化为(x-1)2+(y-2)2=4,圆心(1,2),半径r=2,因为经过点M(m,m)作圆C的切线,切点为P,所以|MP|=(1+1)2+(2+1)2-4=3.答案:-1 35.已知方程x2+y2-2x-4y+m=0.(1)若此方程表示圆,求实数m的取值范围;(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值;(3)在(2)的条件下,求以MN为直径的圆的方程.解:(1)由D2+E2-4F>0得(-2)2+(-4)2-4m>0,解得m<5.(2)设M(x1,y1),N(x2,y2),由x+2y-4=0得x=4-2y;将x=4-2y代入x2+y2-2x-4y+m=0得5y2-16y+8+m=0,所以y 1+y 2=165,y 1y 2=8+m 5.因为OM ⊥ON ,所以y 1x 1·y 2x 2=-1,即x 1x 2+y 1y 2=0.因为x 1x 2=(4-2y 1)(4-2y 2)=16-8(y 1+y 2)+4y 1y 2,所以x 1x 2+y 1y 2=16-8(y 1+y 2)+5y 1y 2=0,即(8+m )-8×165+16=0,解得m =85. (3)设圆心C 的坐标为(a ,b ),则a =12(x 1+x 2)=45,b =12(y 1+y 2)=85,半径r =|OC |=455,所以所求圆的方程为⎝⎛⎭⎪⎫x -452+⎝⎛⎭⎪⎫y -852=165. 6.已知以点C ⎝ ⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 和点A ,与y 轴交于点O 和点B ,其中O 为坐标原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程.解:(1)证明:因为圆C 过原点O ,所以OC 2=t 2+4t2. 设圆C 的方程是 (x -t )2+⎝⎛⎭⎪⎫y -2t 2=t 2+4t 2, 令x =0,得y 1=0,y 2=4t; 令y =0,得x 1=0,x 2=2t ,所以S △OAB =12OA ·OB =12×|2t |×|4t|=4, 即△OAB 的面积为定值.(2)因为OM =ON ,CM =CN ,因为OC 垂直平分线段MN .因为k MN =-2,所以k OC =12. 所以2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5,此时,C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.符合题意,此时,圆的方程为(x -2)2+(y -1)2=5.当t =-2时,圆心C 的坐标为(-2,-1),OC =5,此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交,所以t =-2不符合题意,舍去.综上圆C 的方程为(x -2)2+(y -1)2=5.。
学案47 圆的方程导学目标: 1.掌握确定圆的几何要素.2.掌握圆的标准方程与一般方程.3.初步了解用代数方法处理几何问题的思想.自主梳理1.圆的定义在平面内,到________的距离等于________的点的________叫做圆.2.确定一个圆最基本的要素是________和________.3.圆的标准方程(x-a)2+(y-b)2=r2 (r>0),其中________为圆心,____为半径.4.圆的一般方程x2+y2+Dx+Ey+F=0表示圆的充要条件是____________________,其中圆心为________________________,半径r=________________________.5.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为:(1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a,b,r或D、E、F的方程组;(3)解出a、b、r或D、E、F,代入标准方程或一般方程.6.点与圆的位置关系点和圆的位置关系有三种.圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0),(1)点在圆上:(x0-a)2+(y0-b)2____r2;(2)点在圆外:(x0-a)2+(y0-b)2____r2;(3)点在圆内:(x0-a)2+(y0-b)2____r2.自我检测1.方程x2+y2+4mx-2y+5m=0表示圆时,m的取值范围为______________.2.圆心在y轴上,半径为1,且过点(1,2)的圆的方程是________.3.点P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程是______________.4.已知点(0,0)在圆:x2+y2+ax+ay+2a2+a-1=0外,则a的取值范围是________.5.过圆x2+y2=4外一点P(4,2)作圆的切线,切点为A、B,则△APB的外接圆方程为________.探究点一求圆的方程例1 求经过点A(-2,-4),且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程.变式迁移1 根据下列条件,求圆的方程.(1)与圆O:x2+y2=4相外切于点P(-1,3),且半径为4的圆的方程;(2)圆心在原点且圆周被直线3x+4y+15=0分成1∶2两部分的圆的方程.探究点二圆的几何性质的应用例2 已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP⊥OQ (O 为坐标原点),求该圆的圆心坐标及半径.变式迁移2 如图,已知圆心坐标为(3,1)的圆M与x轴及直线y=3x分别相切于A、B两点,另一圆N与圆M外切且与x轴及直线y=3x分别相切于C、D两点.(1)求圆M和圆N的方程;(2)过点B作直线MN的平行线l,求直线l被圆N截得的弦的长度.探究点三 与圆有关的最值问题例3 已知实数x 、y 满足方程x 2+y 2-4x +1=0. (1)求y -x 的最大值和最小值;(2)求x 2+y 2的最大值和最小值.变式迁移3 如果实数x ,y 满足方程(x -3)2+(y -3)2=6,求y x的最大值与最小值.1.求圆的标准方程就是求出圆心的坐标与圆的半径,借助弦心距、弦、半径之间的关系计算可大大简化计算的过程与难度.2.点与圆的位置关系有三种情形:点在圆内、点在圆上、点在圆外,其判断方法是看点到圆心的距离d 与圆半径r 的关系.d <r 时,点在圆内;d =r 时,点在圆上;d >r 时,点在圆外.3.本节主要的数学思想方法有:数形结合思想、方程思想.课后练习(满分:90分)一、填空题(每小题6分,共48分)1.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为________.2.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是______________.3.圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0 (a 、b ∈R )对称,则ab 的取值范围是____________.4.已知点P (2,1)在圆C :x 2+y 2+ax -2y +b =0上,点P 关于直线x +y -1=0的对称点也在圆C 上,则实数a ,b 的值分别为________和________.5.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值为________.6.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为________________.7.圆心在直线2x -3y -1=0上的圆与x 轴交于A (1,0)、B (3,0)两点,则圆的方程为______________.8.设直线ax -y +3=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则a =________.二、解答题(共42分)9.(14分)根据下列条件,求圆的方程:(1)经过A (6,5)、B (0,1)两点,并且圆心C 在直线3x +10y +9=0上;(2)经过P (-2,4)、Q (3,-1)两点,并且在x 轴上截得的弦长等于6.10.(14分)已知点(x ,y )在圆(x -2)2+(y +3)2=1上. (1)求x +y 的最大值和最小值;(2)求y x的最大值和最小值;(3)求x 2+y 2+2x -4y +5的最大值和最小值.11.(14分)如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB =20米,拱高OP =4米,每隔4米需用一支柱支撑,求支柱A 2P 2的高度(精确到0.01米)(825≈28.72).学案47 圆的方程答案自主梳理1.定点 定长 集合 2.圆心 半径 3.(a ,b ) r4.D 2+E 2-4F >0 ⎝ ⎛⎭⎪⎫-D 2,-E 2 D 2+E 2-4F 26.(1)= (2)> (3)< 自我检测1.m <14或m >1 2.x 2+(y -2)2=1 3.x -y -3=04.(-1-73,-1)∪(12,-1+73)5.(x -2)2+(y -1)2=5 课堂活动区例 1 解题导引 (1)一可以利用圆的一般式方程,通过转化三个独立条件,得到有关三个待定字母的关系式求解;二可以利用圆的方程的标准形式,由条件确定圆心和半径.(2)一般地,求圆的方程时,当条件中给出的是圆上若干点的坐标,较适合用一般式,通过解三元方程组求待定系数;当条件中给出的是圆心坐标或圆心在某直线上、圆的切线方程、圆的弦长等条件,适合用标准式.解 方法一 设圆心为C ,所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心C ⎝ ⎛⎭⎪⎫-D 2,-E 2.∴k CB =6+E28+D 2.由k CB ·k l =-1,∴6+E28+D 2·⎝ ⎛⎭⎪⎫-13=-1.①又有(-2)2+(-4)2-2D -4E +F =0,②又82+62+8D +6E +F =0.③解①②③,可得D =-11,E =3,F =-30.∴所求圆的方程为x 2+y 2-11x +3y -30=0.方法二 设圆的圆心为C ,则CB ⊥l ,从而可得CB 所在直线的方程为y -6=3(x -8),即3x -y -18=0.①由A (-2,-4),B (8,6),得AB 的中点坐标为(3,1).又k AB =6+48+2=1,∴AB 的垂直平分线的方程为y -1=-(x -3), 即x +y -4=0.②由①②联立后,解得⎩⎪⎨⎪⎧x =112,y =-32.即圆心坐标为⎝ ⎛⎭⎪⎫112,-32.∴所求圆的半径r =⎝ ⎛⎭⎪⎫112-82+⎝ ⎛⎭⎪⎫-32-62=1252. ∴所求圆的方程为⎝⎛⎭⎪⎫x -1122+⎝ ⎛⎭⎪⎫y +322=1252.变式迁移1 解 (1)设所求圆的圆心Q 的坐标为(a ,b ),圆Q 的方程为(x -a )2+(y -b )2=42,又∵OQ =6,∴联立方程⎩⎨⎧-a 2+-b 2=62-1-a 2+3-b 2=16, 解得a =-3,b =33, 所以所求圆的方程为(x +3)2+(y -33)2=16. (2)如图,因为圆周被直线3x +4y +15=0分成1∶2两部分,所以∠AOB =120°,而圆心(0,0)到直线3x +4y +15=0的距离d =1532+42=3,在△AOB 中,可求得OA =6.所以所求圆的方程为x 2+y 2=36.例 2 解题导引 (1)在解决与圆有关的问题中,借助于圆的几何性质,往往会使得思路简捷明了,简化思路,简便运算.(2)本题利用方程思想求m 值,即“列出m 的方程”求m 值. 解 方法一 将x =3-2y ,代入方程x 2+y 2+x -6y +m =0,得5y 2-20y +12+m =0.设P (x 1,y 1),Q (x 2,y 2),则y 1、y 2满足条件:y 1+y 2=4,y 1y 2=12+m5. ∵OP ⊥OQ ,∴x 1x 2+y 1y 2=0. 而x 1=3-2y 1,x 2=3-2y 2. ∴x 1x 2=9-6(y 1+y 2)+4y 1y 2. ∴9-6(y 1+y 2)+5y 1y 2=0,∴9-6×4+5×12+m5=0,∴m =3,此时1+36-3×4>0,圆心坐标为⎝ ⎛⎭⎪⎫-12,3,半径r =52. 方法二如图所示,设弦PQ 中点为M , ∵O 1M ⊥PQ , ∴kO 1M =2.又圆心坐标为⎝ ⎛⎭⎪⎫-12,3, ∴O 1M 的方程为y -3=2⎝ ⎛⎭⎪⎫x +12, 即y =2x +4.由方程组⎩⎪⎨⎪⎧y =2x +4,x +2y -3=0,解得M 的坐标为(-1,2).则以PQ 为直径的圆可设为(x +1)2+(y -2)2=r 2. ∵OP ⊥OQ ,∴点O 在以PQ 为直径的圆上.∴(0+1)2+(0-2)2=r 2,即r 2=5,MQ 2=r 2.在Rt △O 1MQ 中,O 1M 2+MQ 2=O 1Q 2.∴⎝ ⎛⎭⎪⎫-12+12+(3-2)2+5=1+-2-4m 4.∴m =3.∴半径为52,圆心为⎝ ⎛⎭⎪⎫-12,3. 变式迁移2 解 (1)∵M 的坐标为(3,1),∴M 到x 轴的距离为1,即圆M 的半径为1,则圆M 的方程为(x -3)2+(y -1)2=1.设圆N 的半径为r , 连结MA ,NC ,OM ,则MA ⊥x 轴,NC ⊥x 轴,由题意知:M ,N 点都在∠COD 的平分线上, ∴O ,M ,N 三点共线.由Rt △OAM ∽Rt △OCN 可知,OM ∶ON =MA ∶NC ,即23+r =1r⇒r =3,则OC =33,则圆N 的方程为(x -33)2+(y -3)2=9.(2)由对称性可知,所求的弦长等于过A 点与MN 平行的直线被圆N 截得的弦的长度,此弦的方程是y =33(x -3),即x -3y -3=0,圆心N 到该直线的距离d =32, 则弦长为2r 2-d 2=33.例3 解题导引 与圆有关的最值问题,常见的有以下几种类型:(1)形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题;(2)形如t =ax+by 形式的最值问题,可转化为动直线截距的最值问题;(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.解 (1)y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2± 6.所以y -x 的最大值为-2+6,最小值为-2- 6.(2)x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点与圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为-2+-2=2,所以x 2+y 2的最大值是(2+3)2=7+43, x 2+y 2的最小值是(2-3)2=7-4 3. 变式迁移3 解 (1)设P (x ,y ),则P 点的轨迹就是已知圆C :(x -3)2+(y -3)2=6.而y x 的几何意义就是直线OP 的斜率,设yx=k ,则直线OP 的方程为y =kx . 当直线OP 与圆相切时,斜率取最值.因为点C 到直线y =kx 的距离d =|3k -3|k 2+1,所以当|3k -3|k 2+1=6,即k =3±22时,直线OP 与圆相切. 即yx的最大值为3+22,最小值为3-2 2. 课后练习区 1.10 2解析 圆的方程化为标准形式为(x -1)2+(y -3)2=10,由圆的性质可知最长弦|AC |=210,最短弦BD 恰以E (0,1)为中心,设点F 为其圆心,坐标为(1,3).故EF =5,∴BD =210-52=25,∴S 四边形ABCD =12AC ·BD =10 2.2.(-2,23) 3.⎝⎛⎦⎥⎤-∞,14 4.0 -3解析 圆的方程可化为⎝ ⎛⎭⎪⎫x +a 22+(y -1)2=1+a 24-b ,由题知圆心在直线x +y -1=0上,∴-a2+1-1=0,∴a =0,又点(2,1)在圆上,所以b =-3.5.3- 2解析 l AB :x -y +2=0,圆心(1,0)到l AB 的距离d =|3|2=32,∴AB 边上的高的最小值为32-1.又AB =2 2.∴S △min =12×22×⎝ ⎛⎭⎪⎫32-1=3- 2.6.(x +1)2+y 2=2解析 直线x -y +1=0与x 轴的交点为(-1,0),即圆C 的圆心坐标为(-1,0).又圆C 与直线x +y +3=0相切,∴圆C 的半径为r =|-1+0+3|2= 2.∴圆C 的方程为(x +1)2+y 2=2.7.(x -2)2+(y -1)2=2解析 所求圆与x 轴交于A (1,0),B (3,0)两点,故线段AB 的垂直平分线x =2过所求圆的圆心,又所求圆的圆心在直线2x -3y -1=0上,所以,两直线的交点即为所求圆的圆心坐标,解之得为(2,1),进一步可求得半径为2,所以,圆的标准方程为(x -2)2+(y -1)2=2.8.0解析 由于弦AB 的长为23,则圆心(1,2)到直线ax -y +3=0的距离等于1,即|a -2+3|a 2+1=1,解得a =0. 9.解 (1)∵AB 的中垂线方程为3x +2y -15=0, 由⎩⎪⎨⎪⎧ 3x +2y -15=0,3x +10y +9=0,解得⎩⎪⎨⎪⎧x =7,y =-3.(3分) ∴圆心为C (7,-3).又CB =65,故所求圆的方程为(x -7)2+(y +3)2=65.(7分)(2)设圆的方程为x 2+y 2+Dx +Ey +F =0,将P 、Q 点的坐标分别代入得 ⎩⎪⎨⎪⎧ 2D -4E -F =20,3D -E +F =-10.① ② (8分)又令y =0,得x 2+Dx +F =0,③由|x 1-x 2|=6有D 2-4F =36.④由①②④解得D =-2,E =-4,F =-8或D =-6,E =-8,F =0.故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.(14分)10.解 (1)设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 的纵截距,所以x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时的纵截距.由直线与圆相切,得圆心到直线的距离等于半径, 即|2+--t |2=1,解得t =2-1或t =-2-1,所以x +y 的最大值为2-1, 最小值为-2-1.(5分)(2)y x 可视为点(x ,y )与原点连线的斜率,y x的最大值和最小值就是过原点的直线与该圆有公共点时斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线方程为y =kx ,由直线与圆相切,得圆心到直线的距离等于半径,即|2k --1+k2=1, 解得k =-2+233或k =-2-233,所以y x 的最大值为-2+233,最小值为-2-233.(10分)(3)x 2+y 2+2x -4y +5,即[x --2+y -2,其最值可视为点(x ,y )到定点(-1,2)的距离的最值,可转化为圆心(2,-3)到定点(-1, 2)的距离与半径的和或差.又因为圆心到定点(-1,2)的距离为34,所以x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1.(14分)11.解 建立如图所示的坐标系,设该圆拱所在圆的方程为x 2+y 2+Dx +Ey +F =0,由于圆心在y 轴上,所以D =0,那么方程即为x 2+y 2+Ey +F =0.(3分)下面用待定系数法来确定E 、F 的值.因为P 、B 都在圆上,所以它们的坐标(0,4)、(10,0)都是这个圆的方程的解,于是有方程组⎩⎪⎨⎪⎧42+4E +F =0,102+F =0,(7分)解得F =-100,E =21.∴这个圆的方程是x 2+y 2+21y -100=0.(10分) 把点P 2的横坐标x =-2代入这个圆的方程,得(-2)2+y 2+21y -100=0,y 2+21y -96=0. ∵P 2的纵坐标y >0,故应取正值,∴y =-21+212+4×962≈3.86(米).所以支柱A 2P 2的高度约为3.86米.(14分)。
高考数学大一轮复习第九章平面解析几何9.3圆的方程教案文含解析新人教A版§9.3圆的方程最新考纲考情考向分析掌握确定圆的几何要素,掌握圆的标准方程与一般方程.以考查圆的方程为主,与圆有关的轨迹问题、最值问题也是考查的热点,属中档题.题型主要以选择、填空题为主,要求相对较低,但内容很重要,有时也会在解答题中出现.圆的定义与方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准式(x-a)2+(y-b)2=r2(r>0)圆心为(a,b)半径为r一般式x2+y2+Dx+Ey+F=0充要条件:D2+E2-4F>0圆心坐标:⎝⎛⎭⎪⎫-D2,-E2半径r=12D2+E2-4F概念方法微思考1.二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的条件是什么?提示⎩⎪⎨⎪⎧A=C≠0,B=0,D2+E2-4AF>0.2.已知⊙C:x2+y2+Dx+Ey+F=0,则“E=F=0且D<0”是“⊙C与y轴相切于原点”的什么条件?提示 由题意可知,⊙C 与y 轴相切于原点时,圆心坐标为⎝ ⎛⎭⎪⎫-D2,0,而D 可以大于0,所以“E =F =0且D <0”是“⊙C 与y 轴相切于原点”的充分不必要条件. 3.如何确定圆的方程?其步骤是怎样的?提示 确定圆的方程的主要方法是待定系数法,大致步骤: (1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a ,b ,r 或D ,E ,F 的方程组. (3)解出a ,b ,r 或D ,E ,F 代入标准方程或一般方程. 4.点与圆的位置关系有几种?如何判断? 提示 点和圆的位置关系有三种.已知圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( √ )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( √ )(3)方程x 2+2ax +y 2=0一定表示圆.( × )(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ ) (5)方程(x +a )2+(y +b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的圆.( × ) 题组二 教材改编2.圆心为(1,1)且过原点的圆的方程是( ) A.(x -1)2+(y -1)2=1 B.(x +1)2+(y +1)2=1 C.(x +1)2+(y +1)2=2 D.(x -1)2+(y -1)2=2答案 D解析 因为圆心为(1,1)且过原点,所以该圆的半径r =12+12=2,则该圆的方程为(x -1)2+(y -1)2=2.3.以点(3,-1)为圆心,并且与直线3x +4y =0相切的圆的方程是( ) A.(x -3)2+(y +1)2=1 B.(x -3)2+(y -1)2=1D.(x +3)2+(y +1)2=1 答案 A4.圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为______________. 答案 (x -2)2+y 2=10 解析 设圆心坐标为C (a,0), ∵点A (-1,1)和B (1,3)在圆C 上, ∴|CA |=|CB |,即(a +1)2+1=(a -1)2+9, 解得a =2, ∴圆心为C (2,0),半径|CA |=(2+1)2+1=10, ∴圆C 的方程为(x -2)2+y 2=10. 题组三 易错自纠5.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(-∞,-22)∪(22,+∞) C.(-∞,-3)∪(3,+∞) D.(-∞,-23)∪(23,+∞) 答案 B解析 将x 2+y 2+mx -2y +3=0化为圆的标准方程得⎝ ⎛⎭⎪⎫x +m 22+(y -1)2=m 24-2.由其表示圆可得m 24-2>0,解得m <-22或m >2 2.6.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( ) A.-1<a <1 B.0<a <1 C.a >1或a <-1 D.a =±4答案 A解析 ∵点(1,1)在圆内, ∴(1-a )2+(a +1)2<4,即-1<a <1.7.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A.(x -2)2+(y -1)2=1C.(x +2)2+(y -1)2=1 D.(x -3)2+(y -1)2=1 答案 A解析 由于圆心在第一象限且与x 轴相切,可设圆心为(a,1)(a >0),又圆与直线4x -3y =0相切, ∴|4a -3|5=1,解得a =2或a =-12(舍去). ∴圆的标准方程为(x -2)2+(y -1)2=1. 故选A.题型一 圆的方程例1(1)已知圆E 经过三点A (0,1),B (2,0),C (0,-1),且圆心在x 轴的正半轴上,则圆E 的标准方程为( )A.⎝ ⎛⎭⎪⎫x -322+y 2=254B.⎝ ⎛⎭⎪⎫x +342+y 2=2516C.⎝ ⎛⎭⎪⎫x -342+y 2=2516D.⎝ ⎛⎭⎪⎫x -342+y 2=254答案 C解析 方法一 (待定系数法)根据题意,设圆E 的圆心坐标为(a,0)(a >0),半径为r ,则圆E 的标准方程为(x -a )2+y 2=r 2(a >0).由题意得⎩⎪⎨⎪⎧a 2+12=r 2,(2-a )2=r 2,a 2+(-1)2=r 2,解得⎩⎪⎨⎪⎧a =34,r 2=2516,所以圆E 的标准方程为⎝ ⎛⎭⎪⎫x -342+y 2=2516.方法二 (待定系数法)设圆E 的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则由题意得⎩⎪⎨⎪⎧1+E +F =0,4+2D +F =0,1-E +F =0,解得⎩⎪⎨⎪⎧D =-32,E =0,F =-1,所以圆E 的一般方程为x 2+y 2-32x -1=0,即⎝ ⎛⎭⎪⎫x -342+y 2=2516. 方法三 (几何法)因为圆E 经过点A (0,1),B (2,0),所以圆E 的圆心在线段AB 的垂直平分线y -12=2(x -1)上.又圆E 的圆心在x 轴的正半轴上,所以圆E 的圆心坐标为⎝ ⎛⎭⎪⎫34,0. 则圆E 的半径为|EB |=⎝ ⎛⎭⎪⎫2-342+(0-0)2=54, 所以圆E 的标准方程为⎝ ⎛⎭⎪⎫x -342+y 2=2516.(2)已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为______________________________.答案 x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0解析 设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P ,Q 两点的坐标分别代入得⎩⎪⎨⎪⎧2D -4E -F =20, ①3D -E +F =-10.②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根,由|x 1-x 2|=6,即(x 1+x 2)2-4x 1x 2=36, 得D 2-4F =36,④由①②④解得D =-2,E =-4,F =-8或D =-6,E =-8,F =0.故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.思维升华 (1)直接法:直接求出圆心坐标和半径,写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值; ②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 跟踪训练1已知圆心在x 轴上,半径为5的圆位于y 轴右侧,且截直线x +2y =0所得弦的长为2,则圆的方程为__________. 答案 (x -25)2+y 2=5解析 根据题意,设圆的圆心坐标为(a,0)(a >0),则圆的标准方程为(x -a )2+y 2=5(a >0),则圆心到直线x +2y =0的距离d =|a +2×0|12+22=55a . 又该圆截直线x +2y =0所得弦的长为2,所以可得12+⎝ ⎛⎭⎪⎫55a 2=5,解得a =2 5.故圆的方程为(x -25)2+y 2=5.题型二 与圆有关的轨迹问题例2已知Rt△ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解 (1)方法一 设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0. 因为AC ⊥BC ,且BC ,AC 斜率均存在,所以k AC ·k BC =-1, 又k AC =y x +1,k BC =y x -3,所以y x +1·yx -3=-1, 化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).方法二 设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0), 将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).思维升华求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: ①直接法:直接根据题目提供的条件列出方程. ②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程.④相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.跟踪训练2设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹方程.解 如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2, 线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.因为平行四边形的对角线互相平分,所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4,又点N (x 0,y 0)在圆x 2+y 2=4上, 所以(x +3)2+(y -4)2=4.所以点P 的轨迹是以(-3,4)为圆心,2为半径的圆,直线OM 与轨迹相交于两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285,不符合题意,舍去,所以点P 的轨迹为(x +3)2+(y -4)2=4,除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285.题型三 与圆有关的最值问题例3已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径,即|2+(-3)-t |2=1,解得t =2-1或t =-2-1. ∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在本例的条件下,求yx的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,y x的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233,∴y x 的最大值为-2+233,最小值为-2-233.2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=(x +1)2+(y -2)2,求它的最值可视为求点(x ,y )到定点(-1,2)的距离的最值,可转化为求圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法. ①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题.跟踪训练3已知M (x ,y )为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3). (1)求|MQ |的最大值和最小值; (2)求y -3x +2的最大值和最小值; (3)求y -x 的最大值和最小值.解 (1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=(2+2)2+(7-3)2=42,∴|MQ |max =42+22=62, |MQ |min =42-22=2 2. (2)可知y -3x +2表示直线MQ 的斜率k . 设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0. 由直线MQ 与圆C 有交点, ∴|2k -7+2k +3|1+k2≤22, 可得2-3≤k ≤2+3, ∴y -3x +2的最大值为2+3,最小值为2- 3. (3)设y -x =b ,则x -y +b =0.当直线y =x +b 与圆C 相切时,截距b 取到最值, ∴|2-7+b |12+(-1)2=22,∴b =9或b =1.∴y -x 的最大值为9,最小值为1.1.若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A.0B.1C.2D.3 答案 B解析 方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,∴仅当a =0时,方程x 2+y 2+ax +2ay+2a 2+a -1=0表示圆,故选B.2.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是 ( ) A.x 2+y 2=2 B.x 2+y 2= 2 C.x 2+y 2=1 D.x 2+y 2=4答案 A解析 AB 的中点坐标为(0,0), |AB |=[1-(-1)]2+(-1-1)2=22,∴圆的方程为x 2+y 2=2.3.以(a,1)为圆心,且与两条直线2x -y +4=0,2x -y -6=0同时相切的圆的标准方程为( )A.(x -1)2+(y -1)2=5 B.(x +1)2+(y +1)2=5 C.(x -1)2+y 2=5 D.x 2+(y -1)2=5 答案 A解析 由题意得,点(a,1)到两条直线的距离相等,且为圆的半径r . ∴|2a -1+4|22+(-1)2=|2a -1-6|22+(-1)2,解得a =1. ∴r =|2×1-1+4|22+(-1)2=5, ∴所求圆的标准方程为(x -1)2+(y -1)2=5.4.(2018·锦州调研)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A.x 2+y 2+10y =0 B.x 2+y 2-10y =0 C.x 2+y 2+10x =0 D.x 2+y 2-10x =0答案 B解析 根据题意,设圆心坐标为(0,r ),半径为r , 则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0.5.已知圆C 1:(x +1)2+(y -1)2=4,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A.(x +2)2+(y -2)2=4 B.(x -2)2+(y +2)2=4 C.(x +2)2+(y +2)2=4 D.(x -2)2+(y -2)2=4 答案 B解析 根据题意,设圆C 2的圆心为(a ,b ),圆C 1:(x +1)2+(y -1)2=4,其圆心为(-1,1),半径为2,若圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 1与C 2的圆心关于直线x -y -1=0对称,且圆C 2的半径为2,则有⎩⎪⎨⎪⎧b -1a +1=-1,a -12-b +12-1=0,解得⎩⎪⎨⎪⎧a =2,b =-2,则圆C 2的方程为(x -2)2+(y +2)2=4.6.圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是( ) A.1+ 2 B.2 C.1+22D.2+2 2答案 A解析 将圆的方程化为(x -1)2+(y -1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2的距离的最大值为d +1=2+1,故选A.7.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是____________,半径是________. 答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,5为半径的圆.8.已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为__________. 答案 (0,-1)解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1,所以当k =0时,圆C 的面积最大,此时圆心C 的坐标为(0,-1).9.若圆C 经过坐标原点与点(4,0),且与直线y =1相切,则圆C 的方程是__________________.答案 (x -2)2+⎝ ⎛⎭⎪⎫y +322=254解析 因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m ). 又因为圆与直线y =1相切,所以22+m 2=|1-m |, 解得m =-32.所以圆C 的方程为(x -2)2+⎝ ⎛⎭⎪⎫y +322=254.10.平面内动点P 到两点A ,B 的距离之比为常数λ(λ>0,且λ≠1),则动点P 的轨迹叫做阿波罗尼斯圆,若已知A (-2,0),B (2,0),λ=12,则此阿波罗尼斯圆的方程为____________.答案 x 2+y 2+203x +4=0解析 由题意,设P (x ,y ),则(x +2)2+y2(x -2)2+y 2=12, 化简可得x 2+y 2+203x +4=0.11.已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上, (1)求y x的最大值和最小值; (2)求x +y 的最大值和最小值.解 方程x 2+y 2-6x -6y +14=0可变形为(x -3)2+(y -3)2=4,则圆C 的半径为2. (1)(转化为斜率的最值问题求解)yx表示圆上的点P 与原点连线的斜率,显然当PO (O 为原点)与圆C 相切时,斜率最大或最小,如图所示.设切线方程为y =kx ,即kx -y =0,由圆心C (3,3)到切线的距离等于圆C 的半径, 可得|3k -3|k 2+1=2,解得k =9±2145.所以y x 的最大值为9+2145,最小值为9-2145.(2)(转化为截距的最值问题求解)设x +y =b ,则b 表示动直线y =-x +b 在y 轴上的截距,显然当动直线y =-x +b 与圆C 相切时,b 取得最大值或最小值,如图所示.由圆心C (3,3)到切线x +y =b 的距离等于圆C 的半径,可得|3+3-b |12+12=2, 即|b -6|=22,解得b =6±22,所以x +y 的最大值为6+22,最小值为6-2 2.12.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得的线段长为22,在y 轴上截得的线段长为2 3.(1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解 (1)设P (x ,y ),圆P 的半径为r , 则y 2+2=r 2,x 2+3=r 2. ∴y 2+2=x 2+3,即y 2-x 2=1. ∴P 点的轨迹方程为y 2-x 2=1. (2)设P 点的坐标为(x 0,y 0), 则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=1,∴r 2=3.∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1. ∴⎩⎪⎨⎪⎧x 0=0,y 0=-1,∴r 2=3.∴圆P 的方程为x 2+(y +1)2=3. 综上所述,圆P 的方程为x 2+(y ±1)2=3.13.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|PA |2,其中A (0,1),B (0,-1),则d 的最大值为________.答案 74解析 设P (x 0,y 0),d =|PB |2+|PA |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方,∴(x 20+y 20)max =(5+1)2=36,∴d max =74.14.已知动点P (x ,y )满足x 2+y 2-2|x |-2|y |=0,O 为坐标原点,则x 2+y 2的最大值为________. 答案 2 2 解析x 2+y 2表示曲线上的任意一点(x ,y )到原点的距离.当x ≥0,y ≥0时,x 2+y 2-2x -2y =0化为()x -12+()y -12=2,曲线上的点到原点的距离的最大值为2×2=22,当x <0,y <0时,x 2+y 2+2x +2y =0化为()x +12+()y +12=2,曲线上的点到原点的距离的最大值为2×2=22,当x ≥0,y <0时,x 2+y 2-2x +2y =0化为()x -12+()y +12=2,曲线上的点到原点的距离的最大值为2×2=22,当x <0,y ≥0时,x 2+y 2+2x -2y =0化为()x +12+()y -12=2,曲线上的点到原点的距离的最大值为2×2=2 2.综上可知,x 2+y 2的最大值为2 2.15.圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,则2a +6b的最小值是( ) A.2 3 B.203 C.323 D.163答案 C解析 由圆x 2+y 2+4x -12y +1=0知,其标准方程为(x +2)2+(y -6)2=39,∵圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,∴该直线经过圆心(-2,6),即-2a -6b +6=0,∴a +3b =3(a >0,b >0), ∴2a +6b =23(a +3b )⎝ ⎛⎭⎪⎫1a +3b =23⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥23⎝⎛⎭⎪⎫10+23a b ·3b a =323,当且仅当3b a =3ab,即a =b 时取等号,故选C.16.已知圆C 截y 轴所得的弦长为2,圆心C 到直线l :x -2y =0的距离为55,且圆C 被x 轴分成的两段弧长之比为3∶1,求圆C 的方程.解 设圆C 的方程为(x -a )2+(y -b )2=r 2,则点C 到x 轴、y 轴的距离分别为|b |,|a |.由题意可知⎩⎪⎨⎪⎧r 2=2b 2,r 2=a 2+1,|a -2b |5=55,∴⎩⎪⎨⎪⎧ a =-1,b =-1,r 2=2或⎩⎪⎨⎪⎧a =1,b =1,r 2=2.故所求圆C 的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2.。
一、知识梳理1.圆的方程标准方程(x—a)2+(y—b)2=r2(r>0)圆心(a,b)半径为r一般方程x2+y2+Dx+Ey+F=0条件:D2+E2—4F>0圆心:错误!半径:r=错误!错误!点M(x0,y0)与圆(x—a)2+(y—b)2=r2的位置关系.(1)若M(x0,y0)在圆外,则(x0—a)2+(y0—b)2>r2.(2)若M(x0,y0)在圆上,则(x0—a)2+(y0—b)2=r2.(3)若M(x0,y0)在圆内,则(x0—a)2+(y0—b)2<r2.常用结论1.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x—x1)(x—x2)+(y—y1)(y—y 2)=0.2.二元二次方程表示圆的条件对于方程x2+y2+Dx+Ey+F=0表示圆时易忽视D2+E2—4F>0这一条件.二、习题改编1.(必修2P123练习T2改编)圆x2+y2—2x+4y—6=0的圆心坐标,半径.答案:(1,—2)错误!2.(必修2P120练习T1(2)改编)若圆的圆心为(—8,3),且经过点(—5,0),则圆的标准方程为.答案:(x+8)2+(y—3)2=183.(必修2P124A组T2(2)改编)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为.答案:x2+y2—2x=0一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)确定圆的几何要素是圆心与半径.()(2)方程x2+y2=a2表示半径为a的圆.()(3)方程x2+y2+4mx—2y+5m=0表示圆.()(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2—4AF>0.()答案:(1)√(2)×(3)×(4)√二、易错纠偏错误!(1)忽视方程表示圆的条件D2+E2—4F>0;(2)错用点与圆的位置关系判定.1.方程x2+y2+4mx—2y+5m=0表示圆的充要条件是()A.错误!<m<1B.m<错误!或m>1C.m<错误!D.m>1解析:选B.由(4m)2+4—4×5m>0,得m<错误!或m>1.2.点(1,1)在圆(x—a)2+(y+a)2=4内,则实数a的取值范围是.解析:因为点(1,1)在圆的内部,所以(1—a)2+(1+a)2<4,所以—1<a<1.答案:(—1,1)求圆的方程(师生共研)(1)圆心在x轴上,半径长为2,且过点A(2,1)的圆的方程是()A.(x—2—错误!)2+y2=4B.(x—2+错误!)2+y2=4C.(x—2±错误!)2+y2=4D.(x—2)2+(y—1)2=4(2)(一题多解)圆心在直线x—2y—3=0上,且过点A(2,—3),B(—2,—5)的圆的方程为.【解析】(1)根据题意可设圆的方程为(x—a)2+y2=4,因为圆过点A(2,1),所以(2—a)2+12=4,解得a=2±错误!,所以所求圆的方程为(x—2±错误!)2+y2=4.(2)法一:设点C为圆心,因为点C在直线x—2y—3=0上,所以可设点C的坐标为(2a+3,a).又该圆经过A,B两点,所以|CA|=|CB|,即错误!=错误!,解得a=—2,所以圆心C的坐标为(—1,—2),半径r=错误!,故所求圆的方程为(x+1)2+(y+2)2=10.法二:设所求圆的标准方程为(x—a)2+(y—b)2=r2,由题意得错误!解得a=—1,b=—2,r2=10,故所求圆的方程为(x+1)2+(y+2)2=10.法三:设圆的一般方程为x2+y2+Dx+Ey+F=0,则圆心坐标为错误!,由题意得错误!解得D=2,E=4,F=—5.故所求圆的方程为x2+y2+2x+4y—5=0.【答案】(1)C (2)x2+y2+2x+4y—5=0错误!求圆的方程的两种方法(1)直接法根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法1若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,依据已知条件列出关于a,b,r的方程组,从而求出a,b,r的值;2若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.[提醒] 解答圆的有关问题,应注意数形结合,充分运用圆的几何性质.1.(2020·内蒙古巴彦淖尔月考)在平面直角坐标系中,点O(0,0),A(2,4),B(6,2),则三角形OAB的外接圆方程是.解析:设三角形OAB的外接圆方程是x2+y2+Dx+Ey+F=0,由点O(0,0),A(2,4),B (6,2)在圆上可得错误!解得错误!故三角形的外接圆方程为x2+y2—6x—2y=0.答案:x2+y2—6x—2y=02.若圆C经过坐标原点与点(4,0),且与直线y=1相切,则圆C的方程是.解析:因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),设圆心为(2,m),又因为圆与直线y=1相切,所以错误!=|1—m|,解得m=—错误!,所以圆C的方程为(x—2)2+错误!错误!=错误!.答案:(x—2)2+错误!错误!=错误!与圆有关的最值问题(多维探究)角度一借助几何性质求最值已知实数x,y满足方程x2+y2—4x+1=0.(1)求错误!的最大值和最小值;(2)求y—x的最大值和最小值;(3)求x2+y2的最大值和最小值.【解】原方程可化为(x—2)2+y2=3,表示以(2,0)为圆心,错误!为半径的圆.(1)错误!的几何意义是圆上一点与原点连线的斜率,所以设错误!=k,即y=kx.当直线y=kx与圆相切时,斜率k取最大值或最小值,此时错误!=错误!,解得k=±错误!(如图1).所以错误!的最大值为错误!,最小值为—错误!.(2)y—x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时错误!=错误!,解得b=—2±错误!(如图2).所以y—x的最大值为—2+错误!,最小值为—2—错误!.(3)x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图3).又圆心到原点的距离为错误!=2,所以x2+y2的最大值是(2+错误!)2=7+4错误!,x2+y2的最小值是(2—错误!)2=7—4错误!.错误!与圆有关的最值问题的三种几何转化法(1)形如μ=错误!形式的最值问题可转化为动直线斜率的最值问题.(2)形如t=ax+by形式的最值问题可转化为动直线截距的最值问题.(3)形如m=(x—a)2+(y—b)2形式的最值问题可转化为动点到定点的距离的平方的最值问题.角度二建立函数关系求最值设点P(x,y)是圆:(x—3)2+y2=4上的动点,定点A(0,2),B(0,—2),则|错误!+错误!|的最大值为.【解析】由题意,知错误!=(—x,2—y),错误!=(—x,—2—y),所以错误!+错误!=(—2x,—2y),由于点P(x,y)是圆上的点,故其坐标满足方程(x—3)2+y2=4,故y2=—(x—3)2+4,所以|错误!+错误!|=错误!=2错误!.由圆的方程(x—3)2+y2=4,易知1≤x≤5,所以当x=5时,|错误!+错误!|的值最大,最大值为2错误!=10.【答案】10错误!建立函数关系式求最值根据已知条件列出相关的函数关系式,再根据关系式的特征选用基本不等式、函数单调性等方法求最值.1.(2020·厦门模拟)设点P(x,y)是圆:x2+(y—3)2=1上的动点,定点A(2,0),B (—2,0),则错误!·错误!的最大值为.解析:由题意,知错误!=(2—x,—y),错误!=(—2—x,—y),所以错误!·错误!=x2+y2—4,由于点P(x,y)是圆上的点,故其坐标满足方程x2+(y—3)2=1,故x2=—(y—3)2+1,所以错误!·错误!=—(y—3)2+1+y2—4=6y—12.易知2≤y≤4,所以,当y=4时,错误!·错误!的值最大,最大值为6×4—12=12.答案:122.设点P是函数y=—错误!图象上的任意一点,点Q坐标为(2a,a—3)(a∈R),则|PQ|的最小值为.解析:函数y=—错误!的图象表示圆(x—1)2+y2=4的下半圆(包括与x轴的交点).令点Q 的坐标为(x,y),则错误!得y=错误!—3,即x—2y—6=0,作出图象如图所示.由于圆心(1,0)到直线x—2y—6=0的距离d=错误!=错误!>2,所以直线x—2y—6=0与圆(x—1)2+y2=4相离,因此|PQ|的最小值是错误!—2.答案:错误!—2与圆有关的轨迹问题(师生共研)已知A(2,0)为圆x2+y2=4上一定点,B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.【解】(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x—2,2y).因为P点在圆x2+y2=4上,所以(2x—2)2+(2y)2=4.故线段AP中点的轨迹方程为(x—1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x—1)2+(y—1)2=4.故线段PQ中点的轨迹方程为x2+y2—x—y—1=0.错误!与圆有关的轨迹问题的四种求法已知Rt△ABC的斜边为AB,且A(—1,0),B(3,0).求:(1)直角顶点C的轨迹方程;(2)直角边BC的中点M的轨迹方程.解:(1)法一:设C(x,y),因为A,B,C三点不共线,所以y≠0.因为AC⊥BC,所以k AC·k BC=—1,又k AC=错误!,k BC=错误!,所以错误!·错误!=—1,化简得x2+y2—2x—3=0.因此,直角顶点C的轨迹方程为x2+y2—2x—3=0(y≠0).法二:设AB的中点为D,由中点坐标公式得D(1,0),由直角三角形的性质知|CD|=错误!|AB|=2.由圆的定义知,动点C的轨迹是以D(1,0)为圆心,2为半径的圆(由于A,B,C三点不共线,所以应除去与x轴的交点).所以直角顶点C的轨迹方程为(x—1)2+y2=4(y≠0).(2)设M(x,y),C(x0,y0),因为B(3,0),M是线段BC的中点,由中点坐标公式得x=错误!,y=错误!,所以x0=2x—3,y0=2y.由(1)知,点C的轨迹方程为(x—1)2+y2=4(y≠0),将x0=2x—3,y0=2y代入得(2x—4)2+(2y)2=4,即(x—2)2+y2=1.因此动点M的轨迹方程为(x—2)2+y2=1(y≠0).[基础题组练]1.已知圆C的圆心为(2,—1),半径长是方程(x+1)(x—4)=0的解,则圆C的标准方程为()A.(x+1)2+(y—2)2=4B.(x—2)2+(y—1)2=4C.(x—2)2+(y+1)2=16 D.(x+2)2+(y—1)2=16解析:选C.根据圆C的半径长是方程(x+1)(x—4)=0的解,可得半径长为4,故要求的圆的标准方程为(x—2)2+(y+1)2=16.2.(2020·河北九校第二次联考)圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为()A.x2—y2—2x—3=0 B.x2+y2+4x=0C.x2+y2—4x=0 D.x2+y2+2x—3=0解析:选C.由题意设所求圆的方程为(x—m)2+y2=4(m>0),则错误!=2,解得m=2或m=—错误!(舍去),故所求圆的方程为(x—2)2+y2=4,即x2+y2—4x=0,故选C.3.方程|x|—1=错误!所表示的曲线是()A.一个圆B.两个圆C.半个圆D.两个半圆解析:选D.由题意得错误!即错误!或错误!故原方程表示两个半圆.4.(2020·湖南长沙模拟)圆x2+y2—2x—2y+1=0上的点到直线x—y=2距离的最大值是()A.1+错误!B.2C.1+错误!D.2+2错误!解析:选A.将圆的方程化为(x—1)2+(y—1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x—y=2的距离d=错误!=错误!,故圆上的点到直线x—y=2距离的最大值为d+1=错误!+1,选A.5.点P(4,—2)与圆x2+y2=4上任一点连线的中点的轨迹方程是()A.(x—2)2+(y+1)2=1B.(x—2)2+(y+1)2=4C.(x+4)2+(y—2)2=4D.(x+2)2+(y—1)2=1解析:选A.设圆上任一点为Q(x0,y0),PQ的中点为M(x,y),则错误!解得错误!因为点Q在圆x2+y2=4上,所以x错误!+y错误!=4,即(2x—4)2+(2y+2)2=4,化简得(x—2)2+(y+1)2=1.6.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是.解析:已知方程表示圆,则a2=a+2,解得a=2或a=—1.当a=2时,方程不满足表示圆的条件,故舍去.当a=—1时,原方程为x2+y2+4x+8y—5=0,化为标准方程为(x+2)2+(y+4)2=25,表示以(—2,—4)为圆心,半径为5的圆.答案:(—2,—4)57.过两点A(1,4),B(3,2)且圆心在直线y=0上的圆的标准方程为.解析:设圆的标准方程为(x—a)2+(y—b)2=r2.因为圆心在直线y=0上,所以b=0,所以圆的方程为(x—a)2+y2=r2.又因为该圆过A(1,4),B(3,2)两点,所以错误!解得错误!所以所求圆的方程为(x+1)2+y2=20.答案:(x+1)2+y2=208.若圆C与圆x2+y2+2x=0关于直线x+y—1=0对称,则圆C的方程是.解析:设C(a,b),因为已知圆的圆心为A(—1,0),由点A,C关于x+y—1=0对称得错误!解得错误!又因为圆的半径是1,所以圆C的方程是(x—1)2+(y—2)2=1,即x2+y2—2x—4y+4=0.答案:x2+y2—2x—4y+4=09.求适合下列条件的圆的方程.(1)圆心在直线y=—4x上,且与直线l:x+y—1=0相切于点P(3,—2);(2)过三点A(1,12),B(7,10),C(—9,2).解:(1)法一:设圆的标准方程为(x—a)2+(y—b)2=r2,则有错误!解得a=1,b=—4,r=2错误!.所以圆的方程为(x—1)2+(y+4)2=8.法二:过切点且与x+y—1=0垂直的直线为y+2=x—3,与y=—4x联立可求得圆心为(1,—4).所以半径r=错误!=2错误!,所以所求圆的方程为(x—1)2+(y+4)2=8.(2)设圆的一般方程为x2+y2+Dx+Ey+F=0(D2+E2—4F>0),则错误!解得D=—2,E=—4,F=—95.所以所求圆的方程为x2+y2—2x—4y—95=0.10.已知以点P为圆心的圆经过点A(—1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4错误!.(1)求直线CD的方程;(2)求圆P的方程.解:(1)由题意知,直线AB的斜率k=1,中点坐标为(1,2).则直线CD的方程为y—2=—(x—1),即x+y—3=0.(2)设圆心P(a,b),则由点P在CD上得a+b—3=0.1又因为直径|CD|=4错误!,所以|PA|=2错误!,所以(a+1)2+b2=40.2由12解得错误!或错误!所以圆心P(—3,6)或P(5,—2).所以圆P的方程为(x+3)2+(y—6)2=40或(x—5)2+(y+2)2=40.[综合题组练]1.(应用型)已知平面区域错误!恰好被面积最小的圆C:(x—a)2+(y—b)2=r2及其内部所覆盖,则圆C的方程为.解析:由题意知,此平面区域表示的是以O(0,0),P(4,0),Q(0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.因为△OPQ为直角三角形,所以圆心为斜边PQ的中点(2,1),半径r=错误!=错误!,因此圆C的方程为(x—2)2+(y—1)2=5.答案:(x—2)2+(y—1)2=52.已知A(0,2),点P在直线x+y+2=0上,点Q在圆C:x2+y2—4x—2y=0上,则|PA|+|PQ|的最小值是.解析:因为圆C:x2+y2—4x—2y=0,故圆C是以C(2,1)为圆心,半径r=错误!的圆.设点A(0,2)关于直线x+y+2=0的对称点为A′(m,n),故错误!解得错误!故A′(—4,—2).连接A′C交圆C于Q,由对称性可知|PA|+|PQ|=|A′P|+|PQ|≥|A′Q|=|A′C|—r=2错误!.答案:2错误!3.(2018·高考全国卷Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l 与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.解:(1)由题意得F(1,0),l的方程为y=k(x—1)(k>0).设A(x1,y1),B(x2,y2).由错误!得k2x2—(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=错误!.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=错误!.由题设知错误!=8,解得k=—1(舍去),k=1.因此l的方程为y=x—1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y—2=—(x—3),即y=—x+5.设所求圆的圆心坐标为(x0,y0),则错误!解得错误!或错误!因此所求圆的方程为(x—3)2+(y—2)2=16或(x—11)2+(y+6)2=144.4.已知圆C的方程为x2+(y—4)2=1,直线l的方程为2x—y=0,点P在直线l上,过点P 作圆C的切线PA,PB,切点分别为A,B.(1)若∠APB=60°,求点P的坐标;(2)求证:经过A,P,C(其中点C为圆C的圆心)三点的圆必经过定点,并求出所有定点的坐标.解:(1)由条件可得圆C的圆心坐标为(0,4),|PC|=2,设P(a,2a),则错误!=2,解得a=2或a=错误!,所以点P的坐标为(2,4)或错误!.(2)证明:设P(b,2b),过点A,P,C的圆即是以PC为直径的圆,其方程为x(x—b)+(y—4)(y—2b)=0,整理得x2+y2—bx—4y—2by+8b=0,即(x2+y2—4y)—b(x+2y—8)=0.由错误!解得错误!或错误!所以该圆必经过定点(0,4)和错误!.。
9.3 圆的方程考纲要求掌握确定圆的几何要素,掌握圆的标准方程与圆的一般方程.1.圆的定义在平面内,到____的距离等于____的点的____叫做圆. 确定一个圆最基本的要素是____和____. 2.圆的标准方程(x -a )2+(y -b )2=r 2(r >0),其中______为圆心,____为半径长. 特别地,当圆心在原点时,圆的方程为________. 3.圆的一般方程对于方程x 2+y 2+Dx +Ey +F =0.(1)当____________时,表示圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径长为12D 2+E 2-4F 的圆;(2)当____________时,表示一个点⎝ ⎛⎭⎪⎫-D 2,-E 2; (3)当____________时,它不表示任何图形;(4)二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是⎩⎪⎨⎪⎧① ,② ,③ .4.点与圆的位置关系点和圆的位置关系有三种.圆的标准方程(x -a )2+(y -b )2=r 2(r >0),点M (x 0,y 0), (1)点在圆上:____________________; (2)点在圆外:____________________; (3)点在圆内:____________________.1.方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ). A .14<m <1 B .m >1 C .m <14 D .m <14或m >12.圆心在y 轴上,半径为1且过点(-1,2)的圆的方程为( ).A .x 2+(y -3)2=1B .x 2+(y -2)2=1C .(x -2)2+y 2=1D .(x +2)2+y 2=13.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( ). A .-1<a <1 B .0<a <1 C .a >1或a <-1 D .a =±14.圆心在原点且与直线x +y -2=0相切的圆的方程为__________.5.圆C :x 2+y 2-2x -4y +4=0的圆心到直线3x +4y +4=0的距离d =__________.一、求圆的方程【例1-1】 圆心在y 轴上且过点(3,1)的圆与x 轴相切,则该圆的方程是( ).A .x 2+y 2+10y =0B .x 2+y 2-10y =0C .x 2+y 2+10x =0D .x 2+y 2-10x =0【例1-2】 已知A (0,1),B (2,1),C (3,4),D (-1,2),问这四点能否在同一个圆上?为什么?方法提炼常见的求圆的方程的方法有两种:一是利用圆的几何特征,求出圆心坐标和半径长,写出圆的标准方程;二是利用待定系数法,它的应用关键是根据已知条件选择标准方程还是一般方程.如果给定的条件易求圆心坐标和半径长,则选用标准方程求解;如果所给条件与圆心、半径关系不密切或涉及圆上多点,常选用一般方程求解.请做演练巩固提升1二、与圆有关的最值问题【例2】 若实数x ,y 满足方程x 2+y 2-4x +1=0,则yx +1的最大值为__________,最小值为__________.方法提炼处理与圆有关的最值问题,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.与圆有关的最值问题,常见的有以下几种类型:(1)形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题;(2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题;(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.请做演练巩固提升3三、与圆有关的轨迹问题【例3】 如下图所示,圆O 1和圆O 2的半径长都等于1,|O 1O 2|=4.过动点P 分别作圆O 1,圆O 2的切线PM ,PN (M ,N 为切点),使得|PM |=2|PN |.试建立平面直角坐标系,并求动点P 的轨迹方程.方法提炼1.解答与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:直接法——直接根据题目提供的条件列出方程;定义法——根据圆、直线等定义列方程;几何法——利用圆的几何性质列方程;代入法——找到所求点与已知点的关系,代入已知点满足的关系式.2.求与圆有关的轨迹问题时,题目的设问有两种常见形式,作答也应有不同:若求轨迹方程,把方程求出化简即可;若求轨迹,则必须根据轨迹方程,指出轨迹是什么样的曲线.请做演练巩固提升4易忽视斜率不存在的直线而致误【典例】 (12分)从圆(x -1)2+(y -1)2=1外一点P (2,3)向该圆引切线,求切线方程. 规范解答:当切线斜率存在时,设切线方程为y -3=k (x -2),即kx -y +3-2k =0.(2分)∵圆心为(1,1),半径长r =1, ∴|k -1+3-2k |k 2+-12=1,∴k =34.(6分)∴所求切线方程为y -3=34(x -2),即3x -4y +6=0.(8分)当切线斜率不存在时,因为切线过点P (2,3),且与x 轴垂直,此时切线的方程为x =2. 综上,所求切线方程为x =2或3x -4y +6=0.(12分)答题指导:求圆的切线方程,一般设为点斜式方程.首先判断点是否在圆上,如果过圆上一点,则有且只有一条切线,如果过圆外一点,则有且只有两条切线.若利用点斜式方程求得过圆外一点的切线只有一条,则需结合图形把斜率不存在的那条切线补上.1.圆x2+y2-4x+6y=0的圆心坐标是( ).A.(2,3) B.(-2,3)C.(-2,-3) D.(2,-3)2.(2012安徽高考)若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是( ).A.[-3,-1] B.[-1,3]C.[-3,1] D.(-∞,-3]∪[1,+∞)3.平移直线x-y+1=0使其与圆(x-2)2+(y-1)2=1相切,则平移的最短距离为( ).A.2-1 B.2- 2C. 2 D.2-1与2+14.点P(4,-2)与圆x2+y2=4上任一点连线的中点轨迹方程是( ).A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=15.如果实数x,y满足方程(x-3)2+(y-3)2=6,求x+y的最大值与最小值.参考答案基础梳理自测知识梳理1.定点 定长 集合 圆心 半径2.(a ,b ) r x 2+y 2=r 23.(1)D 2+E 2-4F >0 (2)D 2+E 2-4F =0 (3)D 2+E 2-4F <0 (4)①A =C ≠0②B =0 ③D 2+E 2-4AF >04.(1)(x 0-a )2+(y 0-b )2=r 2(2)(x 0-a )2+(y 0-b )2>r 2(3)(x 0-a )2+(y 0-b )2<r 2基础自测1.D 解析:方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是(4m )2+(-2)2-4×5m>0,即m <14或m >1.2.B 解析:设圆心(0,b ),半径为r ,则r =1.∴x 2+(y -b )2=1.又圆过点(-1,2),代入得b =2,∴圆的方程为x 2+(y -2)2=1.3.A 解析:∵点(1,1)在圆(x -a )2+(y +a )2=4的内部,∴(1-a )2+(1+a )2<4,即-1<a <1.4.x 2+y 2=2 解析:设圆的方程为x 2+y 2=a 2(a >0), 由|-2|1+1=a ,∴a = 2.∴x 2+y 2=2.5.3 解析:圆C :x 2+y 2-2x -4y +4=0的圆心为C (1,2), 所以圆心C 到直线的距离为 |3×1+4×2+4|32+42=155=3. 考点探究突破【例1-1】 B 解析:设圆心为(0,b ),半径为R ,则R =|b |,∴圆的方程为x 2+(y -b )2=b 2. ∵点(3,1)在圆上,∴9+(1-b )2=b 2,解得b =5.∴圆的方程为x 2+y 2-10y =0.【例1-2】 解:设经过A ,B ,C 三点的圆的方程为(x -a )2+(y -b )2=r 2,则⎩⎪⎨⎪⎧a 2+(1-b )2=r 2,(2-a )2+(1-b )2=r 2,(3-a )2+(4-b )2=r 2,解此方程组,得⎩⎪⎨⎪⎧a =1,b =3,r 2=5.所以,经过A ,B ,C 三点的圆的标准方程是(x -1)2+(y -3)2=5.把点D 的坐标(-1,2)代入上面方程的左边,得(-1-1)2+(2-3)2=5.所以,点D 在经过A ,B ,C 三点的圆上,故A ,B ,C ,D 四点在同一个圆上,圆的方程为(x -1)2+(y -3)2=5.【例2】 22 -22 解析:∵y x +1=y -0x -(-1),∴1y x +表示过点P(-1,0)与圆(x -2)2+y 2=3上的点(x ,y )的直线的斜率. 由图象知1yx +的最大值和最小值分别是过P 与圆相切的直线PA ,PB 的斜率.又∵k PA =CA PA =36=22,k PB =-||||CB PB =36-=22-,即1yx +的最大值为22,最小值为22-.【例3】 解:以O 1O 2的中点O 为原点,O 1O 2所在的直线为x 轴,建立如图所示的平面直角坐标系,则O 1(-2,0),O 2(2,0).由已知|PM |=2|PN |,得|PM |2=2|PN |2. 因为两圆的半径长均为1,所以|PO 1|2-1=2(|PO 2|2-1).设P (x ,y ),则(x +2)2+y 2-1=2[(x -2)2+y 2-1],化简,得(x -6)2+y 2=33,所以所求轨迹方程为(x -6)2+y 2=33. 演练巩固提升1.D 解析:∵D =-4,E =6, ∴圆心坐标为(2,-3).2.C 解析:由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+(-1)2≤2,即|a +1|≤2, 解得-3≤a ≤1.3.A 解析:如图,圆心(2,1)到直线l 0:x -y +1=0的距离d =|2-1+1|2=2,圆的半径为1,则直线l 0与l 1的距离为2-1,所以平移的最短距离为2-1.4.A 解析:设圆上任一点坐标为(x 0,y 0),则x 02+y 02=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧2x =x 0+4,2y =y 0-2⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.代入x 02+y 02=4中得(x -2)2+(y +1)2=1.5.解:设x +y =b ,则y =-x +b ,由图知,当直线与圆C 相切时,截距b 取最值.而圆心C 到直线y =-x +b 的距离为d =|6-b |2.因为当|6-b |2=6,即b =6±23时,直线y =-x +b 与圆C 相切,所以x +y 的最大值与最小值分别为6+23与6-2 3.。
学习资料9.3 圆的方程必备知识预案自诊知识梳理1。
圆的定义及方程圆心:-D2,-E2注意:当D 2+E 2—4F=0时,方程x 2+y 2+Dx+Ey+F=0表示一个点(-D2,-E 2);当D 2+E 2-4F<0时,方程x 2+y 2+Dx+Ey+F=0没有意义,不表示任何图形。
2。
点与圆的位置关系圆的标准方程(x —a )2+(y-b )2=r 2(r>0),点M (x 0,y 0), (1)(x 0-a )2+(y 0—b )2 r 2⇔点M 在圆上; (2)(x 0-a )2+(y 0-b )2 r 2⇔点M 在圆外; (3)(x 0—a )2+(y 0—b )2 r 2⇔点M 在圆内.以A (x 1,y 1),B (x 2,y 2)为直径的两端点的圆的方程是(x-x 1)(x-x 2)+(y —y 1)(y —y 2)=0(公式推导:设圆上任一点P (x ,y ),则有k PA ·k PB =—1,由斜率公式代入整理即可)。
考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)已知圆的方程为x2+y2—2y=0,过点A(1,2)作该圆的切线只有一条.()(2)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的一个圆。
()(3)方程x2+y2+ax+2ay+2a2+a-1=0表示圆心为—a2,—a,半径为12√-3a2-4a+4的圆。
()(4)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x—x2)+(y—y1)(y-y2)=0.()(5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x02+y02+Dx0+Ey0+F>0。
()2.已知圆C经过点A(1,5),且圆心为C(-2,1),则圆C的方程为()A。
(x—2)2+(y+1)2=5 B。
(x+2)2+(y—1)2=5C.(x-2)2+(y+1)2=25 D。
§9.3 圆的方程2014高考会这样考 1.考查圆的方程的形式及应用;2.利用待定系数法求圆的方程. 复习备考要这样做 1.熟练掌握圆的方程的两种形式及其特点;2.会利用代数法、几何法求圆的方程,注意圆的方程形式的选择.1. 圆的定义在平面内,到定点的距离等于定长的点的集合叫圆. 2. 确定一个圆最基本的要素是圆心和半径. 3. 圆的标准方程(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径. 4. 圆的一般方程x 2+y 2+Dx +Ey +F =0表示圆的充要条件是D 2+E 2-4F >0,其中圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径r =D 2+E 2-4F2.5. 确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a ,b ,r 或D 、E 、F 的方程组; (3)解出a 、b 、r 或D 、E 、F 代入标准方程或一般方程. 6. 点与圆的位置关系点和圆的位置关系有三种.圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2. [难点正本 疑点清源]1. 确定圆的方程时,常用到的圆的三个性质(1)圆心在过切点且垂直切线的直线上;(2)圆心在任一弦的中垂线上;(3)两圆内切或外切时,切点与两圆圆心三点共线. 2. 圆的一般方程的特征圆的一般方程:x 2+y 2+Dx +Ey +F =0,若化为标准式,即为⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4.由于r 2相当于D 2+E 2-4F4.所以①当D 2+E 2-4F >0时,圆心为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.②当D 2+E 2-4F =0时,表示一个点⎝ ⎛⎭⎪⎫-D 2,-E 2. ③当D 2+E 2-4F <0时,这样的圆不存在.1. 若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是______________.答案 ⎝⎛⎭⎪⎫-2,23解析 方程x 2+y 2+ax +2ay +2a 2+a -1=0 转化为⎝ ⎛⎭⎪⎫x +a 22+(y +a )2=-34a 2-a +1,所以若方程表示圆,则有-34a 2-a +1>0,∴3a 2+4a -4<0,∴-2<a <23.2. (2011·辽宁)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为______________. 答案 (x -2)2+y 2=10 解析 设圆心坐标为(a,0),易知a -2+-2=a -2+-2,解得a =2,∴圆心为(2,0),半径为10,∴圆C 的方程为(x -2)2+y 2=10.3. (2011·四川)圆x 2+y 2-4x +6y =0的圆心坐标是( )A .(2,3)B .(-2,3)C .(-2,-3)D .(2,-3)答案 D解析 圆x 2+y 2-4x +6y =0的圆心坐标为⎝ ⎛⎭⎪⎫--42,-62,即(2,-3).4. (2012·辽宁)将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0B .x +y +3=0C .x -y +1=0D .x -y +3=0答案 C解析 因为圆心是(1,2),所以将圆心坐标代入各选项验证知选C.5. (2012·湖北)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0答案 A解析 当圆心与P 的连线和过点P 的直线垂直时,符合条件. 圆心O 与P 点连线的斜率k =1,∴过点P 垂直于OP 的直线方程为x +y -2=0.题型一 求圆的方程例1 根据下列条件,求圆的方程:(1)经过P (-2,4)、Q (3,-1)两点,并且在x 轴上截得的弦长等于6; (2)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2). 思维启迪:(1)求圆心和半径,确定圆的标准方程. (2)设圆的一般方程,利用待定系数法求解. 解 (1)设圆的方程为x 2+y 2+Dx +Ey +F =0, 将P 、Q 点的坐标分别代入得⎩⎪⎨⎪⎧ 2D -4E -F =20,3D -E +F =-10.①②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6有D 2-4F =36,④由①、②、④解得D =-2,E =-4,F =-8,或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0,或x 2+y 2-6x -8y =0.(2)方法一如图,设圆心(x 0,-4x 0),依题意得4x 0-23-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =22, 故圆的方程为(x -1)2+(y +4)2=8.方法二 设所求方程为(x -x 0)2+(y -y 0)2=r 2,根据已知条件得⎩⎪⎨⎪⎧y 0=-4x 0,-x 02+-2-y2=r 2,|x 0+y 0-1|2=r ,解得⎩⎨⎧x0=1,y 0=-4,r =2 2.因此所求圆的方程为(x -1)2+(y +4)2=8.探究提高 求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:①几何法,通过研究圆的性质进而求出圆的基本量.②代数法,即设出圆的方程,用待定系数法求解.(1)已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2 B .(x -1)2+(y +1)2=2 C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2(2)经过点A (5,2),B (3,2),圆心在直线2x -y -3=0上的圆的方程为 ____________________.答案 (1)B (2)(x -4)2+(y -5)2=10 解析 (1)设圆心坐标为(a ,-a ), 则|a --a2=|a --a -4|2,即|a |=|a -2|,解得a =1, 故圆心坐标为(1,-1),半径r =22=2,故圆的方程为(x -1)2+(y +1)2=2. (2)设圆的方程为(x -a )2+(y -b )2=r 2, 则⎩⎪⎨⎪⎧-a 2+-b 2=r 2-a 2+-b2=r22a -b -3=0,可得a =4,b =5,r 2=10. 题型二 与圆有关的最值问题例2 已知实数x 、y 满足方程x 2+y 2-4x +1=0.(1)求y x的最大值和最小值; (2)求y -x 的最大值和最小值.思维启迪:根据代数式的几何意义,借助图形来求最值.解 (1)原方程化为(x -2)2+y 2=3,表示以点(2,0)为圆心,以3为半径的圆.设y x=k ,即y =kx ,当直线y =kx 与圆相切时,斜率k 取最大值和最小值,此时|2k -0|k 2+1=3,解得k =± 3.故y x的最大值为3,最小值为- 3.(2)设y -x =b ,即y =x +b ,当y =x +b 与圆相切时,纵截距b 取得最大值和最小值,此时|2-0+b |2=3,即b =-2± 6.故y -x 的最大值为-2+6,最小值为-2- 6.探究提高 与圆有关的最值问题,常见的有以下几种类型: (1)形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题;(2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题;(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值; (2)若M (m ,n ),求n -3m +2的最大值和最小值. 解 (1)由C :x 2+y 2-4x -14y +45=0可得(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=+2+-2=4 2.∴|MQ |max =42+22=62, |MQ |min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0,则n -3m +2=k . 由直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k 2≤2 2. 可得2-3≤k ≤2+3, 所以n -3m +2的最大值为2+3,最小值为2- 3. 题型三 与圆有关的轨迹问题例3 设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为两边作平行四边形MONP ,求点P 的轨迹.思维启迪:结合图形寻求点P 和点M 坐标的关系,用相关点法(代入法)解决.解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2,线段MN 的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42.从而⎩⎪⎨⎪⎧x 0=x +3y 0=y -4.N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4.因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上时的情况).探究提高 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: ①直接法:直接根据题目提供的条件列出方程. ②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程.④代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( )A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1 答案 A解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧2x =x 0+42y =y 0-2⇒⎩⎪⎨⎪⎧x 0=2x -4y 0=2y +2,代入x 20+y 20=4中得(x -2)2+(y +1)2=1.利用方程思想求解圆的问题典例:(12分)已知圆x 2+y 2+x -6y +m =0和直线x +2y -3=0交于P ,Q 两点,且OP ⊥OQ (O为坐标原点),求该圆的圆心坐标及半径. 审题视角 (1)求圆心及半径,关键是求m . (2)利用OP ⊥OQ ,建立关于m 的方程求解.(3)利用x 1x 2+y 1y 2=0和根与系数的关系或利用圆的几何性质. 规范解答解 方法一 将x =3-2y , 代入方程x 2+y 2+x -6y +m =0, 得5y 2-20y +12+m =0.[2分]设P (x 1,y 1),Q (x 2,y 2),则y 1、y 2满足条件:y 1+y 2=4,y 1y 2=12+m5.[4分] ∵OP ⊥OQ ,∴x 1x 2+y 1y 2=0. 而x 1=3-2y 1,x 2=3-2y 2.∴x 1x 2=9-6(y 1+y 2)+4y 1y 2=-27+4m5.[6分]故-27+4m 5+12+m5=0,解得m =3,[9分] 此时Δ>0,圆心坐标为⎝ ⎛⎭⎪⎫-12,3,半径r =52.[12分]方法二 如图所示,设弦PQ 中点为M , ∵O 1M ⊥PQ ,∴kO 1M =2.[2分]∴O 1M 的方程为y -3=2⎝ ⎛⎭⎪⎫x +12,即y =2x +4.[4分]由方程组⎩⎪⎨⎪⎧y =2x +4x +2y -3=0.解得M 的坐标为(-1,2).[6分]则以PQ 为直径的圆可设为(x +1)2+(y -2)2=r 2. ∵OP ⊥OQ ,∴点O 在以PQ 为直径的圆上. ∴(0+1)2+(0-2)2=r 2,即r 2=5,|MQ |2=r 2. 在Rt△O 1MQ 中,|O 1Q |2=|O 1M |2+|MQ |2. ∴1+-2-4m 4=⎝ ⎛⎭⎪⎫-12+12+(3-2)2+5. ∴m =3.[9分]∴半径为52,圆心为⎝ ⎛⎭⎪⎫-12,3.[12分] 方法三 设过P 、Q 的圆系方程为x 2+y 2+x -6y +m +λ(x +2y -3)=0.[2分]由OP ⊥OQ 知,点O (0,0)在圆上. ∴m -3λ=0,即m =3λ.[4分] ∴圆系方程可化为x 2+y 2+x -6y +3λ+λx +2λy -3λ=0.即x 2+(1+λ)x +y 2+2(λ-3)y =0.[6分]∴圆心M ⎝⎛⎭⎪⎫-1+λ2,-λ2,又圆心在PQ 上. ∴-1+λ2+2(3-λ)-3=0,∴λ=1,∴m =3.[9分]∴圆心为⎝ ⎛⎭⎪⎫-12,3,半径为52.[12分] 温馨提醒 (1)在解决与圆有关的问题中,借助于圆的几何性质,往往会使得思路简捷明了,简化思路,简便运算.(2)本题中三种解法都是用方程思想求m 值,即三种解法围绕“列出m 的方程”求m 值. (3)本题的易错点:不能正确构建关于m 的方程,找不到解决问题的突破口,或计算错误.方法与技巧1. 确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法,是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数. 2. 解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.失误与防范1. 求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.2. 过圆外一定点,求圆的切线,应该有两个结果,若只求出一个结果,应该考虑切线斜率不存在的情况.A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限答案 D解析 圆x 2+y 2-2ax +3by =0的圆心为⎝ ⎛⎭⎪⎫a ,-32b ,则a <0,b >0.直线y =-1a x -b a ,k =-1a >0,-ba>0,直线不经过第四象限.2.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是 ( )A .-1<a <1B .0<a <1C .a >1或a <-1D .a =±1答案 A解析 因为点(1,1)在圆的内部, ∴(1-a )2+(1+a )2<4,∴-1<a <1.3. (2011·安徽)若直线3x +y +a =0过圆x 2+y 2+2x -4y =0的圆心,则a 的值为( ) A .-1 B .1 C .3 D .-3答案 B解析 化圆为标准形式(x +1)2+(y -2)2=5,圆心为(-1,2). ∵直线过圆心,∴3×(-1)+2+a =0,∴a =1.4. 圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .x 2+(y -2)2=1B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1答案 A解析 设圆心坐标为(0,b ),则由题意知-2+b -2=1,解得b =2,故圆的方程为x 2+(y -2)2=1. 二、填空题(每小题5分,共15分)5. 若圆x 2+y 2-4x +2my +m +6=0与y 轴的两交点A ,B 位于原点的同侧,则实数m 的取值范围是______________. 答案 -6<m <-2或m >3解析 令x =0,可得y 2+2my +m +6=0,由题意知,此方程有两个不相等且同号的实数根,即⎩⎪⎨⎪⎧m +6>0,4m 2-m +,解得-6<m <-2或m >3.6. 以直线3x -4y +12=0夹在两坐标轴间的线段为直径的圆的方程为________________.答案 (x +2)2+⎝ ⎛⎭⎪⎫y -322=254解析 直线3x -4y +12=0与两坐标轴的交点分别为A (-4,0)、B (0,3),所以线段AB 的中点为C ⎝⎛⎭⎪⎫-2,32,|AB |=5. 故所求圆的方程为(x +2)2+⎝ ⎛⎭⎪⎫y -322=⎝ ⎛⎭⎪⎫522.7. 已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是__________. 答案 x +y -1=0解析 过点M 的最短弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,1),∵k CM =1-02-1=1,∴最短弦所在直线的方程为y -0=-1(x -1),即x +y -1=0. 三、解答题(共22分)8. (10分)根据下列条件求圆的方程:(1)经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上; (2)过三点A (1,12),B (7,10),C (-9,2). 解 (1)设圆的标准方程为(x -a )2+(y -b )2=r 2,由题意列出方程组⎩⎪⎨⎪⎧a 2+b 2=r 2a -2+b -2=r22a +3b +1=0,解之得⎩⎪⎨⎪⎧a =4,b =-3,r 2=25.∴圆的标准方程是(x -4)2+(y +3)2=25. (2)方法一 设圆的一般方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0.解得D =-2,E =-4,F =-95.∴所求圆的方程为x 2+y 2-2x -4y -95=0. 方法二 由A (1,12),B (7,10), 得AB 的中点坐标为(4,11),k AB =-13,则AB 的中垂线方程为3x -y -1=0. 同理得AC 的中垂线方程为x +y -3=0.联立⎩⎪⎨⎪⎧3x -y -1=0x +y -3=0,得⎩⎪⎨⎪⎧x =1y =2, 即圆心坐标为(1,2),半径r =-2+-2=10.∴所求圆的方程为(x -1)2+(y -2)2=100.9. (12分)一圆经过A (4,2),B (-1,3)两点,且在两坐标轴上的四个截距的和为2,求此圆的方程.解 设圆心为(a ,b ),圆与x 轴分别交于(x 1,0),(x 2,0),与y 轴分别交于(0,y 1),(0,y 2),根据题意知x 1+x 2+y 1+y 2=2,∵a =x 1+x 22,b =y 1+y 22,∴a +b =1.又∵点(a ,b )在线段AB 的中垂线上,∴5a -b -5=0.联立⎩⎪⎨⎪⎧a +b =1,5a -b -5=0,解得⎩⎪⎨⎪⎧a =1,b =0. ∴圆心为(1,0),半径为-2+-2=13.∴所求圆的方程为(x -1)2+y 2=13.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 若直线ax +by =1与圆x 2+y 2=1相交,则P (a ,b )( ) A .在圆上 B .在圆外 C .在圆内D .以上都有可能答案 B 解析 由已知条件1a 2+b2<1,即a 2+b 2>1. 因此点P (a ,b )在圆外.2. 已知圆C :x 2+y 2+mx -4=0上存在两点关于直线x -y +3=0对称,则实数m 的值为( )A .8B .-4C .6D .无法确定答案 C解析 圆上存在关于直线x -y +3=0对称的两点,则x -y +3=0过圆心⎝ ⎛⎭⎪⎫-m2,0,即-m2+3=0,∴m =6. 3. 已知圆的半径为2,圆心在x 轴的正半轴上,且与直线3x +4y +4=0相切,则圆的方程是( )A .x 2+y 2-4x =0 B .x 2+y 2+4x =0 C .x 2+y 2-2x -3=0D .x 2+y 2+2x -3=0答案 A解析 设圆心为C (m,0) (m >0),因为所求圆与直线3x +4y +4=0相切,所以|3m +4×0+4|32+42=2,整理得:|3m +4|=10,解得m =2或m =-143(舍去),故所求圆的方程为(x -2)2+y 2=22,即x 2+y 2-4x =0,故选A. 二、填空题(每小题5分,共15分)4. 已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称,则a -b 的取值范围是________. 答案 (-∞,1)解析 圆的方程化为(x +1)2+(y -2)2=5-a , ∴其圆心为(-1,2),且5-a >0,即a <5. 又圆关于直线y =2x +b 成轴对称, ∴2=-2+b ,∴b =4.∴a -b =a -4<1.5. 若PQ 是圆O :x 2+y 2=9的弦,PQ 的中点是M (1,2),则直线PQ 的方程是____________.答案 x +2y -5=0解析 由圆的几何性质知k PQ k OM =-1.∵k OM =2,∴k PQ =-12,故直线PQ 的方程为y -2=-12(x -1),即x +2y -5=0. 6. 已知AC 、BD 为圆O :x 2+y 2=4的两条相互垂直的弦,垂足为M (1,2),则四边形ABCD 的面积的最大值为________.答案 5解析 如图,取AC 的中点F ,BD 的中点E , 则OE ⊥BD ,OF ⊥AC . 又AC ⊥BD ,∴四边形OEMF 为矩形, 设|OF |=d 1,|OE |=d 2, ∴d 21+d 22=|OM |2=3.又|AC |=24-d 21,|BD |=24-d 22, ∴S 四边形ABCD =12|AC |·|BD |=24-d 21·4-d 22=2+d 22-d 22=2-⎝⎛⎭⎪⎫d 22-322+254.∵0≤d 22≤3.∴当d 22=32时,S 四边形ABCD 有最大值是5.三、解答题7. (13分)圆C 通过不同的三点P (k,0),Q (2,0),R (0,1),已知圆C 在点P 处的切线斜率为1,试求圆C 的方程.解 设圆C 的方程为x 2+y 2+Dx +Ey +F =0, 则k 、2为x 2+Dx +F =0的两根,∴k +2=-D,2k =F ,即D =-(k +2),F =2k , 又圆过R (0,1),故1+E +F =0.∴E =-2k -1.故所求圆的方程为x 2+y 2-(k +2)x -(2k +1)y +2k =0, 圆心坐标为⎝⎛⎭⎪⎫k +22,2k +12.∵圆C 在点P 处的切线斜率为1, ∴k CP =-1=2k +12-k ,∴k =-3.∴D =1,E =5,F =-6.∴所求圆C 的方程为x 2+y 2+x +5y -6=0.。
第3节 圆的方程最新考纲 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.知 识 梳 理1.圆的定义和圆的方程2.点与圆的位置关系平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2之间存在着下列关系: (1)d >r ⇔M 在圆外,即(x 0-a )2+(y 0-b )2>r 2⇔M 在圆外;(2)d =r ⇔M 在圆上,即(x 0-a )2+(y 0-b )2=r 2⇔M 在圆上;(3)d <r ⇔M 在圆内,即(x 0-a )2+(y 0-b )2<r 2⇔M 在圆内.[常用结论与微点提醒]1.圆心在坐标原点半径为r 的圆的方程为x 2+y 2=r 2.2.以A (x 1,y 1),B (x 2,y 2)为直径端点的圆的方程为(x -x 1)·(x -x 2)+(y -y 1)(y -y 2)=0.3.求轨迹方程和求轨迹是有区别的,求轨迹方程得出方程即可,而求轨迹在得出方程后还要指明轨迹表示什么曲线.诊 断 自 测1.思考辨析(在括号内打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( ) (2)方程x 2+y 2=a 2表示半径为a 的圆.( ) (3)方程x 2+y 2+4mx -2y +5m =0表示圆.( )(4)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( ) 解析 (2)当a =0时,x 2+y 2=a 2表示点(0,0);当a <0时,表示半径为|a |的圆. (3)当(4m )2+(-2)2-4×5m >0,即m <14或m >1时表示圆.答案(1)√(2)×(3)×(4)√2.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是( )A.(-1,1)B.(0,1)C.(-∞,-1)∪(1,+∞)D.a=±1解析因为点(1,1)在圆的内部,所以(1-a)2+(1+a)2<4,所以-1<a<1.答案 A3.(2018·长春质检)圆(x-2)2+y2=4关于直线y=33x对称的圆的方程是( )A.(x-3)2+(y-1)2=4B.(x-2)2+(y-2)2=4C.x2+(y-2)2=4D.(x-1)2+(y-3)2=4解析圆(x-2)2+y2=4的圆心(2,0)关于直线y=33x对称的坐标为(1,3),从而所求圆的方程为(x-1)2+(y-3)2=4.答案 D4.(2016·浙江卷)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________. 解析由已知方程表示圆,则a2=a+2,解得a=2或a=-1.当a=2时,方程不满足表示圆的条件,故舍去.当a=-1时,原方程为x2+y2+4x+8y-5=0,化为标准方程为(x+2)2+(y+4)2=25,表示以(-2,-4)为圆心,半径为5的圆.答案(-2,-4) 55.(必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即(a+1)2+1=(a-1)2+9,解得a=2,所以圆心为C(2,0),半径|CA|=(2+1)2+1=10,∴圆C的方程为(x-2)2+y2=10.答案 (x -2)2+y 2=10考点一 圆的方程【例1】 (1)(一题多解)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________. (2)已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为________. 解析 (1)法一 由已知k AB =0,所以AB 的中垂线方程为x =3.①过B 点且垂直于直线x -y -1=0的直线方程为y -1=-(x -2),即x +y -3=0,②联立①②,解得⎩⎪⎨⎪⎧x =3,y =0,所以圆心坐标为(3,0),半径r =(4-3)2+(1-0)2=2,所以圆C 的方程为(x -3)2+y 2=2.法二 设圆的方程为(x -a )2+(y -b )2=r 2(r >0),∵点A (4,1),B (2,1)在圆上,故⎩⎪⎨⎪⎧(4-a )2+(1-b )2=r 2,(2-a )2+(1-b )2=r 2, 又∵b -1a -2=-1, 解得a =3,b =0,r =2, 故所求圆的方程为(x -3)2+y 2=2.(2)设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P ,Q 两点的坐标分别代入得⎩⎪⎨⎪⎧2D -4E -F =20,3D -E +F =-10.①②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6,得D 2-4F =36,④联立①②④,解得D =-2,E =-4,F =-8,或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.答案 (1)(x -3)2+y 2=2 (2)x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0规律方法 求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.【训练1】 (1)(2018·兰州诊断)半径为2的圆C 的圆心在第四象限,且与直线x =0和x +y =22均相切,则该圆的标准方程为( ) A.(x -1)2+(y +2)2=4 B.(x -2)2+(y +2)2=2 C.(x -2)2+(y +2)2=4D.(x -22)2(y +22)2=4(2)(2015·全国Ⅰ卷)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析 (1)设圆心坐标为(2,-a )(a >0),则圆心到直线x +y =22的距离d =|2-a -22|2=2,∴a =2,∴该圆的标准方程为(x -2)2+(y +2)2=4.(2)由题意知圆过(4,0),(0,2),(0,-2)三点,(4,0),(0,-2)两点的垂直平分线方程为y +1=-2(x -2), 令y =0,解得x =32,圆心为⎝ ⎛⎭⎪⎫32,0,半径为52. ∴圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.答案 (1)C (2)⎝ ⎛⎭⎪⎫x -322+y 2=254考点二 与圆有关的最值问题【例2】 已知实数x ,y 满足方程x 2+y 2-4x +1=0. (1)求y x的最大值和最小值; (2)求y -x 的最大值和最小值; (3)求x 2+y 2的最大值和最小值.解 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)y x的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值, 此时|2k -0|k 2+1=3,解得k =±3(如图1).所以y x的最大值为3,最小值为- 3.(2)y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6(如图2). 所以y -x 的最大值为-2+6,最小值为-2- 6.(3)x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图3).又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.规律方法 把有关式子进行转化或利用所给式子的几何意义解题,充分体现了数形结合以及转化的数学思想,其中以下几类转化极为常见: (1)形如m =y -bx -a的最值问题,可转化为动直线斜率的最值问题; (2)形如t =ax +by 的最值问题,可转化为动直线截距的最值问题;(3)形如m =(x -a )2+(y -b )2的最值问题,可转化为两点间距离的平方的最值问题.【训练2】 设点P 是函数y =-4-(x -1)2图象上的任意一点,点Q 坐标为(2a ,a -3)(a ∈R ),则|PQ |的最小值为________.解析 函数y =-4-(x -1)2的图象表示圆(x -1)2+y 2=4在x 轴及下方的部分,令点Q 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =2a ,y =a -3,得y =x 2-3,即x -2y -6=0,作出图象如图所示,由于圆心(1,0)到直线x -2y -6=0的距离d =|1-2×0-6|12+(-2)2=5>2,所以直线x -2y -6=0与圆(x -1)2+y 2=4相离,因此|PQ |的最小值是5-2. 答案5-2考点三 与圆有关的轨迹问题【例3】 设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2,线段MN 的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分, 故x 2=x 0-32,y 2=y 0+42.从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4. 又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4.因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上时的情况).规律方法 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法,直接根据题目提供的条件列出方程; (2)定义法,根据圆、直线等定义列方程; (3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.【训练3】 (2018·郑州模拟)已知线段AB 的端点B 在圆C 1:x 2+(y -4)2=16上运动,端点A 的坐标为(4,0),线段AB 的中点为M .(1)试求M 点的轨迹C 2的方程;(2)若圆C 1与曲线C 2交于C ,D 两点,试求线段CD 的长. 解 (1)设M (x ,y ),B (x ′,y ′),则由题意可得⎩⎪⎨⎪⎧x =x ′+42,y =y ′2,解得⎩⎪⎨⎪⎧x ′=2x -4,y ′=2y ,∵点B 在圆C 1:x 2+(y -4)2=16上,∴(2x -4)2+(2y -4)2=16,即(x -2)2+(y -2)2=4. ∴M 点的轨迹C 2的方程为(x -2)2+(y -2)2=4.(2)由方程组⎩⎪⎨⎪⎧(x -2)2+(y -2)2=4,x 2+(y -4)2=16,得直线CD 的方程为x -y -1=0,圆C 1的圆心C 1(0,4)到直线CD 的距离 d =|-4-1|2=522,又圆C 1的半径为4,∴线段CD 的长为242-⎝ ⎛⎭⎪⎫5222=14.基础巩固题组 (建议用时:40分钟)一、选择题1.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ) A.x 2+y 2=2 B.x 2+y 2= 2 C.x 2+y 2=1D.x 2+y 2=4解析 AB 的中点坐标为(0,0),|AB |=[1-(-1)]2+(-1-1)2=22, ∴圆的方程为x 2+y 2=2. 答案 A2.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( )A.(-∞,-2)∪⎝ ⎛⎭⎪⎫23,+∞ B.⎝ ⎛⎭⎪⎫-23,0C.(-2,0)D.⎝⎛⎭⎪⎫-2,23 解析 方程为⎝ ⎛⎭⎪⎫x +a 22+(y +a )2=1-a -3a 24表示圆,则1-a -3a 24>0,解得-2<a <23.答案 D3.(2018·厦门质检)圆C 与x 轴相切于T (1,0),与y 轴正半轴交于两点A ,B ,且|AB |=2,则圆C 的标准方程为( ) A.(x -1)2+(y -2)2=2 B.(x -1)2+(y -2)2=2 C.(x +1)2+(y +2)2=4D.(x -1)2+(y -2)2=4解析 由题意得,圆C 的半径为1+1=2,圆心坐标为(1,2),∴圆C 的标准方程为(x -1)2+(y -2)2=2. 答案 A4.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A.(x -2)2+(y +1)2=1 B.(x -2)2+(y +1)2=4 C.(x +4)2+(y -2)2=4D.(x +2)2+(y -1)2=1解析 设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎪⎨⎪⎧x =4+x 02,y =-2+y 02,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4, 化简得(x -2)2+(y +1)2=1. 答案 A5.(2015·全国Ⅱ卷)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53B.213 C.253D.43解析 由点B (0,3),C (2,3),得线段BC 的垂直平分线方程为x =1,① 由点A (1,0),B (0,3),得线段AB 的垂直平分线方程为y -32=33⎝⎛⎭⎪⎫x -12,②联立①②,解得△ABC 外接圆的圆心坐标为⎝⎛⎭⎪⎫1,233,其到原点的距离为 12+⎝ ⎛⎭⎪⎫2332=213.答案 B 二、填空题6.(2018·长沙模拟)以抛物线y 2=4x 的焦点为圆心,与该抛物线的准线相切的圆的标准方程为________.解析 抛物线y 2=4x 的焦点为(1,0),准线为x =-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x -1)2+y 2=4. 答案 (x -1)2+y 2=47.(2018·宜昌模拟)已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为________. 解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1.所以,当k =0时圆C 的面积最大.答案 (0,-1)8.已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________.解析 过点M 的最短弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,1),∵k CM =1-02-1=1,∴最短弦所在直线的方程为y -0=-(x -1),即x +y -1=0. 答案 x +y -1=0 三、解答题9.一圆经过A (4,2),B (-1,3)两点,且在两坐标轴上的四个截距的和为2,求此圆的方程. 解 设所求圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 令y =0,得x 2+Dx +F =0,所以x 1+x 2=-D . 令x =0,得y 2+Ey +F =0,所以y 1+y 2=-E . 由题意知-D -E =2,即D +E +2=0.①又因为圆过点A ,B ,所以16+4+4D +2E +F =0.② 1+9-D +3E +F =0.③解①②③组成的方程组得D =-2,E =0,F =-12. 故所求圆的方程为x 2+y 2-2x -12=0.10.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解 (1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x ,2-y ). 由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0, 即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到l 的距离为4105,所以|PM |=4105,S △POM =12×4105×4105=165,故△POM 的面积为165.能力提升题组 (建议用时:20分钟)11.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为( )A.1B.5C.4 2D.3+2 2解析 由题意知圆心C (2,1)在直线ax +2by -2=0上, ∴2a +2b -2=0,整理得a +b =1, ∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (a +b )=3+b a +2a b≥3+2b a ×2ab =3+22, 当且仅当b a =2ab,即b =2-2,a =2-1时,等号成立.∴1a +2b的最小值为3+2 2.答案 D12.(2018·东北三省四校联考)已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|PA |2,其中A (0,1),B (0,-1),则d 的最大值为________.解析 设P (x 0,y 0),d =|PB |2+|PA |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方,∴(x 20+y 20)max =(5+1)2=36,∴d max =74. 答案 7413.(2017·全国Ⅲ卷)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. (1)证明 设l :x =my +2,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y 2=2x ,x =my +2,消去x 得y 2-2my -4=0,Δ=4m 2+16恒大于0,y 1+y 2=2m ,y 1y 2=-4. OA →·OB →=x 1x 2+y 1y 2=(my 1+2)(my 2+2)+y 1y 2=(m 2+1)y 1y 2+2m (y 1+y 2)+4=-4(m 2+1)+2m ·2m +4=0.所以OA →⊥OB →,即O 在圆M 上. (2)解 由(1)可得x 1+x 2=m (y 1+y 2)+4=2m 2+4. 故圆心M 的坐标为(m 2+2,m ), 圆M 的半径r =(m 2+2)2+m 2.由于圆M 过点P (4,-2),因此AP →·BP →=0, 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可得y 1y 2=-4,x 1x 2=4.所以2m 2-m -1=0,解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10, 圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝ ⎛⎭⎪⎫94,-12,圆M 的半径为854,圆M 的方程为⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y +122=8516.。