新规范风荷载标准值计算V1
- 格式:xlsx
- 大小:92.94 KB
- 文档页数:2
第二部分 风荷载计算一:风荷载作用下框架的弯矩计算(1)风荷载标准值计算公式:0k z s z W w βμμ=⋅⋅⋅ 其中k W 为垂直于建筑物单位面积上的风荷载标准值z β为z 高度上的风振系数,取 1.00z β= z μ为z 高度处的风压高度变化系数 s μ为风荷载体型系数,取 1.30s μ= 0w 为攀枝花基本风压,取00.40w =该多层办公楼建筑物属于C 类,位于密集建筑群的攀枝花市区。
(2)确定各系数数值因结构高度19.830H m m =<,高宽比19.81.375 1.514.4HB==<,应采用风振系数z β来考虑风压脉动的影响。
该建筑物结构平面为矩形, 1.30s μ=,由《建筑结构荷载规范》第3.7查表得0.8s μ=(迎风面)0.5s μ=-(背风面),风压高度变化系数z μ可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z μ值,再用线性插值法求得所求各楼层高度的z μ值。
层数()i H m z μ z β1()/q z KN m 2()/q z KN m7女儿墙底部 17.50.79 1.00 2.370 1.480 6 16.5 0.77 1.00 2.306 1.441 5 13.2 0.74 1.00 2.216 1.385 4 9.9 0.74 1.00 2.216 1.385 3 6.6 0.74 1.00 2.216 1.385 2 3.3 0.74 1.00 2.216 1.385 1 -3.3 0.00 0.00 0.000 0.000(3)计算各楼层标高处的风荷载z 。
攀枝花基本风压取00.40/w KN mm =,取②轴横向框架梁,其负荷宽度为7.2m,由0k z s z W w βμμ=⋅⋅⋅得沿房屋高度分布风荷载标准值。
7.20.4 2.88z z s z z s z q βμμβμμ=⨯=,根据各楼层标高处的高度i H ,查得z μ代入上式,可得各楼层标高处的()q z 见表。
建筑荷载风荷载8风荷载8.1风荷载标准值及基本风压8.1.1垂直于建筑物表面上的风荷载标准值,应按下列规定确定:1计算主要受力结构时,应按下式计算:式中:w k——风荷载标准值(kN/m2);βz——高度z处的风振系数;μs——风荷载体型系数;μz——风压高度变化系数;w0——基本风压(kN/m2)。
2计算围护结构时,应按下式计算:式中:βgz——高度z处的阵风系数;μs1——风荷载局部体型系数。
8.1.2基本风压应采用按本规范规定的方法确定的50年重现期的风压,但不得小于0.3kN/m2。
对于高层建筑、高耸结构以及对风荷载比较敏感的其他结构,基本风压的取值应适当提高,并应符合有关结构设计规范的规定。
8.1.3全国各城市的基本风压值应按本规范附录E中表E.5重现期R为50年的值采用。
当城市或建设地点的基本风压值在本规范表E.5没有给出时,基本风压值应按本规范附录E规定的方法,根据基本风压的定义和当地年最大风速资料,通过统计分析确定,分析时应考虑样本数量的影响。
当地没有风速资料时,可根据附近地区规定的基本风压或长期资料,通过气象和地形条件的对比分析确定;也可比照本规范附录E中附图E.6.3全国基本风压分布图近似确定。
8.1.4风荷载的组合值系数、频遇值系数和准永久值系数可分别取0.6、0.4和0.0。
8.2风压高度变化系数8.2.1对于平坦或稍有起伏的地形,风压高度变化系数应根据地面粗糙度类别按表8.2.1确定。
地面粗糙度可分为A、B、C、D四类:A类指近海海面和海岛、海岸、湖岸及沙漠地区;B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇;C类指有密集建筑群的城市市区;D类指有密集建筑群且房屋较高的城市市区。
表8.2.1风压高度变化系数μz8.2.2对于山区的建筑物,风压高度变化系数除可按平坦地面的粗糙度类别由本规范表8.2.1确定外,还应考虑地形条件的修正,修正系数η应按下列规定采用:1对于山峰和山坡,修正系数应按下列规定采用:1)顶部B处的修正系数可按下式计算:式中:tanα——山峰或山坡在迎风面一侧的坡度;当tanα大于0.3时,取0.3;k——系数,对山峰取2.2,对山坡取1.4;H——山顶或山坡全高(m);z——建筑物计算位置离建筑物地面的高度(m);当z>2.5H时,取z=2.5H。
4.2风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物受的风荷载。
4.2.1单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。
垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中:1.基本风压值Wo按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最值确定的风速V0(m/s)按公式确定。
但不得小于0.3kN/m2。
对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感,要与高层建筑的自振特性有关,目前还没有实用的标准。
一般当房屋高度大于60米时,采用100年一遇的压。
《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。
2.风压高度变化系数μz《荷载规范》把地面粗糙度分为A、B、C、D四类。
A类:指近海海面、海岸、湖岸、海岛及沙漠地区;B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区;C类:指有密集建筑群的城市市区;D类:指有密集建筑群且房屋较高的城市市区;风荷载高度变化系数μz计算公式A类地区=1.379(z/10)0.24B类地区= (z/10)0.32C类地区=0.616(z/10)0.44D类地区=0.318(z/10)0.6位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。
3.风载体型系数μs风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的大小。
一般取决于建筑建筑物的平面形状等。
计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型系或由风洞试验确定。
几种常用结构形式的风载体型系数如下图注:“+”代表压力;“-”代表拉力。
新旧规范风荷载对比差别很大按照2012新规范计算的风荷载标准值与2006规范相比,差别很大。
特别是局部体型系数,墙角区新规范才1.4+0.2=1.6,而旧规范1.8+0.2=2.0.造成计算后差别巨大,墙面区新规范减少约7%,而墙角区按新规范计算居然减少25%很震惊,不知道是不是我计算错误。
维护构件的面板不再折减了,新规范的迎风侧面墙角区域要比老规范的墙角区域范围更大。
是的!新规范中转角区域的标准风压值是减小了,但是转角区域的范围确是增大了不少!老规范中转角宽度为10%的房屋宽度,新的规范中是20%的房屋宽度(现在绝大部分都是建筑高度大于建筑宽度),整整提高了一倍,所以综合一下,两都就差不多了还不如全部都按照墙角区域计算,省得麻烦!真正做的时候,有几个是把转角材料和中间大面材料分开的,还不是用的一种材料。
请问各位大侠,局部体型系数,规范只是说封闭矩形平面的墙面和墙角取值,可是现在的建筑很少矩形平面呀。
特别是有做幕墙的建筑,这个时候怎么取值呀?按照规范可以区主体“S勺1.25倍,可是没有说怎么区分墙角和墙面呀。
难道统一取同一值,不再区分墙角和墙面?这个问题对于幕墙设计注定又会是模糊着的,现在的建筑平面千奇百怪,各种勺弧形。
从设计勺角度看统一成墙角区是最简单勺了。
说实话,我们把墙角区和墙面区设计时区分对待,并在图上注明,真正施工时没几个能把它们区分勺,更多勺就是转角一根料当作墙角区对待。
我个人注意到:较大勺区别在8.3.3封闭式矩形平面房屋的局部体型系数取值有变化,角区的取值区别较大。
楼上说的是封闭的矩形平面房屋,可是现在的房屋基本没有矩形平面房屋(特别是做幕墙的公共建筑),不知道这个时候怎么区分墙角墙面区,按照规范第8.3.3条第三款的规定取值的话,那就是不区分墙角墙面区了,求高手解惑。
新版规范里多了个相邻建筑物的风绕系数,分为顺风和横风。
实际中建筑都不是绝对的矩形,计算幕墙风荷载时按新规范8.3.1,正面是按0.8,乘1.25,还是按8.3.3正面取1再乘1.25,墙角的1.4是不是也要乘1.25呢,还是说墙角部位是平墙不用乘,如有凹凸就要乘,请高手指教关于乘以1.25,规范是说如果非封闭矩形平面建筑的局部体型系数按照第8.3.1的体型系数乘以1.25得到。
风荷载计算参考规范:《建筑结构荷载设计规范》gb50009-2022《高层建筑混凝土结构技术规程》jgj3-2021一般情况下的风荷载:风荷载的标准值为荷载规范8.1.1和4.2.1wk??ZsZw0(1)风荷载标准值计算公式适用于主要承重(主)结构的风荷载计算;(2)风荷载的标准值为沿风向的风荷载;(3)风荷载垂直于建筑物表面;(4)风荷载的作用面积应为垂直于风向的最大投影面积;(5)适用于高层建筑任意高度的风荷载计算。
对于荷载规范3.2.5第2条中的雪荷载和风荷载,重现期应视为设计使用寿命。
8.1.2在荷载规范中,基本风压应为根据本规范规定的方法确定的重现期为50年的风压,但不得小于0.3kn/o。
荷载规范的E.5和高度规范的4.2.2。
对风荷载敏感的高层建筑,其承载力按基本风压的1.1倍设计。
(文章描述)。
一般情况下,对于高度超过60m的高层建筑,在承载力设计中可按基本风压的1.1倍计算风荷载。
吸烟守则第5.2.1条。
基本风压不应小于0.35kn/o。
对于安全等级为I级的烟囱,应根据每100年一次的风压采用基本风压。
8.2.1地面粗糙度a类近海海面和岛屿、海岸、湖岸和沙漠地区B类田地、村庄、丛林、丘陵和城镇,房屋稀疏,城市地区C类密集建筑,城市地区D类密集建筑,房屋高大。
荷载规范表8.2.1显示了墙和柱的风压高度随墙顶的变化系数。
柱顶与地面之间的距离被视为计算高度Z,通过查表插入法确定。
荷载规范中的风压体型系数8.3.1围护结构:根据第32项,高度规范中取1.3 4.2.31,圆形平面建筑取0.8;2正多边形和截断三角形平面建筑的计算公式如下:?s0.8? 1.2/n3对于高宽比H/b不大于4的矩形、方形和交叉平面建筑,取1.3;4.以下建筑采用1.4:1)V形、Y形、弧形、双十字形和井形平面建筑;2)高宽比H/b大于4的L形、槽形和十字形平面建筑;风压高度变异系数3)高宽比H/b大于4,长宽比L/b小于1.5的矩形和鼓形平面建筑。
1 风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。
1.1 单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。
垂直作用于建筑物表面单位面积上的风荷载标准值ωk (KN/m ²)按下式计算:ωk =βz μs μz ω0风荷载标准值(kN/m 2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压1.1.1 基本风压ω0按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v 0(m/s),再考虑相应的空气密度通过计算确定数值大小。
按公式 ω0=12ρv 02确定数值大小,但不得小于0.3kN/m 2,其中ρ的单位为t/m ³,ω0单位为kN/m 2。
也可以用公式ω0=11600v 02计算基本风压的数值,也不得小于0.3kN/m2。
1.1.2 风压高度变化系数μZ风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。
规范以B 类地面粗糙程度作为标准地貌,给出计算公式。
μZX=(H tB 10)2αB (10H tX )2αX (Z 10)2αXμZA =1.248(Z 10)0.24μZB =1.000(Z )0.30μZC =0.544(Z 10)0.44μZD =0.262(Z 10)0.601.1.3 风荷载体形系数μS1)单体风压体形系数(1)圆形平面μS =0.8;(2)正多边形及截角三角平面μS=0.8+√n,n为多边形边数;(3)高宽比HB≤4的矩形、方形、十字形平面μS=1.3;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比HB >4的十字形、高宽比HB>4,长宽比LB≤1.5的矩形、鼓形平面μS=1.4;(5)未述事项详见相应规范。
风荷载的计算垂直于建筑物外表上的风荷载标准值,应按以下公式计算:1、当计算主要承重构造时:Wk=βz·μs·μz·W0 ……………………〔7.1.1-1〕式中:Wk----风荷载标准值〔KN/mm〕βz---高度Z处的风振系数;μs---风荷载体型系数;μz---风压高度变化系数;W0----根本风压〔KN/mm〕2、当计算维护构造时:Wk=βgz·μs·μz·W0 ……………………〔7.1.1-2〕式中:βgz---高度Z处的阵风系数;根本风压应按本标准附录 D.4中附表 D.4给出的50年一遇的风压采用,但不得小于0.3KN/mm。
对于高层建筑、高耸构造以及风荷载比拟敏感的其它构造,根本风压应适当进步,并应由有关的构造设计标准详细规定。
一、风荷载计算1、标高为33.600处风荷载计算(1). 风荷载标准值计算:Wk: 作用在幕墙上的风荷载标准值(kN/m2)βgz: 33.600m高处阵风系数(按B类区计算):μf=0.5×(Z/10)-0.16=0.412βgz=0.89×(1+2μf)=1.623μz: 33.600m高处风压高度变化系数(按B类区计算): (GB50009-2001)μz=(Z/10)0.32=1.474风荷载体型系数μs=1.50Wk=βgz×μz×μs×W0 (GB50009-2001)=1.623×1.474×1.5×0.600=2.153 kN/m2(2). 风荷载设计值:W: 风荷载设计值: kN/m2rw: 风荷载作用效应的分项系数:1.4按?建筑构造荷载标准?GB50009-2001随着现代高尚住宅的开展对铝合金门窗的要求越来越高,铝合金门窗不仅仅是框、扇的简单组合,而且要具备良好的物理性能〔风压强度、空气浸透、雨水渗漏等性能〕。
《建筑结构荷载规范》(GB50009-2001)新内容有关调整部分:新规范于2002年3月1日启用,原规范(GBJ9-87)于2002年12月31日废止;新规范规定必须严格执行的强制性条文共13条,具体分配为:第1章有1条、第3章有3条、第4章有5条、第6章有2条、第7章有2条;楼面活荷载作了一些调整和增项,屋面不上人活荷载也作了一些调整;风、雪荷载由原按30年一遇重新规定为按50年一遇,同时对滁州市的风、雪荷载值也作了一点调整:10米高50年一遇基本风压值为0.35KN/M2,雪压值为0.40KN/M2,雪荷载准永久值系数为0.2,属于第Ⅱ分区;在计算风载时,风压高度变化系数根据地面粗糙度类别来确定:原规范(GBJ9-87)将地面粗糙度类别分为三类(A、B、C)。
随着我国建设事业的蓬勃发展,城市房屋的高度和密度日益增大,因此,对大城市中心地区的粗糙程度也有不同程度的提高,新规范(GB50009-2001)特将地面粗糙度改为四类(A、B、C、D),其中A、B类的有关参数不变,C类指有密集建筑群的城市市区,其粗糙度指数α由0.2改为0.22,梯度风高度HG仍取400m,新增添的D类,是指有密集建筑群且有大量高层建筑的大城市市区,其粗糙度指数α为0.3,梯度风高度HG取450m;专门规定了围护结构构件的风荷载及相关计算;在常用材料和构件的自重之“附表A”中,增设了“建筑墙板”一览表。
强制性条文部分:第1章“总则”之强制性条文:第1.0.5条:规范采用的设计基准期一律为50年;第3章“荷载分类和荷载效应组合”之强制性条文:第3.1.2条:建筑结构设计时,对不同荷载应采用不同的代表值:对永久荷载应采用标准值作为代表值;对可变荷载应根据设计要求采用标准值、组合值、频遇值或准永久值作为代表值;对偶然荷载应按建筑结构使用的特点确定其代表值。
第3.2.3条:对于基本组合,荷载效应组合的设计值应从以下两种组合值中取最不利值中确定:①由可变荷载效应控制的组合;②由永久荷载效应控制的组合;第3.2.5条:基本组合的荷载分项系数,应按下列规定采用:永久荷载的分项系数:当其效应对结构不利时;——对由可变荷载效应控制的组合,应取1.2;——对由永久荷载效应控制的组合,应取1.35;当其效应对结构有利时;——一般情况下,应取1.0;——对结构的倾覆、滑移或漂浮验算,应取0.9;可变荷载的分项系数:——一般情况下,应取1.4;——对标准值大于4. 0KN/M2的工业房屋楼面结构的活荷载,应取1.3;第4章“楼面和屋面活荷载”之强制性条文:第4.1.1条:民用建筑楼面均布活荷载的标准值及其组合值、频遇值和永久值系数应按表4.1.1的规定采用(摘录):住宅、宿舍、旅馆、办公楼、医院病房、托儿所、幼儿园,楼面均布活荷载的标准值取2.0 KN/M2;教室、试验室、阅览室、会议室、医院门诊室,楼面均布活荷载的标准值取2. 0KN/M2;食堂、餐厅、一般资料档案室,楼面均布活荷载的标准值取2.5KN/M2;礼堂、剧场、影院、有固定座位的看台,楼面均布活荷载的标准值取3.0KN/M2;一般的厨房,楼面均布活荷载的标准值取2.0KN/M2;餐厅的厨房,楼面均布活荷载的标准值取4.0KN/M2;住宅、宿舍、旅馆、办公楼、医院病房、托儿所、幼儿园的浴室,厕所、盥洗室,楼面均布活荷载的标准值取2.0KN/M2;其他民用建筑的浴室,厕所、盥洗室,楼面均布活荷载的标准值取2.5KN/M2;住宅、宿舍、旅馆、医院病房、托儿所、幼儿园的走廊,门厅、楼梯,楼面均布活荷载的标准值取2.0KN/M2;办公楼、教室、餐厅、医院门诊部的走廊,门厅、楼梯,楼面均布活荷载的标准值取2.5KN/M2;消防疏散楼梯和其他民用建筑的走廊,门厅、楼梯,楼面均布活荷载的标准值取3.5KN/M2;对于预制楼梯踏步平板,尚应按1.5KN集中荷载验算;一般情况下的阳台,楼面均布活荷载的标准值取2.5KN/M2;当人群有可能密集时,楼面均布活荷载的标准值取3.5KN/M2;第4.1.2条:设计楼面梁、墙、柱及基础时,第4.1.1条中的楼面均布活荷载的标准值在下列情况下应乘以规定的折减系数:设计楼面梁时的折减系数:——当住宅、宿舍、旅馆、办公楼、医院病房、托儿所、幼儿园的楼面梁从属面积超过25m2时,应取0.9;——当教室、试验室、阅览室、会议室、医院门诊室、食堂、餐厅、一般资料档案室、礼堂、剧场、影院、有固定座位的看台等的楼面梁从属面积超过50m2时,应取0.9;设计墙、柱及基础时的折减系数,参见下表:活荷载按楼层的折减系数墙、柱及基础计算截面以上的层数 1 2~3 4~5 6~8 9~20 >20计算截面以上各楼层活荷载总和的折减系数 1.00 (0.90) 0.85 0.70 0.65 0.60 0.55注:当楼面梁的从属面积超过25m2时,应采用括号内的系数。
风荷载标准值计算风荷载标准值计算公式为:0k z s z w w βμμ=,作用在屋面梁和楼面梁节点处的集中风荷载标准值计算公式为:0W z s z P w A βμμ= 式中:W P -作用于框架节点的集中风荷载标准值(KN) z β-风振系数s μ-风荷载体型系数 z μ-风压高度变化系数0w -基本风压(KN/㎡)A -一榀框架各层节点受风面积(㎡)本建筑基本风压为:200.3/w KN m =,由《荷载规范》得,地面粗糙为C 类。
s μ风荷载体系系数,根据建筑物体型查得 1.3s μ=。
z β风振系数,因结构总高度H=21.128m<30m ,故 1.0z β=。
风压高度变化系数z μ查《荷载规范》表7.2.1。
一榀框架各层节点受风面积A 计算,B 为3.3 3.9() 3.622m +=, h 取上层的一半和下层的一半之和,屋面层取到女儿墙顶,底层取底层的一半。
底层的计算高度从室外地面取()mm 45003004200=+。
一层: 24.5 3.9() 3.615.1222A m =+⨯= 二层: 23.9 3.9() 3.614.0422A m =+⨯=三层: 23.9 3.9() 3.614.0422A m =+⨯=四层: 23.9 3.9() 3.614.0422A m =+⨯=五层:23.9(1.50) 3.612.422A m =+⨯=计算过程见表所示:欠左风、右风荷载受荷简图框架梁柱线刚度计算框架梁柱线刚度计算见表表7-1 纵梁线刚度计算表表7-2 柱线刚度Ic 计算表7.2.2 侧移刚度D 值计算 考虑梁柱的线刚度比,用D 值法计算柱的侧位移刚度,表7-4 柱侧移刚度计算表2~5层柱D 值计算2~5层柱D 值合计:D ∑=1.572+1.572=3.144KN/m底层柱D 值计算低层柱D 值合计:D ∑=1.612+1.612=3.224KN/m 7.2.3 风荷载作用下框架位移的计算风荷载作用下框架的层间侧移可按下式计算,即jj ijV u D∆=∑式中:j V -第j 层的总剪力;ij D ∑-第j 层所有柱的抗侧刚度之和;j u ∆-第j 层的层间位移。
3.1.3 风荷载建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照《荷载规范》第7章执行。
1、风荷载标准值计算垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式(3.1-2)计算:βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照《荷载规范》7.4要求取值。
多层建筑,建筑物高度<30m ,风振系数近似取1。
(1)风荷载体型系数µS 风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照《荷载规表3.1.10 建筑物体型系数取值表注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。
注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应。
一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞试验确定。
注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0。
W W z s z k μμβ=)21.3(-注4:验算表面围护结构及其连接的强度时,应按照《荷载规范》7.3.3规定,采用局部风压力体型系数。
(2)风压高度变化系数µz设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用。
对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求。
表3.1.11 风压高度变化系数关于地面粗糙程度的分类:A类:近海海面、海岛、海岸、湖岸及沙漠地区;B类:田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;C类:有密集建筑群的城市市区;D类:有密集建筑群和且房屋较高的城市市区。
3.1.3 风荷载建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照荷载规范第7章执行;1、风荷载标准值计算垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式3.1-2计算:βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照荷载规范7.4要求取值;多层建筑,建筑物高度<30m,风振系数近似取1; 1风荷载体型系数µS风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照荷载规表3.1.10 建筑物体型系数取值表注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照高层规程中附录A 采用、或由风洞试验确定;注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应;一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞试验确定;W W z s z k μμβ=)21.3(-注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0;注4:验算表面围护结构及其连接的强度时,应按照荷载规范7.3.3规定,采用局部风压力体型系数;2风压高度变化系数µz设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用;对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按荷载规范7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求;表3.1.11 风压高度变化系数关于地面粗糙程度的分类:A 类:近海海面、海岛、海岸、湖岸及沙漠地区;B 类:田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;C 类:有密集建筑群的城市市区;D 类:有密集建筑群和且房屋较高的城市市区; 3基本风压值W 0基本风压值W 0,单位kN/m 2,以当地比较空旷平坦场地上离地10m 高、统计所得50年一遇10分钟平均最大风速为标准确定的风压值,各地的基本风压可按照荷载规范附录D 中的全国基本风压分布图查用,表3.1.12为浙江省主要城镇基本风压取值参考表;2、基本风压的取值年限荷载规范在附录D 中分别给出了n=10年、n=50年、n=100年一遇的基本风压标准值,工程设计中根据建筑物的使用性质与功能要求,一般按照下列方法选用风压标准值的取值年限:① 临时性建筑物:取n=10年一遇的基本风压标准值;② 一般的工业与民用建筑物:取n=50年一遇的基本风压标准值;③ 特别重要的建筑物、或对风压作用比较敏感的建筑物建筑物高度大于60m :取表3.1.12 浙江省主要城镇基本风压kN/m 2取值参考表n=100年一遇的基本风压标准值;在没有100年一遇基本风压标准值的地区,可近似将50年一遇的基本风压值标准值乘以1.1经验系数以后采用;3、关于风荷载作用的方向问题建筑物受到的风荷载作用来自各个方向,风荷载的主要作用方向与建筑物所在地的风玫瑰图方向一致全国主要城市风玫瑰图,可以查相应的建筑设计资料;工程设计中,一般按照风荷载作用的最大值,来计算建筑物受到的风荷载作用效应;对于抗侧力构件相互垂直布置的建筑物:一般按照两个相互垂直的主轴方向来考虑风荷载的作用效应,详图3.1.3a所示;图3.1.3a 抗侧力构件垂直布置示意图图3.1.3b 抗侧力构件多向布置示意图对于抗侧力构件多向布置的建筑物:一般按照抗侧力构件布置方向,沿着相互垂直的主轴方向次依考虑风荷载的作用效应,详图3.1.3b所示;注意:同一方向,左风荷载作用效应和右风荷载作用效应要分别进行计算;4、风洞试验高层规程3.2.8明确,对于特别重要的建筑物、特别不规则的建筑物,风荷载标准值计算公式3.1-2中的相关计算参数有必要通过风洞试验来确定,以便较精确地计算建筑物受到的风荷载作用效应,确保建筑结构的抗风能力;一般建筑物高度大于200m 、或建筑物高度大于150m 但存在下列情况之一时,宜采用风洞试验来确定建筑物的风荷载作用参数;① 平面形状不规则,立面形状复杂; ② 立面开洞或连体建筑;③ 规范或规程中没有给出体型系数的建筑物; ④ 周围地形或环境较复杂;风洞试验通常由有试验能力和试验资质的高等院校、科研院所完成,按照一定比例制作的建筑物模型置于人工模拟的风环境中,模型上不同部位埋设一定数量的电子测压孔,通过压力传感器输出电流信号、通过数据采集仪自动扫描记录并转为相关的数字信号,再经过一系列的计算机数据处理、模拟分析,可以得到建筑物受到的平均风压力和波动风压力值,供设计采用;多层建筑物,房屋高度小,风荷载作用影响较小,一般不做风洞试验; 5、梯度风基本风压与风速有关,一般风速由地面为零沿高度方向按照曲线逐渐增大,直至距离地面某一高度处达到最大值,上层风速度受地面影响较小,风速较为稳定;不同的地表面粗糙度使风速沿高度增加的梯度速率不同,详图3.1.4所示,风速变化的这种规律,称为梯度风;图3.1.4 风速随高度变化示意图6、特殊情况下基本风压的取值① 当重现期为任意年限R 时,相应风压值可按照公式3.1-2a 进行近似计算:式中:X R ——重现期为R 年的风压值kN /m 2;X 10——重现期为10年的风压值kN /m 2;X 100——重现期为100年的风压值kN /m 2; ② 当城市或建设地点的基本风压值在“全国基本风压分布图”上没有给出时,可根据附近地区规定的基本风压或长期观测资料,通过气象或地形条件的对比分析确定;在分析当地的年最大风速时,往往会遇到其实测风速的条件不符合基本风压规定的标准)21.3(a -)110ln ln )((1010010--+=RX X X X R条件,因而必须将实测的风速资料换算为标准条件的风速资料,然后再进行分析;情形一:当实测风速的位置不是l0m 高度时,标准条件风速的换算原则上应由气象台站根据不同高度风速的对比观测资料,并考虑风速大小的影响,给出非标准高度风速的换算系数,以确定标准条件高度的风速资料;当缺乏相应的观测资料时,可近似按照公式3.1-2b 进行换算:式中:ν——标准条件下l0m 高度处、时距为10分钟的平均风速值m /s ;νz ——非标准条件下z 高度m 处、时距为10分钟的平均风速值m /s ; α——实测风速高度换算系数,可根据设计手册,近似按表3.1.13取值;表3.1.13 实测风速高度换算系数参考表情形二:当最大风速资料不是时距10分钟的平均风速时,标准条件风速的换算虽然世界上不少国家采用基本风压标准值中的风速基本数据为10分钟时距的平均风速,但也有一些国家不是这样;因此对某些国外工程需要按照我国规范设计时,或国内工程需要与国外某些设计资料进行对比时,会遇到非标准时距最大风速的换算问题;实际上时距10分钟的平均风速与其它非标准时距的平均风速的比值是不确定的,表3.1.14给出了非标准时距平均风速与时距10分钟平均风速的换算系数,必要时可按照公式3.1-2c 做近似换算:式中:ν——时距为10分钟的平均风速值m /s ;νt ——时距为t 分钟的平均风速值m /s ;β——换算系数,可根据设计手册,近似按表3.1.14取用;表3.1.14 不同时距与10分钟时距风速换算系数参考表情形三:当已知风速重现期为T 年时,标准条件风压的换算当已知10分钟时距平均风速最大值的重现期为T 年时,其基本风压与重现期为50年的基本风压的关系,可按照公式3.1-2d 进行简单换算:式中:W 0——重现期为50年的基本风压值kN /m 2;W ——重现期为T 年的基本风压值kN /m 2;γ——换算系数,可根据设计手册,近似按表3.1.15取用;表3.1.15 不同重现期与重现期为50年的基本风压的换算系数参考表③ 山区的基本风压zv v α=β/t v v =γ/0W W =)21.3(b -)21.3(c -)21.3(d -山区的基本风压应通过调查后确定,如无实际资料,可按照当地邻近空旷平坦地面的基本风压值,乘以一放大系数后采用;任何情况下,山区的基本风压值不得小于0.3kN/m 2;7、围护结构的风荷载计算计算围护结构上作用的风荷载值,必须考虑阵风的影响,按照公式3.1-2e 进行:W K ——风荷载标准值,单位kN/m 2;W 0——基本风压值,单位kN/m 2,取值要求同前;βgz ——高度Z 处的阵风系数,按照荷载规范7.5要求取值;µS ——风荷载体型系数,按照荷载规范7.3.3要求取值;对于檐沟、雨蓬、遮阳板等突出构件,风力作用垂直向上,风荷载体型系数为2;µz ——风压高度变化系数,取值要求同前; 8、玻璃幕墙的风荷载计算玻璃幕墙作为围护结构的一种表现形式,在民用建筑中应用较多,其抗风设计必须满足围护结构风荷载标准值的计算要求;由于玻璃幕墙单块受荷面积较小,根据玻璃幕墙工程技术规范JGJ102-96规定,垂直于玻璃幕墙表面上的风荷载标准值,可近似按照公式3.1-2f 计算:公式中有关高度变化系数µz 、基本风压W 0的计算取值要求同前,对于体型系数µS 的取值要求如下:竖直幕墙外表面按照±1.5取用;斜玻璃幕墙可根据实际情况按照荷载规范要求取用;当建筑物进行了风洞试验时,直接根据风洞试验结果确定;任何情况下,设计玻璃幕墙用风荷载标准值W k 不得小于1.0kN/m 2;0W W z s gz K μμβ=025.2W W z s K μμ=)21.3(f -)21.3(e -。
第二部分风荷载计算一:风荷载作用下框架的弯矩计算(1)风荷载标准值计算公式:W k z s z w0其中W k为垂直于建筑物单位面积上的风荷载标准值z为z高度上的风振系数,取z 1.00z为z高度处的风压高度变化系数s为风荷载体型系数,取s 1.30W o为攀枝花基本风压,取W。
0.40该多层办公楼建筑物属于C类,位于密集建筑群的攀枝花市区。
(2)确定各系数数值因结构高度H 19.8m 30m,高宽比 % 19.%44 1.375 1.5,应采用风振系数z来考虑风压脉动的影响。
该建筑物结构平面为矩形,s 1.30,由《建筑结构荷载规范》第3.7查表得s 0.8 (迎风面)s 0.5 (背风面),风压高度变化系数z可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z值,再用线性插值法求得所求各楼层高度的z值。
(3)计算各楼层标高处的风荷载z。
攀枝花基本风压取0 ,取②轴横向框架梁,其负荷宽度为7.2m,由W k z s z w0得沿房屋高度分布风荷载标准值。
q z 7.2 0.4 z s z 2.88 z s z,根据各楼层标高处的高度已,查得z代入上式,可得各楼层标高处的q(z)见表。
其中qdz)为迎风面,q2(z)背风面。
风正压力计算:7. qdz) 2.88 z s z 2.88 1.00 1.30 0.79 0.8 2.370KN / m6. qdz) 2.88 z s z 2.88 1.00 1.30 0.77 0.8 2.306KN / m5. qdz) 2.88 z s z 2.88 1.00 1.30 0.74 0.8 2.216KN / m4. qdz) 2.88 z s z 2.88 1.00 1.30 0.74 0.8 2.216KN / m3. qdz) 2.88 z s z 2.88 1.00 1.30 0.74 0.8 2.216KN / m2. qdz) 2.88 z s z 2.88 1.00 1.30 0.74 0.8 2.216KN / m1. qdz)2.88 z s z 2.88 0.00 1.30 0.74 0.8 0.000KN / m风负压力计算:7. q2⑵288 z s z 2.88 1.00 1.30 0.79 0.5 1.480KN /m6. q2⑵288 z s z 2.88 1.00 1.30 0.77 0.5 1.441KN /m5. q2⑵ 2.88 z s z 2.88 1.00 1.30 0.74 0.5 1.385KN /m4. q2⑵ 2.88 z s z 2.88 1.00 1.30 0.74 0.5 1.385KN /m3. q2(z)2.88 z s z 2.88 1.00 1.30 0.74 0.5 1.385KN /m2. q 2(z) 2.88 z s z2.88 1.00 1.30 0.74 0.5 1.385KN/m 1. q 2(z) 2.88 z sz2.88 0.00 1.30 0.74 0.50.000KN /m(4)将分布风荷载转化为节点荷载第六层:即屋面处的集中荷载 F 6要考虑女儿墙的影响05[(2306 2216)2.306]332.3702306 10 5[八441 1385) 1.441] 331441皿。
风荷载标准值关于风荷载计算风荷载是高层建筑主要侧向荷载之一;结构抗风分析包括荷载;内力;位移;加速度等是高层建筑设计计算的重要因素..脉动风和稳定风风荷载在建筑物表面是不均匀的;它具有静力作用长周期哦部分和动力作用短周期部分的双重特点;静力作用成为稳定风;动力部分就是我们经常接触的脉动风..脉动风的作用就是引起高层建筑的振动简称风振..以顺风向这一单一角度来分析风载;我们又常常称静力稳定风为平均风;称动力脉动风为阵风..平均风对结构的作用相当于静力;只要知道平均风的数值;就可以按结构力学的方法来计算构件内力..阵风对结构的作用是动力的;结构在脉动风的作用下将产生风振..注意:不管在何种风向下;只要是在结构计算风荷载的理论当中;脉动风一定是一种随机荷载;所以分析脉动风对结构的动力作用;不能采用一般确定性的结构动力分析方法;而应以随机振动理论和概率统计法为依据..从风振的性质看顺风向和横风向风力顺风向风力分为平均风和阵风..平均风相当于静力;不引起振动..阵风相当于动力;引起振动但是引起的是一种随机振动..也就是说顺风向风力除了静风就是脉动风;根本就没有周期性风力会引起周期性风振;绝对没有;起码从结构计算风载的理论上顺风向的风力不存在周期性风力..横风向;既有周期性振动又有随机振动..换句话说就是既有周期性风力又有脉动风..反映在荷载上;它可能是周期性荷载;也可能是随机性荷载;随着雷诺数的大小而定..有的计算方法根据现有的研究成果;风对结构作用的计算;分为以下三个不同的方面:1对于顺风向的平均风;采用静力计算方法2对于顺风向的脉动风;或横风向脉动风;则应按随机振动理论计算3对于横风向的周期性风力;或引起扭转振动的外扭矩;通常作为稳定性荷载;对结构进行动力计算风荷载标准值的表达可有两种形式;其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数..由于在结构的风振计算中;一般往往是第1振型起主要作用;因而我国与大多数国家相同;采用后一种表达形式;即采用风振系数βz;它综合考虑了结构在风荷载作用下的动力响应;其中包括风速随时间、空间的变异性和结构的阻尼特性等因素..W K=βzμsμZ W0W0基本风压WK 风荷载标准值βz z高度处的风振系数μs 风荷载体型系数μZ 风压高度变化系数基本风压值与风速大小有关..基本风压W0确定的标准条件务必记牢:空旷平坦平面;离地10m高;统计所得重现期为50年一遇和10min的平均最大风速V 为标准;并以W0=V2/1600来确定的..新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇且不得小于0.3kN/m2;新高规 3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑;应按100年一遇的风压值采用..μZ 风压高度变化系数很明显在μZ表中可以看出高度10米以下的μZ基本小于一;10米以上的基本大于一..这是因为基本风压是按十米高度给出的;所以不同高度上的风压应将W0乘以高度系数得出..谈到μZ个人认为只要记住其和结构高度以及地面粗糙程度有关并弄明白为什么有关即可..A类:近海湖以及沙漠地区B类:田野乡村及中小城镇和大城市郊区C类:有密集建筑群的城市市区D类:有密集建筑群且房屋较高的城市市区一般的建筑都选B类;道理简单的很:这样μZ取值偏高;风荷载标准值偏高;计算偏安全..μs 风荷载体型系数个人认为一级结构在这里考的多且很到位..以规则矩形结构平面为例风荷载体型系数分为三类μs1迎风面体形系数μs2 背风面体形系数μs3 和μs4为侧风面体型系数μs1=0.80μs2=-0.48+0.03H/Lμs3=μs4=-0.60平常计算风荷载主要是以顺风方向进行计算;则μs=μs1-μs2=0.080+0.48+0.03H/L为什么上式是减号是因为迎风面的压力还是背风面的吸力其实都在一个方向上;所以要调整两者的符号;要他们绝对值加;其实上式完全可以写成:μs=/μs1/+/μs2/=0.080+0.48+0.03H/L另外工作中经常会发现一种现象对于基本矩形的建筑;有的设计院不经计算直接在正压区取1.5的体型系数;经验取值也只能进行经验的解释:多年来这个系数是这样来的;一般建筑正风压系数为+0.8;侧面-0.7;背面-0.5..假定风来袭时正面门窗开启或者时被风损坏;那么正面的风压将会作用到室内各个部分;故其侧面的风压将会是-0.7-0.8=-1.5.. 但是现代建筑功能复杂;房屋众多;一般不会容易出现这种最不利的情况..所以新版规范进行了修改;改为了内压0.2;正压提高到1.0..原规范大面风压体型系数取值1.5..注意:对于一些超高层;在需要更细致的进行风荷载计算的情况下;需要进行风洞试验;以此来确定风荷载体型系数..βz z高度处的风振系数风振系数主要是为了考虑风载波动中的动力作用脉动风力对建筑产生的振动效应..进一步说;风振系数加大了风荷载;把原来风荷载中的脉动部分加强后算在了静力荷载上;作用就可以按照静力作用计算风荷载效应了..这是一种近似的把动力问题化为静力计算的方法;可以大大简化设计工作..但是;如果建筑物的高度很大例如超过200m;特别是对于周期较长比较柔的结构;最好进行风洞试验..用通过实验得到的风对建筑物的作用作为设计依据较为安全可靠..风振系数牵连的东西最多;包括脉动增大系数;脉动影响系数;风压高度变化系数和振型系数\其中脉动增大系数又和周期;基本风载和粗糙程度有关而脉动影响系数又与H/B和粗糙程度有关。