13.(2024河北石家庄期中)如图,△ABC中,D为AC边上一点, DE⊥AB于E,ED的延长线交BC的延长线于F,且CD=CF. (1)求证:△ABC是等腰三角形. (2)当∠F= 30 度时,△ABC是等边三角形,并给出证明.
解析 (1)证明:∵CD=CF,∴∠F=∠CDF, ∵∠ADE=∠CDF,∴∠F=∠ADE, ∵DE⊥AB,∴∠F+∠B=90°,∠ADE+∠A=90°, ∴∠B=∠A,∴△ABC是等腰三角形. (2)当∠F=30度时,△ABC是等边三角形. 证明:当∠F=30°时, ∵DE⊥AB,∴∠B+∠F=90°,∴∠B=90°-30°=60°, 由(1)知△ABC是等腰三角形, ∴△ABC是等边三角形.
解析 ∵BP,CP分别是∠ABC和∠ACB的平分线,∴∠ABP= ∠PBD,∠ACP=∠PCE,∵PD∥AB,PE∥AC,∴∠ABP=∠BPD, ∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD, CE=PE,∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=15 cm.
16.(2024河北承德期末,10,★★☆)如图,已知△ABC是等边三 角形,D是BC边上的一个动点(异于点B,C),过点D作DE⊥AB, 垂足为E,DE的垂直平分线交AC,BC于点F,G,连接FD,FE.当 点D在BC边上移动时,有下列三个结论:①△DEF一定为等腰 三角形;②△CFG一定为等边三角形;③△FDC可能为等腰三 角形.其中正确的有 ( C )
∵∠BDE=∠FEC-∠CBD=30°=∠CBD, ∴DE=BE=6, 故DE的长为6.
能力提升全练
15.(2024河北石家庄藁城期末,8,★★☆)如图,在△ABC中,AB =AC,∠BAC=108°,若AD、AE三等分∠BAC,则图中等腰三角 形有 ( D )