人教版初中数学八年级上册第11章 三角形 期末复习试题及答案解析
- 格式:doc
- 大小:722.00 KB
- 文档页数:30
2022-2023学年人教版八年级数学上册《第11章三角形》期末综合复习题(附答案)一.选择题(共9小题)1.若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1B.5C.7D.92.图中三角形的个数是()A.8B.9C.10D.113.如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3等于()A.55°B.60°C.65°D.70°4.下列图中具有稳定性的是()A.B.C.D.5.下列说法中错误的是()A.三角形的中线、角平分线、高线都是线段B.任意三角形的外角和都是360°C.两条直线被第三条直线所截,内错角相等D.平行于同一直线的两条直线互相平行6.四边形的内角和为()A.180°B.360°C.540°D.720°7.现有长度分别为20cm,30cm的两根木条,从下面四根木条中选取一根,首尾相接能连成一个三角形木架,则应选取的是()A.10cm B.20cm C.50cm D.60cm8.已知直角三角形的一个锐角为25°,则它的另一个锐角的度数为()A.25°B.65°C.75°D.不能确定9.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270°C.180°D.135°二.填空题10.在△ABC中,∠A=52°,∠B=102°,则∠C=.11.正五边形的内角和为°,外角和为°.12.如图,有下列结论:①∠A>∠ACD;②∠B+∠ACB=180°﹣∠A;③∠A+∠ACB<180°;④∠HEC>∠B.其中,正确的是(填上你认为正确的所有的序号).13.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B =.14.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.15.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=.三.解答题16.如图,AD是△ABC的角平分线,∠1=∠2,∠3=∠4,IE⊥BC于点E,(1)若∠ABC=40°,∠ACB=80°,则∠5=,∠6=.(2)猜想∠5、∠6的数量关系是:.(3)请对你的猜想进行证明.17.四边形ABCD中,∠A=140°,∠D=80度.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.18.已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.(1)求∠2的度数;(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.19.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,则∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD=°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=°;(2)根据①中的计算结果写出∠A与∠A1之间等量关系;(3)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A6与∠A的数量关系;(4)如图,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.20.如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求证:∠B=∠BOC;(2)延长AB交x轴于点E,过O作OD⊥AB,且∠DOB=∠EOB,∠OAE=∠OEA,求∠A度数;(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),在(2)的条件下,试问∠P的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.参考答案一.选择题1.解:根据三角形的三边关系,得:第三边>两边之差,即4﹣3=1,而<两边之和,即4+3=7,即1<第三边<7,∴只有5符合条件,故选:B.2.解:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.故选:B.3.解:∵直线l1∥l2,∠1=40°,∠2=75°,∴∠1=∠4=40°,∠2=∠5=75°,∴∠3=65°.故选:C.4.解:因为三角形具有稳定性,而只有C是全部由三角形结构组成.故选C.5.解:A、三角形的中线、角平分线、高线都是线段说法正确,故此选项不符合要求;B、任意三角形的外角和都是360°说法正确,故此选项不符合要求;C、两条直线被第三条直线所截,只有两直线平行时,内错角才能相等,此说法错误,故此选项符合要求;D、平行于同一直线的两条直线互相平行,说法正确,故此选项不符合要求;故选:C.6.解:四边形的内角和=(4﹣2)•180°=360°.故选:B.7.解:设第三根木条的长为lcm,∵△的另外两边分别为20cm,30cm,∴30cm﹣20cm<l<20cm+30cm,即10cm<l<50cm.∴四个选项中只有B符合题意.故选:B.8.解:∵直角三角形的两个锐角互余,而一个锐角为25°,∴另一个锐角的度数为90°﹣25°=65°.故选:B.9.解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°﹣∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选:B.二.填空题10.解:∵∠A=52°,∠B=102°,∴∠C=180°﹣∠A﹣∠B=180°﹣52°﹣102°=26°.故答案为26°.11.解:∵n边形的内角和公式(n﹣2)•180°,∴正五边形的内角和为(5﹣2)•180°=540°,外角和为360°,故答案为540°;360°.12.解:①∠A<∠ACD,故①错误;②∠B+∠ACB=180°﹣∠A,故②正确;③∠A+∠ACB<180°,故③正确;④∠HEC=∠AED>∠ACD>∠B,则∠HEC>∠B,故④正确.故答案为:②③④.13.解:∵∠ACD=∠A+∠B,∠A=80°,∠ACD=150°,∴∠B=70°.故答案为:70°.14.解:第一个是1×3,第二个是2×4,第三个是3×5,…第n个是n•(n+2)=n2+2n故答案为:n2+2n.15.解:如图,连接AO并延长,∵∠A=80°,∠1=15°,∠2=40°,∴∠BOC=∠A+∠1+∠2,=80°+15°+40°,=135°.故答案为:135°.三.解答题16.解:(1)∵∠ABC=40°,∠ACB=80°,∴∠BAC=180°﹣40°﹣80°=60°,∵AD是△ABC的角平分线,∠1=∠2,∠3=∠4,∴∠5=∠1+∠BAD=20°+30°=50°,同理可得∠6=50°,故答案为:50°,50°;(2)猜想∠5=∠6;(3)证明:∵∠5=∠BAD+∠1=(∠A+∠B)=(180°﹣∠C)=90°﹣∠C,∠6=90°﹣∠3=90°﹣∠C,∴∠5=∠6.17.解:(1)因为∠A+∠B+∠C+∠D=360,∠B=∠C,所以∠B=∠C=.(2)∵BE∥AD,∴∠BEC=∠D=80°,∠ABE=180°﹣∠A=180°﹣140°=40°.又∵BE平分∠ABC,∴∠EBC=∠ABE=40°,∴∠C=180°﹣∠EBC﹣∠BEC=180°﹣40°﹣80°=60°.或解:∵BE∥AD,∴∠ABE=180°﹣∠A=180°﹣140°=40°,又∵BE平分∠ABC,∴∠ABC=2∠ABE=80°,∴∠C=360°﹣∠ABC﹣∠A﹣∠D=60°.(3)∵∠A+∠ABC+∠BCD+∠D=360°,∴∠ABC+∠BCD=360°﹣∠A﹣∠D=360°﹣140°﹣80°=140°.∵∠EBC=∠ABC,∠BCE=∠BCD,∴∠E=180﹣∠EBC﹣∠BCE=180°﹣(∠ABC+∠BCD)=180°﹣×140°=110°.18.解:(1)∵∠1=∠C,∠2=2∠3,∴∠C=∠1=∠2+∠3=2∠3+∠3=3∠3,∵∠BAC+∠2+∠C=180°,即70°+2∠3+3∠3=180°,∴∠3=22°,∴∠2=2∠3=44°;(2)AE⊥BC,∵∠DAC=∠BAC﹣∠3=70°﹣22°=48°,又∵AE平分∠DAC,∴∠DAE=∠DAC=24°∴∠1=3∠3=66°,∴∠AED=180﹣∠1﹣∠DAE=180°﹣66°﹣24°=90°,即AE⊥BC.19.解:(1)∠A;70°;35°;(2)∠A=2∠A1;(3)∠A=64∠A6;(4)∵∠ACD﹣∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD 的平分线∴∠A1=∠A1CD﹣∠A1BD=∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°﹣(∠QEC+∠QCE)=180°﹣∠BAC,∴∠Q+∠A1=180°.因此①∠Q+∠A1的值为定值正确.20.解:(1)∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°.∵∠A=∠AOC,∴∠B=∠BOC;(2)∵∠A+∠ABO=90°,∠DOB+∠ABO=90°,∴∠A=∠DOB,即∠DOB=∠EOB=∠OAE=∠OEA.∵∠DOB+∠EOB+∠OEA=90°,∴∠DOB=30°,∴∠A=30°;(3)∠P的度数不变,∠P=30°,∵∠AOM=90°﹣∠AOC,∠BCO=∠A+∠AOC,∵OF平分∠AOM,CP平分∠BCO,∴∠FOM=∠AOM=(90°﹣∠AOC)=45°﹣∠AOC,∠PCO=∠BCO=(∠A+∠AOC)=∠A+∠AOC.∴∠P=180°﹣(∠PCO+∠FOM+90°)=45°﹣∠A=30°.。
人教版八年级数学上册第11章三角形综合复习一、选择题(本大题共10道小题)1. 下列各组数中,不可能成为一个三角形三边长的是()A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,102. 已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形3. 在△ABC中,∠A,∠C与∠B处的外角的度数如图所示,则x的值是()A.80 B.70 C.65 D.604. 如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC,则∠BDC的度数为()A.30°B.40°C.50°D.60°5. 如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°C.75°D.85°6. 已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.107. 在△ABC中,若∠B=3∠A,∠C=2∠B,则∠B的度数为()A.18°B.36°C.54°D.90°8. 若多边形的一个顶点处的所有对角线把多边形分成了11个三角形,则经过这一点的对角线的条数是()A.8 B.9 C.10 D.119. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种10. 如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是()A.x=y+zB.x=y-zC.x=z-yD.x+y+z=180二、填空题(本大题共5道小题)11. 把一副三角尺如图所示拼在一起,那么图中∠ABF=________°.12. 如图,∠AOB=50°,P是OB上的一个动点(不与点O重合),当∠A的度数为________时,△AOP为直角三角形.13. 如图,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为cm.14. 模拟某人为机器人编制了一段程序(如图),如果机器人以2 cm/s的速度在平地上按照程序中的步骤行走,那么该机器人从开始到停止所需的时间为________s.15. 如图,在四边形ABCD中,AB∥CD,将四边形ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B=________°.三、解答题(本大题共4道小题)16. 如图,四边形ABCD是由四根木条钉成的,为了使它不变形,小明加了根木条AE,小明的做法正确吗?说说你的理由.17. 如图,在△ABC中,BD是角平分线,CE是AB边上的高,且∠ACB=60°,∠ADB=97°,求∠A和∠ACE的度数.18. 已知△ABC的周长是20,三边分别为a,b,c.(1)若b是最大边,求b的取值范围;(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c均为整数,求△ABC的三边长.19. 如图,AE,BO,CO分别平分∠BAC,∠ABC,∠ACB,OD⊥BC于点D. 求证:∠1=∠2.人教版八年级上册第11章三角形综合复习-答案一、选择题(本大题共10道小题)1. 【答案】C【解析】若三条线段的长满足三角形的三边,则这三条线段长满足最小的两边之和大于地三边,由题意,A,B,D都能构成三角形,C中5+6=11<12,不能构成三角形.2. 【答案】D3. 【答案】B4. 【答案】D5. 【答案】B[解析] ∵DE⊥AB,∠A=35°,∴∠CFD=∠AFE=55°.∴∠ACB=∠D+∠CFD=15°+55°=70°.6. 【答案】C[解析] 设第三边的长为x,由三角形三边关系可得,4-1<x<4+1,即3<x<5.由于第三边长为整数,因此x=4,所以该三角形的周长为9.7. 【答案】C[解析] ∵在△ABC中,∠B=3∠A,∠C=2∠B,∴∠C=6∠A. 设∠A=x,则∠B=3x,∠C=6x.由三角形内角和定理可得x+3x+6x=180°,解得x=18°,∴∠B=3x=54°.8. 【答案】C[解析] 设多边形有n条边,则n-2=11,解得n=13.故这个多边形是十三边形.故经过这一点的对角线的条数是13-3=10.9. 【答案】C10. 【答案】A[解析] 根据题意,得∠A+∠ABC+∠ACB=180°①,变化后的三角形的三个角的度数分别是∠A-x°,∠ABC+y°,∠ACB+z°,∴∠A-x°+∠ABC+y°+∠ACB+z°=180°②,①②联立整理可得x=y+z.二、填空题(本大题共5道小题)11. 【答案】15[解析] 由题意,得∠F=30°,∠EAD=45°.因为∠EAD=∠F+∠ABF,所以∠ABF=∠EAD-∠F=15°.12. 【答案】90°或40°[解析] 若△AOP为直角三角形,则分两种情况:①当∠A=90°时,△AOP为直角三角形;②当∠APO=90°时,△AOP为直角三角形,此时∠A=40°.13. 【答案】19[解析] ∵AD 是BC 边上的中线,∴BD=CD.∴△ABD 的周长-△ACD 的周长=(AB+BD+AD )-(AC+CD+AD )=AB-AC. ∵△ABD 的周长为25 cm ,AB 比AC 长6 cm , ∴△ACD 的周长为25-6=19(cm).14. 【答案】16[解析] 由题意得,该机器人所经过的路径是一个正多边形,多边形的边数为36045=8, 则所走的路程是4×8=32(cm), 故所用的时间是32÷2=16(s).15. 【答案】114[解析] 因为AB ∥CD ,所以∠BAB′=∠1=44°.由折叠的性质知∠BAC =12∠BAB′=22°.在△ABC 中,∠B =180°-(∠BAC +∠2)=114°.三、解答题(本大题共4道小题)16. 【答案】解:小明的做法正确.理由:连接AC.由三角形的稳定性可知,△ADE 被固定,不会变形,所以木条CD ,DA 也被固定,即AC 的长度被固定,因此△ABC 被固定,所以四边形ABCD 不会变形.17. 【答案】解:∵∠ADB=∠DBC+∠ACB ,∴∠DBC=∠ADB-∠ACB=97°-60°=37°. ∵BD 是△ABC 的角平分线, ∴∠ABC=74°.∴∠A=180°-∠ABC-∠ACB=46°. ∵CE 是AB 边上的高, ∴∠AEC=90°.∴∠ACE=90°-∠A=44°.18. 【答案】解:(1)依题意有b≥a,b≥c.又∵a+c>b,∴a+b+c≤3b且a+b+c>2b,则2b<20≤3b,解得≤b<10.(2)∵≤b<10,b为整数,∴b=7,8,9.∵b=3c,且c为整数,∴b=9,c=3.∴a=20-b-c=8.故△ABC的三边长分别为8,9,3.19. 【答案】证明:∵AE,BO,CO分别平分∠BAC,∠ABC,∠ACB,∴∠ABO=12∠ABC,∠BAE=12∠BAC,∠OCD=12∠ACB.∵∠1=∠ABO+∠BAE,∴∠1=12∠ABC+12∠BAC=12(180°-∠ACB)=90°-12∠ACB.又∵∠2=90°-∠OCD=90°-12∠ACB,∴∠1=∠2.。
一、选择题1.一个多边形的外角和是360°,这个多边形是()A.四边形B.五边形C.六边形D.不确定D解析:D【分析】根据多边形的外角和等于360°判定即可.【详解】∵多边形的外角和等于360°,∴这个多边形的边数不能确定.故选:D.【点睛】本题考查了多边形的外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.2.若过六边形的一个顶点可以画n条对角线,则n的值是()A.1 B.2 C.3 D.4C解析:C【分析】根据从一个n边形一个顶点出发,可以连的对角线的条数是n-3进行计算即可.【详解】解:6-3=3(条).答:从六边形的一个顶点可引出3条对角线.故选:C.【点睛】本题考查了多边形的对角线,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n-3.3.已知三角形的两边长分别为1和4,则第三边长可能是()A.3 B.4 C.5 D.6B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x,∵三角形两边的长分别是1和4,∴4-1<x<4+1,即3<x<5.故选:B.【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.4.如图,1∠等于( )A .40B .50C .60D .70D解析:D【分析】根据三角形外角的性质直接可得出答案.【详解】解:由三角形外角的性质,得160=130∠+︒︒11306070∴∠=︒-︒=︒故选D .【点睛】本题考查了三角形外角的性质,比较简单.5.若一个三角形的三个内角的度数之比为11:13:24,那么这个三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形B 解析:B【分析】根据角的度数之比,求得最大角的度数,根据最大角的性质判断即可.【详解】∵三个内角的度数之比为11:13:24,∴最大角的度数为°24180111324⨯++=90°,∴三角形是直角三角形,故选B.【点睛】本题考查了三角形按角的分类,根据度数之比求得最大角的度数是解题的关键. 6.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( )A .15B .20C .30D .40A解析:A【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列出方程求解即可.【详解】解:∵∠C 的外角=∠A+∠B ,∴x+40=2x+10+x ,解得x=15.故选:A .【点睛】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.7.如图,,AD CE 分别是ABC 的中线与角平分线,若,40B ACB BAC ∠=∠∠=︒,则ACE ∠的度数是( )A .20︒B .35︒C .40︒D .70︒B解析:B【分析】 由,40B ACB BAC ∠=∠∠=︒,再利用三角形的内角和定理求解ACB ∠,结合三角形的角平分线的定义,从而可得答案.【详解】解: ,B ACB ∠=∠40BAC ∠=︒,18040702B ACB ︒-︒∴∠=∠==︒, CE 是ABC 角平分线,1352ACE ACB ∴∠=∠=︒, 故选:.B【点睛】本题考查的是三角形的角平分线的定义,三角形的内角和定理,掌握以上知识是解题的关键.8.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A .8B .5C .6D .7C解析:C【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】解:①长度分别为5、4、5,能构成三角形,且最长边为5;②长度分别为2、7、5,不能构成三角形;③长度分别为2、3、9,不能构成三角形;④长度分别为7、3、4,不能构成三角形;⑤长度分别为3、5、6,能构成三角形,且最长边为6;⑥长度分别为2、4、8,不能构成三角形;综上所述,得到三角形的最长边长为6.故选:C.【点睛】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.9.如图,小明从点A出发沿直线前进9米到达点,B向左转45后又沿直线前进9米到达点C,再向左转45后沿直线前进9米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.72米B.80米C.100米D.64米A解析:A【分析】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以9米即可.【详解】解:∵小明每次都是沿直线前进9米后向左转45度,∴他走过的图形是正多边形,∴边数n=360°÷45°=8,∴他第一次回到出发点A时,一共走了8×9=72(m).故选:A.【点睛】本题考查了正多边形的边数的求法,多边形的外角和为360°;根据题意判断出小明走过的图形是正多边形是解题的关键.的边AC上的高是()10.如图所示,ABCA.线段AE B.线段BA C.线段BD D.线段DA C解析:C【分析】根据三角形的高解答即可,三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.【详解】A.线段AE是△ABC的边BC上的高,故不符合题意;B.线段BA不是任何边上的高,故不符合题意;C.线段BD是△ABC的边AC边上的高,故符合题意;D.线段DA是△ABD的边BD上的高,故不符合题意;故选C.【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.二、填空题11.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.30°90°或40°80°【分析】根据倍角三角形的定义结合三角形的内角和定理分三种情况即可得出结论【详解】在△ABC中不妨设∠A=60①若∠A=2∠C则∠C=30∴∠B=;②若∠C=2∠A则∠C=1解析:30°,90°或40°,80°【分析】根据“倍角三角形”的定义结合三角形的内角和定理分三种情况即可得出结论.【详解】在△ABC中,不妨设∠A=60︒,①若∠A=2∠C,则∠C=30︒,︒-︒-︒=︒;∴∠B=180603090②若∠C=2∠A,则∠C=120︒,︒-︒-︒=︒(不合题意,舍去);∴∠B=180601200=︒-︒=120︒,③若∠B=2∠C,则3∠C18060︒-︒-︒=︒;∴∠C4=0︒,∠B=180604080综上所述,其它两个内角的度数分别是:30︒,90︒或40︒,80︒.【点睛】本题考查了“倍角三角形”的定义以及三角形的内角和等知识,解题的关键是学会用分类讨论的思想解决问题.12.从n边形的一个顶点出发,连接其余各顶点,可以将这个n边形分割成17个三角形,则n=______.19【分析】根据从n边形的一个顶点出发连接这个点与其余各顶点可以把一个n边形分割成(n-2)个三角形的规律作答【详解】解:∵一个多边形从一个顶点出发连接其余各顶点可以把多边形分成(n-2)个三角形∴解析:19【分析】根据从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个n边形分割成(n-2)个三角形的规律作答.【详解】解:∵一个多边形从一个顶点出发,连接其余各顶点,可以把多边形分成(n-2)个三角形,∴n-2=17,n .∴19故答案为:19.【点睛】本题主要考查多边形的性质,解题关键是熟记多边形顶点数与分割成的三角形个数的关系.13.如图1,△ABC中,有一块直角三角板PMN放置在△ABC上(P点在△ABC内),使三角板PMN的两条直角边PM、PN恰好分别经过点B和点C.若∠A=52°,则∠1+∠2=__________;38°【分析】根据三角形内角和定理易求∠ABC+∠ACB的度数已知∠P=90°根据三角形内角和定理易求∠PBC+∠PCB的度数进而得到∠1+∠2的度数【详解】∵∠A=52°∴∠ABC+∠ACB=18解析:38°【分析】根据三角形内角和定理易求∠ABC+∠ACB的度数.已知∠P=90°,根据三角形内角和定理易求∠PBC+∠PCB的度数,进而得到∠1+∠2的度数.【详解】∵∠A=52°,∴∠ABC+∠ACB=180°−52°=128°,∵∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP+∠ACP=128°−90°=38°,即∠1+∠2=38°.故答案为:38°.【点睛】本题考查的是三角形内角和定理以及直角三角形的性质等知识,注意运用整体法计算,解决问题的关键是求出∠ABC+∠ACB,∠PBC+∠PCB的度数.14.如果三角形的三边长分别为5,8,a,那么a的取值范围为__.3<a<13【分析】根据三角形的三边关系解答【详解】由题意得:8-5<a<8+5∴3<a<13故答案为:3<a<13【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边解析:3<a<13【分析】根据三角形的三边关系解答.【详解】由题意得:8-5<a<8+5,∴3<a<13,故答案为:3<a<13.【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边.15.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线11【分析】先根据题意求出多边形的边数再根据从n边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n,则有(n-2)•180+360=2520,解得:n=14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.16.多边形每一个内角都等于108°,多边形一个顶点可引的对角线的条数是________条.2【分析】多边形的每一个内角都是108°则每个外角是72°多边形的外角和是360°这个多边形的每个外角相等因而用360°除以外角的度数就得到外角的个数外角的个数就是多边形的边数再根据从n边形的一个顶解析:2【分析】多边形的每一个内角都是108°,则每个外角是72°.多边形的外角和是360°,这个多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.再根据从n边形的一个顶点出发可引出(n−3)条对角线,连接这个点与其余各顶点,可以把一个多边形分割成(n−2)个三角形,依此作答.【详解】根据题意得:360°÷(180°−108°)=360°÷72°=5,那么它的边数是五,从它的一个顶点出发的对角线共有5−3=2条,故答案为:2.【点睛】此题考查了多边形内角与外角,根据多边形的外角和求多边形的边数是常用的一种方法,需要熟记.另外需要记住从n边形的一个顶点出发可引出(n−3)条对角线,把这个多边形分割成(n−2)个三角形.17.一个多边形的内角和比它的外角和的3倍还多180°,则它是___________边形,从该多边形的一个顶点,可以引__________条对角线.九六【分析】设边数为n建立方程即可n边形一个顶点引的对角线为(n-3)条【详解】解:设多边形的边数为n 则:解得:n=9对角线条数为n-3=6故答案为:9;6【点睛】本题考查多边形内角和与外角和关系以解析:九六【分析】设边数为n,建立方程即可,n边形一个顶点引的对角线为(n-3)条.【详解】解:设多边形的边数为n,则:n-•=⨯+(2)1803603180解得:n=9对角线条数为n-3=6故答案为:9;6【点睛】本题考查多边形内角和与外角和关系,以及对角线的条数,属于基础题.18.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠=︒∠=︒,则3150,222∠=_______.30°【分析】通过正三角形正四边形正五边形的内角度数结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°正方形的内角度数是90°正五边形的内角的度数是:(5﹣2)×180°=10解析:30°【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2==360°﹣60°﹣90°﹣108°﹣50°﹣22°=30°. 故答案是:30°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.19.如图,AB BE ,分别是ABC 中,BC AC 边上的高,6cm BC ,4cm AC =,若3cm =AD ,则BE 的长为__________cm .【分析】三角形的面积等于任意一条底边乘以该边上的高的积的一半别以BCAC 为底写出△ABC 的面积的两种表示方法;结合两个面积相等和已知中的数据进行计算即可解答题目【详解】S △ABC=BC·AD=AC·解析:9 2【分析】三角形的面积等于任意一条底边乘以该边上的高的积的一半,别以BC、AC为底,写出△ABC的面积的两种表示方法;结合两个面积相等和已知中的数据,进行计算即可解答题目.【详解】S△ABC=12BC·AD=12AC·BE,将AD=3cm,BC=6cm,AC=4cm代入,得:11364 22BE ⨯⨯=⨯92BE=cm故答案为:9 2【点睛】本题考查三角形等面积法求高,通过三角形面积建立等量关系是解题的关键.20.一个三角形的三个内角度数之比为2:3:5,那这个三角形一定是三角形__________.直角【分析】若三角形三个内角的度数之比为2:3:5利用三角形的内角和定理:三角形的内角和为180°可求出三个内角分别是36°54°90°则这个三角形一定是直角三角形【详解】解:设三角分别为2x3x5解析:直角【分析】若三角形三个内角的度数之比为2:3:5,利用三角形的内角和定理:三角形的内角和为180°,可求出三个内角分别是36°,54°,90°.则这个三角形一定是直角三角形.【详解】解:设三角分别为2x,3x,5x,依题意得2x+3x+5x=180°,解得x=18°.故三个角的度数分别为36°,54°,90°.故答案为:直角.【点睛】此题主要考查了三角形的内角和定理:三角形的内角和为180°,熟练掌握三角形内角和定理是解决本题的关键.三、解答题21.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△ABC的高CD,中线BE;(3)在图中能使S△ABC=S△PBC的格点P的个数有个(点P异于点A).解析:(1)见解析;(2)见解析;(3)4.【分析】(1)利用网格特点和平移的性质,分别画出点A、B、C的对应点A'、B'、C'即可;(2)利用网格特点,作CD⊥AB于D,找出AC的中点可得到BE;(3)利用平行线的性质过点A作出BC的平行线进而得出符合题意的点.【详解】(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD即为所求;(3)如图所示:能使S△PBC=S△ABC的格点P的个数有4个.故答案为:4.【点睛】此题主要考查了平移变换以及平行线的性质和三角形的高,利用平行线的性质得出P点位置是解题关键.22.如图,所有小正方形的边长都为1个单位,A、B、C均在格点上.(1)过点A画线段BC的垂线,垂足为E;(2)过点A画线段AB的垂线,交线段CB的延长线于点F;(3)线段BE 的长度是点 到直线 的距离;(4)线段AE 、BF 、AF 的大小关系是 .(用“<”连接)解析:(1)见解析;(2)见解析;(3)B ,AE ;(4)AE <AF <BF【分析】(1)根据垂线的做法画出图象;(2)根据垂线的做法画出图象;(3)根据点到直线距离的定义填空;(4)利用直角三角形的斜边和直角边的大小关系,得出结果.【详解】(1)如图所示;(2)如图所示;(3) ∵BE AE ⊥,∴线段BE 的长度是点B 到直线AE 的距离,故答案是:B ,AE ;(4)∵AE 是直角三角形AEF 的直角边,AF 是直角三角形AEF 的斜边,∴AE AF <,∵BF 是直角三角形ABF 的斜边,AF 是直角三角形ABF 的直角边,∴AF BF <,∴AE AF BF <<,故答案是:AE AF BF <<.【点睛】本题考查作垂线和直角三角形的性质,解题的关键是掌握作垂线的方法和直角三角形的直角边和斜边的大小关系.23.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.解析:(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】(1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEF S的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =,∴10cm BC AD ==,6cm AB DC ==,∵点F 是DC 的中点,∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()()1111066510353222⨯-⨯-⨯-⨯ =156015152--- =4522cm ; (2)由题意得AE=t ,DE=10-t ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()1111066103310222t t ⨯-⨯-⨯-⨯⨯- =360315152t t ---+ =3302t -,∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫- ⎪⎝⎭; 当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =, 8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD∴AD CD ⊥,//,//AB CD AD BC ,∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高,∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△, ∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅, ∵10cm AD =,6cm DC =,∴106EG HF =,即53EG FH =.【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.24.已知:如图,在△ABC 中,∠ACB=90°,AE 是角平分线,CD 是高,AE 、CD 相交于点F .(1)若∠DCB=48°,求∠CEF 的度数;(2)求证:∠CEF=∠CFE .解析:(1)66°;(2)见解析【分析】(1)依据CD是高,∠DCB=48°,即可得到∠B=42°,进而得出∠BAC=48°,再根据AE是角平分线,即可得到∠BAE=12∠BAC=24°,进而得出∠CEF的度数;(2)根据已知条件可得∠ACD=∠B,∠BAE=∠CAE,再根据三角形外角性质,即可得到∠CFE=∠CEF.【详解】(1)∵CD是高,∠DCB=48°,∴∠B=42°,又∵∠ACB=90°,∴∠BAC=48°,又∵AE是角平分线,∴∠BAE=12∠BAC=24°,∴∠CEF=∠B+∠BAE=42°+24°=66°;(2)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BAC=∠B+∠BAC=90°,∴∠ACD=∠B,∵AE平分∠BAC,∴∠BAE=∠CAE,∵∠CFE是△ACF的外角,∠CEF是△ABE的外角,∴∠CFE=∠ACD+∠CAE,∠CEF=∠B+∠BAE,∴∠CFE=∠CEF.【点睛】本题主要考查了三角形角平分线的定义,三角形内角和定理以及三角形的外角性质的运用,解题时注意:同角的余角相等.25.已知,a,b,c为ABC的三边,化简|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|.解析:﹣2a+4b﹣2c【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负值,然后去绝对值进行计算即可.【详解】解:∵a,b,c为ABC的三边,∴a+b>c,b+c>a,a+c>b∴|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|=|a-(b+c)|-2|b-(c+a)|+ |a+b﹣c|=﹣[a﹣(b+c)]+2[b﹣(c+a)]+(a+b﹣c)=-a+(b+c)+2b-2(c+a)+a+b-c=﹣a+b+c+2b﹣2c﹣2a+a+b﹣c=﹣2a+4b﹣2c.【点睛】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理. 26.如图,在ABC 中,AD 为高,AE 为BAC ∠的平分线,若28B ∠=︒,52ACD ∠=°,求EAD ∠的度数.解析:50°【分析】由AD 为高,28B ∠=︒,求出52ACD ∠=°,利用外角性质求出24BAC ACD B ∠∠∠=-=︒,根据AE 是角平分线,求出1122BAE BAC ∠∠==︒,即可求出EAD ∠的度数.【详解】解:∵AD 为高,28B ∠=︒,∴62BAD ∠=︒.∵52ACD ∠=°,∴24BAC ACD B ∠∠∠=-=︒.∵AE 是角平分线, ∴1122BAE BAC ∠∠==︒, ∴50EAD BAD BAE ∠=∠-∠=︒.【点睛】此题考查三角形的角平分线的性质,直角三角形两锐角互余的性质,三角形的外角等于与它不相邻的两个内角的和.27.如图,175,2105,C D ∠=︒∠=︒∠=∠.(1)判断AC 与DF 的位置关系,并说明理由;(2)若C ∠比A ∠大25°,求F ∠的度数.解析:(1)//AC DF ,理由见解析;(2)40︒.【分析】(1)先根据平行线的判定可得//BD CE ,再根据平行线的性质可得D CEF ∠=∠,然后根据等量代换可得C CEF ∠=∠,最后根据平行线的判定即可得;(2)设A x ∠=,从而可得25C x ∠=+︒,再根据三角形的外角性质可求出x 的值,然后根据平行线的性质即可得.【详解】(1)//AC DF ,理由如下:175,2105∠=︒∠=︒,12180∴∠+∠=︒,//BD CE ∴,D CEF ∴∠=∠,又C D ∠=∠,C CEF ∴∠=∠,//AC DF ∴;(2)设A x ∠=,则25C x ∠=+︒,由三角形的外角性质得:2A C ∠=∠+∠,即10525x x ︒=++︒,解得40x =︒,即40A ∠=︒,由(1)已证://AC DF ,40F A ∴∠=∠=︒.【点睛】本题考查了平行线的判定与性质、三角形的外角性质等知识点,熟练掌握平行线的判定与性质是解题关键.28.阅读材料在平面中,我们把大于180︒且小于360︒的角称为优角.如果两个角相加等于360︒,那么称这两个角互为组角,简称互组.(1)若1∠,2∠互为组角,且1135∠=︒,则2∠=______.习惯上,我们把有一个内角大于180︒的四边形俗称为镖形.(2)如图,在镖形ABCD 中,优角BCD ∠与钝角BCD ∠互为组角,试探索内角A ∠,B ,D ∠与钝角BCD ∠之间的数量关系,并至少用两种以上的方法说明理由. 解析:(1)225°;(2)钝角∠BCD=∠A+∠B+∠D ,理由见解析.【分析】(1)根据互为组角的定义可知∠2=360°-∠1,代入数据计算即可;(2)理由①:根据四边形内角和定理可得∠A+∠B+优角∠BCD+∠D=360°,根据周角的定义可得优角∠BCD+钝角∠BCD=360°´,再利用等式的性质得出钝角∠BCD=∠A+∠B+∠D ; 理由②:连接AC 并延长,根据三角形外角的性质即可得出结论.【详解】解:(1)∵∠1、∠2互为组角,且∠1=135°,∴∠2=360°-∠1=225°,故答案为:225°;(2)钝角∠BCD=∠A+∠B+∠D .理由如下:理由①:∵在四边形ABCD 中,∠A+∠B+优角∠BCD+∠D=360°,又∵优角∠BCD+钝角∠BCD=360°´,∴钝角∠BCD=∠A+∠B+∠D ;理由②:如下图,连接AC 并延长,∵∠BAC+∠B=∠BCE ,∠DAC+∠D=∠DCE (三角形外角的性质),∴钝角∠BCD=∠BCE+∠DCE=∠BAC+∠B+∠DAC+∠D=∠A+∠B+∠D .【点睛】本题考查三角形的外角,四边形内角和.能正确作出辅助线,将四边形分成两个三角形是理由②的关键.。
人教版八年级上册数学第十一章三角形含答案一、单选题(共15题,共计45分)1、下列几种形状的瓷砖中,只用一种不能够铺满地面的是()A.正三角形;B.正四边形;C.正五边形;D.正六边形.2、如图,D,E分别是的边AB、BC上的点,,若,则的值为()A. B. C. D.3、如图,是的角平分线,,则与的面积比为().A. B. C. D.4、如图,AD∥BC,若△ABC面积是15,则△DBC的面积是()A.12B.13C.14D.155、如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.180°B.360°C.540°D.720°6、三角形两边的长分别是8和6,第三边的长是一元二次方程的一个实数根,则该三角形的周长是()A.20B.20或24C.26D.287、如图,在△ABC中,∠C=80°,D为AC上可移动的点,则x可能是()A.5B.10C.20D.258、以下列各组线段为边,能组成三角形的是()A.1cm,2cm,3cmB.15cm,8cm,6cmC.10cm,4cm,7cm D.3cm,3cm,7cm9、如图,在边长为a的正六边形内有两个小三角形,相关数据如图所示.若图中阴影部分的面积为S1,两个空白三角形的面积为S2.则=()A.3B.4C.5D.610、下列长度的三条线段可以组成三角形的是()A.1,2,4B.5,6,11C.3,3,3D.4,8,1211、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形的形状是()A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形.12、已知Rt△ABC的三边分别为a、b、c,则下列结论不可能成立的是()A.a 2﹣b 2=c 2B.∠A﹣∠B=∠CC.∠A:∠B:∠C=3:4:5 D.a:b:c=7:24:2513、已知如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠OAD=()A.95°B.85°C.75°D.65°14、如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转角(0°< <180°)至△A′B′C,使得点A′恰好落在AB边上,则等于().A.150°B.90°C.60°D.30°15、如果一个角的两边分别垂直于另一个角的两边,那么这两个角的数量关系为()A.相等B.互补C.相等或互补D.无法确定二、填空题(共10题,共计30分)16、设△ABC三边为a、b、c,其中a、b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的取值范围________.17、若一个n边形的边数增加一倍,则内角和将增加________18、一个三角形有两边长为3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于________.19、一副三角板如图所示叠放在一起,则图中∠ABC=________20、如图,在△ABC中,M、N分别是AB、AC上的点,MN∥BC,若S△MBC :S△CMN=3:1,则S△AMN :S△ABC=________.21、一个凸多边形的内角和是其外角和的2倍,则这个多边形是________边形.22、一个多边形截去一个角后,形成的另一个多边形后的内角和为720°,那么原多边形的边数为________.23、若为三角形三边,化简________.24、已知如图ABC中,AD为BC边上的中线,AB=6,AC=8,则ABD与ACD的面积之差为________.25、如图,∠C=90°,∠A=30°,BD为角平分线,则SABD :S△CBD=________.三、解答题(共5题,共计25分)26、求出下列图中x的值。
11.1 与三角形有关的线段考点1 三角形的认识及分类1.三角形是指()A.由三条线段所组成的封闭图形B.由不在同一直线上的三条直线首|尾顺次相接组成的图形C.由不在同一直线上的三条线段首|尾顺次相接组成的图形D.由三条线段首|尾顺次相接组成的图形2.如图中三角形的个数是()A.6B.7C.8D.93.在△ABC中,∠B =2∠C,∠A =30° ,那么这个三角形是( ) A.锐角三角形B.直角三角形C.钝角三角形D.无法判断4.三角形按角分类可以分为 ( )A.锐角三角形、直角三角形、钝角三角形B.等腰三角形、等边三角形、不等边三角形C.直角三角形、等边直角三角形D.以上答案都不正确考点2 三角形的稳定性5.以下图形中具有稳定性的是 ( )A .直角三角形B .正方形C .长方形D .平行四边形6.以下图形中 ,不是运用三角形的稳定性的是 ( )A .房屋顶支撑架B .自行车三脚架C .拉闸门D .木门上钉一根木条7.如图 ,工人师傅做了一个长方形窗框ABCD ,E ,F ,G ,H 分别是四条边上的中点 ,为了稳固 ,需要在窗框上钉一根木条 ,这根木条不应钉在( )A .G ,H 两点处B .A ,C 两点处C .E ,G 两点处D .B ,F 两点处考点3 三角形的三边关系8.以下每组数分别表示三根木棒的长度,将它们首|尾连接后,能摆成三角形的一组是( ) A .3 ,3 ,6B .1 ,5 ,5C .1 ,2 ,3D .8 ,3 ,49.如图 ,在△ABC 中 ,AC =5 ,中线AD =7 ,那么AB 边的取值范围是( )A .1AB 29<<B .4AB 24<<C .5AB 19<<D .9AB 19<<10.一个三角形的两边长为4和7 ,第三边长为奇数 ,那么第三边长可能为 ( ) A .5或7B .5、7或9C .7D .1111.三角形的两边长分别为3和5 ,那么周长C 的范围是 ( )A .615C <<B .616C <<C .1113C <<D .1016C <<12.等腰△ABC 的两边长分别为2和3 ,那么等腰△ABC 的周长为()A .7B .8C .6或8D .7或813.a b c 、、是ABC ∆的三边长 ,化简a b c b a c +----的值是 ( )A .2c -B .22b c -C .22a c -D .22a b -考点4 三角形的高线14.下面四个图形中 ,线段BE 是⊿ABC 的高的图是 ( )A .B .C .D .15.如图 ,△ABC 的面积计算方法是 ( )A .AC •BDB .12BC •EC C .12AC •BD D .12AD •BD 16.以下各图中 ,AC 边上的高画正确的选项是 ( )A .B .C .D .考点5 三角形的中线17.如图AD 是△ABC 的中线 ,那么BD = ( )A .ADB .AC C .BCD .CD18.如图 ,AD 是ABC ∆的中线 ,5AB = ,3AC = ,ABD ∆的周长和ACD ∆的周长差为( )A .6B .3C .2D .不确定19.如图 ,在ABC 中 ,点D 、E 分别为BC 、AD 的中点 ,且26ABC S cm =△ ,那么ABE S △的值为 ( )A .20.5cmB .21.5cmC .22cmD .23cm20.如图 ,, , A B C 分别是线段1A B 、1BC 、1C A 的中点 ,假设111A B C △的面积是20 ,那么ABC 的面积是 ( )A .4B .103C .207D .5 考点6 三角形的角平分线21.如图 ,△ABC 中 ,AD 为△ABC 的角平分线 ,BE 为△ABC 的高 ,∠C =70° ,∠ABC =48° ,那么∠3是 ( )A .59°B .60°C .56°D .22°22.如图 ,在ABC 中 ,∠A =60° ,∠ABD 和∠ACE 是ABC 的外角 ,∠ACE =110° ,BF 平分∠ABD ,那么∠FBE = ( )A.105°B.110°C.115°D.120°23.如下图 ,在△ABC中,∠A=36° ,∠C=72° ,∠ABC的平分线交AC于D ,那么图中共有等腰三角形 ( )A.0个B.1个C.2个D.3个答案1.C2.C3.C4.A5.A6.C7.C8.B9.D10.B11.D12.D13.B14.A15.C16.D17.D18.C19.B20.C21.A22.C23.D11.2 与三角形有关的角一、选择题(本大题共10道小题)1. 在一个直角三角形中,有一个锐角等于35° ,那么另一个锐角的度数是() A.75° B.65° C.55° D.45°2. 如图,在⊿ABC中,∠ACB=90° ,CD∥AB ,∠ACD=40° ,那么⊿B的度数为()A. 40°B. 50°C. 60°D. 70°3. 如图,在⊿ABC中,⊿C=90° ,⊿A=30° ,BD平分⊿ABC,那么⊿BDC的度数为()A.30° B.40° C.50° D.60°4. 如图,CE是⊿ABC的外角⊿ACD的平分线,假设⊿B=35° ,∠ACE=60° ,那么∠A=()A. 35°B. 95°C. 85°D. 75°5. 在⊿ABC中,假设⊿C=40° ,⊿B=4⊿A ,那么⊿A的度数是()A.30° B.28° C.26° D.40°6. 在Rt⊿ABC中,⊿C=90° ,⊿A-⊿B=50° ,那么⊿A的度数为()A.80° B.70° C.60° D.50°7. 如图,在⊿ABC中,D是⊿ABC和⊿ACB的平分线的交点,⊿A=80° ,⊿ABD=30° ,那么⊿BDC的度数为()A.100° B.110° C.120° D.130°8. 如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC =42°,∠A =60°,那么∠BFC的度数为()A.118°B.119°C.120°D.121°9. 如图,在⊿CEF中,⊿E=80° ,⊿F=50° ,AB⊿CF ,AD⊿CE ,连接BC ,CD ,那么⊿A的度数是()A.45° B.50° C.55° D.80°10. 如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.假设∠A减小x°,∠B增加y°,∠C增加z°,那么x,y,z之间的关系是()A.x =y +zB.x =y -zC.x =z -yD.x +y +z =180二、填空题(本大题共6道小题)11. 如图,∠CAE是⊿ABC的外角,AD∥BC ,且AD是⊿EAC的平分线.假设⊿B =71° ,那么⊿BAC=________.12. 如图,在⊿ABC中,⊿ABC ,⊿ACB的平分线相交于点O ,OD⊿OC交BC于点D.假设⊿A=80° ,那么⊿BOD=________°.13. 如图,⊿AOB=50° ,P是OB上的一个动点(不与点O重合) ,当⊿A的度数为________时,⊿AOP为直角三角形.14. 如图,在四边形ABCD中,AB⊿CD ,将四边形ABCD沿对角线AC折叠,使点B落在点B′处.假设⊿1=⊿2=44° ,那么⊿B=________°.15. 如图,在⊿ABC中,BO平分⊿ABC,CO平分⊿ACB.假设⊿A=70° ,那么⊿BOC=________°.16. 定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为"特征三角形〞,其中α称为"特征角〞.如果一个"特征三角形〞的一个内角为48° ,那么"特征角〞α的度数为____________.三、解答题(本大题共4道小题)17. 如图,AD是⊿ABC的角平分线,⊿B=35° ,⊿BAD=30° ,求⊿C的度数.18. 如图,A处在B处的北偏西45°方向,C处在B处的北偏东15°方向,C处在A 处的南偏东80°方向,求⊿ACB的度数.19. 如图,在△ABC中,点E在AC上,∠AEB =∠ABC.(1)如图①,作∠BAC的平分线AD ,与CB ,BE分别交于点D ,F.求证:∠EFD =∠ADC;(2)如图②,作△ABC的外角∠BAG的平分线AD ,交CB的延长线于点D ,反向延长AD交BE 的延长线于点F ,那么(1)中的结论是否仍然成立?为什么?20. 如图,AD ,AE分别是⊿ABC的角平分线和高.(1)假设⊿B=50° ,⊿C=60° ,求⊿DAE的度数;(2)假设⊿C>⊿B ,猜测⊿DAE与⊿C-⊿B之间的数量关系,并加以证明.人教版八年级|数学11.2 与三角形有关的角培优训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B【解析】∵AB∥CD,∴∠A=∠ACD=40° ,∵∠ACB=90° ,∴∠B =90°-∠A=90°-40°=50°.3. 【答案】D4. 【答案】C【解析】∵CE是△ABC的外角∠ACD的平分线,∠ACE=60° ,∴∠ACD=2∠ACE=120° ,∵∠A+∠B=∠ACD,∠B=35° ,∴∠A=∠ACD-∠B =120°-35°=85°.5. 【答案】B[解析] ⊿⊿A+⊿B+⊿C=180° ,⊿C=40° ,⊿B=4⊿A ,⊿5⊿A+40°=180°.⊿⊿A=28°.6. 【答案】B[解析] ⊿⊿C=90° ,⊿⊿A+⊿B=90°.又⊿⊿A-⊿B=50° ,⊿2⊿A=140°.⊿⊿A=70°.7. 【答案】D[解析] ⊿BD是⊿ABC的平分线,⊿⊿DBC=⊿ABD=30° ,⊿ABC=2⊿ABD=2×30°=60°.⊿⊿ACB=180°-⊿A-⊿ABC=40°.⊿CD平分⊿ACB ,⊿⊿DCB=12⊿ACB=12×40°=20°.⊿⊿BDC=180°-⊿DCB-⊿DBC=130°.8. 【答案】C[解析] ∵∠A =60°,∠ABC =42°,∴∠ACB =180°-∠A -∠ABC =78°.∵∠ABC,∠ACB的平分线分别为BE,CD,∴∠FBC =∠ABC =21°,∠FCB =∠ACB =39°,∴∠BFC =180°-∠FBC -∠FCB =120°.应选C.9. 【答案】B[解析] 如图,连接AC并延长交EF于点M.⊿AB⊿CF ,⊿⊿3=⊿1.⊿AD⊿CE ,⊿⊿2=⊿4.⊿⊿BAD=⊿3+⊿4=⊿1+⊿2=⊿FCE.⊿⊿FCE=180°-⊿E-⊿F=180°-80°-50°=50° ,⊿⊿BAD=⊿FCE=50°.10. 【答案】A[解析] 根据题意,得∠A +∠ABC +∠ACB =180°①,变化后的三角形的三个角的度数分别是∠A -x°,∠ABC +y°,∠ACB +z°,∴∠A -x° +∠ABC +y° +∠ACB +z° =180°②,①②联立整理可得x =y +z.二、填空题(本大题共6道小题)11. 【答案】38°【解析】∵AD∥BC ,∠B=71° ,∴∠EAD=∠B=71°.∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=142° ,∴∠BAC=180°-∠EAC=180°-142°=38°.12. 【答案】4013. 【答案】90°或40°[解析] 假设⊿AOP为直角三角形,那么分两种情况:⊿当⊿A=90°时,⊿AOP为直角三角形;⊿当⊿APO=90°时,⊿AOP为直角三角形,此时⊿A=40°.14. 【答案】114[解析] 因为AB⊿CD ,所以⊿BAB′=⊿1=44°.由折叠的性质知⊿BAC=12⊿BAB′=22°.在⊿ABC中,⊿B=180°-(⊿BAC+⊿2)=114°.15. 【答案】125[解析] ⊿BO平分⊿ABC ,CO平分⊿ACB ,⊿⊿ABO=⊿CBO ,⊿BCO=⊿ACO.⊿⊿CBO+⊿BCO=12(⊿ABC+⊿ACB)=12(180°-⊿A)=12(180°-70°)=55°.⊿在⊿BOC中,⊿BOC=180°-55°=125°.16. 【答案】48°或96°或88°[解析] 当"特征角〞为48°时,即α=48°;当β=48°时,那么"特征角〞α=2×48°=96°;当第三个角为48°时,α+12α+48°=180° ,解得α=88°.综上所述, "特征角〞α的度数为48°或96°或88°.三、解答题(本大题共4道小题)17. 【答案】解:⊿AD是⊿ABC的角平分线,⊿⊿BAC=2⊿BAD=2×30°=60°.⊿⊿C=180°-⊿B-⊿BAC=180°-35°-60°=85°.18. 【答案】解:由题意知⊿ABN=45° ,⊿CBN=15° ,⊿MAC=80° ,所以⊿ABC=60°.因为AM⊿BN ,所以⊿MAB=⊿ABN=45° ,所以⊿BAC=80°-45°=35°.所以⊿ACB=180°-60°-35°=85°.19. 【答案】解:(1)证明:∵AD平分∠BAC ,∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.(2)∠EFD =∠ADC仍然成立.理由:∵AD平分∠BAG ,∴∠BAD =∠GAD.∵∠F AE =∠GAD ,∴∠F AE =∠BAD.∵∠EFD =∠AEB -∠F AE ,∠ADC =∠ABC -∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.20. 【答案】解:(1)在⊿ABC中,⊿⊿B=50° ,⊿C=60° ,⊿⊿BAC=70°.⊿AD是⊿ABC的角平分线,⊿⊿BAD=⊿DAC=12⊿BAC=35°.⊿AE是BC上的高,⊿⊿AEB=90°.⊿⊿BAE=90°-⊿B=40°.⊿⊿DAE=⊿BAE-⊿BAD=5°.(2)⊿DAE=12(⊿C-⊿B).证明:⊿AE是⊿ABC的高,⊿⊿AEC=90°.⊿⊿EAC=90°-⊿C.⊿AD是⊿ABC的角平分线,⊿⊿DAC=12⊿BAC.⊿⊿BAC=180°-⊿B-⊿C ,⊿⊿DAC=12(180°-⊿B-⊿C).⊿⊿DAE =⊿DAC -⊿EAC=12(180°-⊿B -⊿C)-(90°-⊿C)=12(⊿C -⊿B).11.3 多边形及其内角和一、选择题 (本大题共10道小题 )1. 假设正多边形的内角和是540° ,那么该正多边形的一个外角为A .45°B .60°C .72°D .90°2. 八边形的内角和等于( )A .360°B .1080°C .1440°D .2160°3. 从九边形的一个顶点出发可以引出的对角线的条数为( )A .3B .4C .6D .94. 如图 ,足球图片正中的黑色正五边形的内角和是A .180°B .360°C .540°D .720°5. 假设一个正多边形的每一个外角都等于40° ,那么它是( )A .正九边形B .正十边形C .正十一边形D .正十二边形6. 假设一个多边形的一个顶点处的所有对角线把多边形分成4个三角形 ,那么这个多边形的边数为( )A .3B .4C .5D .67. 以下哪一个度数可以作为某一个多边形的内角和 ( )A.240° B.600°C.540° D.2180°8. 一个正多边形的每个外角不可能等于()A.30° B.50° C.40° D.60°9. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080° ,那么原多边形的边数为()A.7 B.7或8C.8或9 D.7或8或910. 如图,长方形ABCD,一条直线将长方形ABCD分割成两个多边形.假设这两个多边形的内角和分别为M和N ,那么M +N不可能是()A.360°B.540°C.720°D.630°二、填空题(本大题共7道小题)11. 一个正多边形的一个外角为45° ,那么这个正多边形的边数是________.12. 如图,假设A表示四边形,B表示正多边形,那么阴影局部表示________.13. 一个多边形的内角和是外角和的,那么这个多边形的边数是.14. 如图,小明从点A出发,沿直线前进12米后向左转36° ,再沿直线前进12米,又向左转36°……照这样走下去,他第|一次回到出发地点A时,一共走了________米.15. 有一程序,如果机器人在平地上按如下图的步骤行走,那么机器人回到A处行走的路程是.16. 模拟某人为机器人编制了一段程序(如图) ,如果机器人以2 cm/s的速度在平地上按照程序中的步骤行走,那么该机器人从开始到停止所需的时间为________s.17. 如图,假设该图案是由8个形状和大小相同的梯形拼成的,那么⊿1=________°.三、解答题(本大题共4道小题)18. 如图,⊿ABC是正三角形,剪去三个边长均不相等的小正三角形(即⊿ADN ,⊿BEF ,⊿CGM)后,得到一个六边形DEFGMN.(1)六边形DEFGMN的每个内角是多少度?为什么?(2)六边形DEFGMN是正六边形吗?为什么?19. 某单位修建正多边形花台,正多边形花台的一个外角的度数比一个内角度数的多12°.(1)求出这个正多边形的一个内角的度数;(2)求这个正多边形的边数.20. 小华与小明在讨论一个凸多边形的问题,他们的对话如下:小华说:"这个凸多边形的内角和是2021°.〞小明说:"不可能吧!你错把一个外角当作内角了!〞请根据俩人的对话,答复以下问题:(1)凸多边形的内角和为2021° ,小明为什么说不可能?(2)小华求的是几边形的内角和?21. 如图,在五边形ABCDE中,⊿A+⊿B+⊿E=310° ,CF平分⊿DCB ,CF的反向延长线与⊿EDC处的外角的平分线相交于点P ,求⊿P的度数.人教版八年级|数学11.3 多边形及其内角和同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C【解析】∵正多边形的内角和是540°,∴多边形的边数为540°÷180°+2 =5 , ∵多边形的外角和都是360°, ∴多边形的每个外角 =360÷5 =72°.应选C .2. 【答案】B3. 【答案】C [解析] 从九边形的一个顶点出发 ,可以向与这个顶点不相邻的6个顶点引对角线 ,即能引出6条对角线.4. 【答案】C【解析】黑色正五边形的内角和为:(5–2)×180° =540° , 应选C .5. 【答案】A [解析] 由于正多边形的外角和为360° ,且每一个外角都相等 ,因此边数=360°40°=9. 6. 【答案】D[解析] 设这个多边形的边数为n ,那么n -2=4 ,解得n =6. 7. 【答案】C [解析] ⊿多边形内角和公式为(n -2)×180° ,⊿多边形内角和一定是180°的倍数.⊿540°=3×180° ,⊿540°可以作为某一个多边形的内角和.8. 【答案】B [解析] 设正多边形的边数为n ,那么当30°n =360°时 ,n =12 ,故A可能;当50°n =360°时 ,n =365 ,不是整数 ,故B 不可能;当40°n =360°时 ,n =9 ,故C 可能;当60°n =360°时 ,n =6 ,故D 可能.9. 【答案】D [解析] 设内角和为1080°的多边形的边数为n ,那么(n -2)×180°=1080° ,解得n =8.那么原多边形的边数为7或8或9.应选D.10. 【答案】D[解析] 一条直线将长方形ABCD分割成两个多边形的情况有以下三种: (1)直线不经过原长方形的顶点,如图①②,此时长方形被分割为一个五边形和一个三角形或两个四边形,∴M +N =540° +180° =720°或M +N =360° +360° =720°;(2)直线经过原长方形的一个顶点,如图③,此时长方形被分割为一个四边形和一个三角形,∴M +N =360° +180° =540°;(3)直线经过原长方形的两个顶点,如图④,此时长方形被分割为两个三角形,∴M +N =180° +180° =360°.二、填空题(本大题共7道小题)11. 【答案】8【解析】由正多边形的每一个外角都是45° ,其外角和为360° ,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45° ,所以这个正多边形的每一个内角都是180°-45°=135° ,设正多边形的边数为n ,那么(n-2)×180°=135°×n ,解得n=8.方法指导设正多边形的边数为n ,正多边形的外角和为360° ,内角和为(n-2)×180° ,每个内角的度数为180°× (n-2 )n.12. 【答案】正方形13. 【答案】514. 【答案】120[解析] 由题意得360°÷36°=10 ,那么他第|一次回到出发地点A时,一共走了12×10=120(米).故答案为120. 15. 【答案】30米[解析] 360°÷24° =15 ,利用多边形的外角和等于360° ,可知机器人回到A处时,恰好沿着正十五边形的边走了一圈,即可求得路程为15×2 =30(米).16. 【答案】16[解析] 由题意得,该机器人所经过的路径是一个正多边形,多边形的边数为36045=8 ,那么所走的路程是4×8=32(cm) ,故所用的时间是32÷2=16(s).17. 【答案】67.5三、解答题 (本大题共4道小题 )18. 【答案】解:(1)六边形DEFGMN 的各个内角都是120°.理由:⊿⊿ADN ,⊿BEF ,⊿CGM 都是正三角形 ,⊿它们的每个内角都是60° ,即六边形DEFGMN 的每个外角都是60°. ⊿六边形DEFGMN 的每个内角都是120°.(2)六边形DEFGMN 不是正六边形.理由:⊿三个小正三角形(即⊿ADN ,⊿BEF ,⊿CGM)的边长均不相等 , ⊿DN ,EF ,GM 均不相等.⊿六边形DEFGMN 不是正六边形.19. 【答案】解:(1)设这个多边形的一个内角的度数是x ° ,那么与其相邻的外角度数是x ° +12°. 由题意 ,得x +x +12 =180 ,解得x =140.即这个正多边形的一个内角的度数是140°.(2)这个正多边形的每一个外角的度数为180° -140° =40° ,所以这个正多边形的边数是=9.20. 【答案】解:(1)⊿n 边形的内角和是(n -2)×180° ,⊿多边形的内角和一定是180°的整倍数.⊿2021÷180=11……40 ,⊿多边形的内角和不可能为2021°.(2)设小华求的是n 边形的内角和 ,这个内角为x° ,那么0<x <180.根据题意 ,得(n -2)×180°-x +(180°-x)=2021° ,解得n =12+2x +40180.⊿n 为正整数 ,⊿2x +40必为180的整倍数.又⊿0<x <180 ,⊿40180<2x +40180<400180.⊿n =13或14.⊿小华求的是十三边形或十四边形的内角和.21. 【答案】解:延长ED ,BC 相交于点G.在四边形ABGE 中 ,⊿G =360°-(⊿A +⊿B +⊿E)=50° ,⊿P =⊿FCD -⊿CDP =12(⊿DCB -⊿CDG)=12⊿G =12×50°=25°.。
一、选择题1.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒ 2.小李同学将10,12,16,22cm cm cm cm 的四根木棒首尾相接,组成一个凸四边形,若凸四边形对角线长为整数,则对角线最长为( )A .25cmB .27cmC .28cmD .31cm 3.若过六边形的一个顶点可以画n 条对角线,则n 的值是( )A .1B .2C .3D .4 4.如图,ABC 中,BC 边上的高是( )A .AEB .ADC .CD D .CF 5.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD∠的度数为( )A .25︒B .85︒C .60︒D .95︒ 6.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE∠的度数是( )A .50°B .25°C .30°D .35°7.在多边形的一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,可以将多边形分割成8个三角形,则该多边形的边数为( )A .8B .9C .10D .118.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30° 9.用下列长度的三根木棒首尾相接,能做成三角形框架的是( ) A .2,2,4B .3,4,5C .1,2,3D .2,3,6 10.下列长度的三条线段能组成三角形的是( ) A .3,3,4B .7,4,2C .3,4,8D .2,3,5 11.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .4cm, 5cm,9cmB .4cm, 5cm, 6cmC .5cm,12cm,6cmD .4cm,2cm,2cm 12.如图,△ABC 中AC 边上的高是哪条垂线段.( )A .AEB .CDC .BFD .AF13.如图,直线//,65,30AB CD A E ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45° 14.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( ) A .a b = B .120a b =+C .180b a =+︒D .360b a =+︒ 15.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A .72米B .80米C .100米D .64米二、填空题16.已知ABC 的三边长分别为a ,b ,c ,则a b c b c a c a b --+--+-+=______.17.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B 两处,用仪器探测生命迹象C ,已知探测线与地面的夹角分别是30︒和60︒(如图),则C ∠的度数是_________.18.如图,C 为∠AOB 的边OA 上一点,过点C 作CD ∥OB 交∠AOB 的平分线OE 于点F ,作CH ⊥OB 交BO 的延长线于点H ,若∠EFD =α,现有以下结论:①∠COF =α;②∠AOH =180°﹣2α;③CH ⊥CD ;④∠OCH =2α﹣90°.其中正确的是__(填序号).19.如图,点D ,E ,F 分别是边BC ,AD ,AC 上的中点,若图中阴影部分的面积为3,则ABC 的面积是________.20.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.21.多边形每一个内角都等于108°,多边形一个顶点可引的对角线的条数是________条. 22.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.23.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.24.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.25.如图,在ABC 中,CE AB ⊥于点E ,AD BC ⊥于点D ,且3AB =,6BC =,5CE =,则AD =_________.26.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G =_____.三、解答题27.已知:如图90MON ∠=︒,与点O 不重合的两点A 、B 分别在OM 、ON 上,BE 平分ABN ∠,BE 所在的直线与OAB ∠的平分线所在的直线相交于点C . (1)当点A 、B 分别在射线OM 、ON 上,且45BAO ∠=︒时,求ACB ∠的度数; (2)当点A 、B 分别在射线OM 、ON 上运动时,ACB ∠的大小是否发生变化?若不变,请给出证明;若发生变化,请求出ACB ∠的范围.28.如图,在ABC 中,A ACB ∠=∠,CD 为ABC 的角平分线,CE 是ABC 的高.(1)若15DCB ∠=︒,求CBD ∠的度数;(2)若36DCE ∠=︒,求ACB ∠的度数.29.如图,A 、O 、B 三点在同一直线上,OE ,OF 分别是∠BOC 与∠AOC 的平分线.求:(1)当∠BOC=30°时,∠EOF 的度数;(2)当∠BOC=60°时,∠EOF 等于多少度?(3)当∠BOC=n°时,∠EOF 等于多少度?(4)观察图形特点,你能发现什么规律?30.如图,AB ∥CD ,点E 是CD 上一点,连结AE .EB 平分∠AED ,且DB ⊥BE ,AF ⊥AC ,AF 与BE 交于点M .(1)若∠AEC =100°,求∠1的度数;(2)若∠2=∠D ,则∠CAE =∠C 吗?请说明理由.。
人教版八年级数学第11章三角形综合复习一、选择题(本大题共10道小题)1. 如图,在△ABC中,AC边上的高是()图A.线段DA B.线段BAC.线段BC D.线段BD2. 下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容.如图,已知△ABC.求证:∠BAC+∠B+∠C=180°.证明:过点A作直线EF∥____,∴∠2=∠C(两直线平行,__◆__相等).同理∠1=∠B.∵∠1+∠2+∠3=__☆__(平角的定义),∴∠BAC+∠B+∠C=180°(____).则下列回答正确的是()A.代表ABB.◆代表同位角C.☆代表180°D.代表等式的性质3. 如图是六边形ABCDEF,则该图形的对角线的条数是()A.6B.9C.12D.184. 如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°5. 如图,六根木条钉成一个六边形框架ABCDEF,要使框架稳固且不活动,至少还需要添加木条()A.1根B.2根C.3根D.4根6. 下列哪一个度数可以作为某一个多边形的内角和()A.240°B.600°C.540°D.2180°7. 若多边形的一个顶点处的所有对角线把多边形分成了11个三角形,则经过这一点的对角线的条数是()A.8 B.9 C.10 D.118. 如图,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形.若这两个多边形的内角和分别为M和N,则M+N不可能是()A.360°B.540°C.720°D.630°9. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8C.8或9 D.7或8或910. 如图,把△ABC沿DE折叠,当点A落在四边形BCED内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,这个关系是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题(本大题共7道小题)11. 如图,AD为△ABC的角平分线,DE∥AB交AC于点E.若∠BAC=100°,则∠ADE=________°.12. 如图,若A表示四边形,B表示正多边形,则阴影部分表示________.13. 如图,含30°角的三角尺的直角边AC,BC分别经过正八边形的两个顶点,则∠1+∠2=________°.14. 如图,已知a∥b,若∠1+∠2=75°,则∠3+∠4=________°.15. 如图,在△ABC中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC =4 cm2,则阴影部分的面积为________.16. 如图,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是.17. 如图,在△ABC中,点D在BC的延长线上,∠A=m°,∠ABC和∠ACD 的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…;∠A2019BC和∠A2019CD的平分线交于点A2020,则∠A2020=________°.三、解答题(本大题共4道小题)18. 如图,用钢筋做支架,要求BA,DC相交所成的锐角为32°,现测得∠BAC =∠DCA=115°,则这个支架符合设计要求吗?为什么?19. 如图1-Z-18是一个大型模板,设计要求BA与CD相交成20°角,DA与CB 相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?20. 观察探究观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,如图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,如图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.21. 问题解决:已知:如图①,在△ADC中,DP,CP分别平分∠ADC和∠ACD,则∠P与∠A 的数量关系是____________.拓展探究:(1)若将△ADC改为任意四边形ABCD呢?已知:如图②,在四边形ABCD中,DP,CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系(写出说理过程);(2)若将上题中的四边形ABCD改为六边形ABCDEF(如图③)呢?请直接写出∠P 与∠A+∠B+∠E+∠F的数量关系;(3)若P为n边形A1A2A3…A n内一点,A1P平分∠A n A1A2,A2P平分∠A1A2A3,请直接写出∠P与∠A3+A4+A5+…+∠A n的数量关系.人教版八年级数学第11章三角形综合复习-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】C3. 【答案】B[解析] 当边数n=6时,多边形的对角线的条数为=9.4. 【答案】A【解析】由AE∥BD,可得∠DBC=∠E=35°,由BD平分∠ABC 可得∠ABC=2∠DBC=70°,由AB=AC可得∠ABC=∠C=70°,由三角形内角和定理可得∠BAC=180°-70°-70°=40°.5. 【答案】C[解析] 添加3根木条以后成为如右所示图形,其由若干三角形组成,具有稳定性.6. 【答案】C[解析] ∵多边形内角和公式为(n-2)×180°,∴多边形内角和一定是180°的倍数.∵540°=3×180°,∴540°可以作为某一个多边形的内角和.7. 【答案】C[解析] 设多边形有n条边,则n-2=11,解得n=13.故这个多边形是十三边形.故经过这一点的对角线的条数是13-3=10.8. 【答案】D[解析] 一条直线将长方形ABCD 分割成两个多边形的情况共四种:两个三角形、三角形和四边形、三角形和五边形、两个四边形.9. 【答案】D[解析] 设内角和为1080°的多边形的边数为n ,则(n -2)×180°=1080°,解得n =8.则原多边形的边数为7或8或9.故选D.10. 【答案】B[解析] 因为∠A =180°-(∠B +∠C)=180°-(∠AED +∠ADE),所以∠B +∠C =∠AED +∠ADE.在四边形BCED 中,∠1+∠2=360°-∠B -∠C -∠A′ED -∠A′DE =360°-(∠B +∠C)-(∠AED +∠ADE)=360°-2(180°-∠A),化简得∠1+∠2=2∠A.二、填空题(本大题共7道小题)11. 【答案】50[解析] ∵AD 为△ABC 的角平分线,∠BAC =100°,∴∠BAD =∠CAD =12×100°=50°. ∵DE ∥AB ,∴∠ADE =∠BAD =50°.12. 【答案】正方形13. 【答案】180[解析] 正八边形的每一个内角为(8-2)×180°8=135°,所以∠1+∠2=2×135°-90°=180°.14. 【答案】105[解析] 如图,∠5=∠1+∠2=75°,∴∠3+∠4=∠6+∠4=180°-∠5=180°-75°=105°.15. 【答案】1cm 2 [解析] 因为E 为AD 的中点,所以S △BDE =12S △ABD ,S △CDE=12S △ACD .所以S △BCE =12S △ABC .又因为F 为EC 的中点,所以S △BFE =12S △BCE .所以S△BFE=12×12×4=1(cm2).16. 【答案】190°[解析] 如图,正九边形的一个内角为=140°,∠3+∠4=90°,则∠1+∠2=140°×2-90°=190°.17. 【答案】(m22020)三、解答题(本大题共4道小题)18. 【答案】解:这个支架不符合设计要求.理由:如图,延长BA,DC交于点E.∵∠BAC=∠DCA=115°,∴∠EAC=∠ECA=65°.∴∠E=180°-∠EAC-∠ECA=50°.∵要求BA,DC相交所成的锐角为32°,∴这个支架不符合设计要求.19. 【答案】解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∵∠C+∠ADC=85°+55°=140°,∴∠F=180°-140°=40°.∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°.故这块模板是合格的.20. 【答案】解:(1)<(2)△BPC的周长<△ABC的周长.理由:如图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM.在△PMC中,PC<PM+MC.两式相加,得BP+PC<AB+AC,∴△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图②,分别延长BP1,CP2交于点M. 由(2)知,BM+CM<AB+AC.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC.∴四边形BP1P2C的周长<△ABC的周长.21. 【答案】解:问题解决:∠P=90°+12∠A拓展探究:(1)∵DP,CP分别平分∠ADC和∠BCD,∴∠PDC=12∠ADC,∠PCD=12∠BCD.∴∠DPC=180°-∠PDC-∠PCD=180°-12∠ADC-12∠BCD=180°-12(∠ADC +∠BCD) =180°-12(360°-∠A -∠B)=12(∠A +∠B).(2)∠P =12(∠A +∠B +∠E +∠F)-180°.(3)∠P =12(∠A 3+∠A 4+∠A 5+…+∠A n )-(n -4)×90°.。
人教版八年级数学第11章三角形复习题一、选择题(本大题共10道小题)1. 如图,在△ABC中,AC边上的高是()图A.线段DA B.线段BAC.线段BC D.线段BD2. 三角形按边分类可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形3. 如图,△A=60°,△B=40°,则△ACD的大小是()A.80° B.90° C.100° D.110°4. 已知在△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A. 11B. 5C. 2D. 15. 一个三角形三个内角的度数之比为2∶3∶4,这个三角形是()A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形6. 如图,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字形通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是()A.75°B.80°C.85°D.90°7. 若三角形的三个内角的度数之比为2△3△7,则这个三角形的最大内角是() A.75° B.90° C.105° D.120°8. 若多边形每一个内角都等于120°,则从此多边形的一个顶点出发的对角线共有()A.2条B.3条C.6条D.9条9. 如图,在△CEF中,△E=80°,△F=50°,AB△CF,AD△CE,连接BC,CD,则△A的度数是()A.45° B.50° C.55° D.80°10. 如图,把△ABC沿DE折叠,当点A落在四边形BCED内部时,△A与△1+△2之间有一种数量关系始终保持不变,这个关系是()A.△A=△1+△2 B.2△A=△1+△2C.3△A=2△1+△2 D.3△A=2(△1+△2)二、填空题(本大题共8道小题)11. 如图所示是一幅电动伸缩门的图片,则电动门能伸缩的几何原理是__________________________.12. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.13. 如图,已知直线a△b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则△2=________.14. 如图所示,六边形ABCDEF的内角都相等,AD△BC,则△DAB=________°.15. 如图,在△ABC中,AD△BC,BE△AC,CF△AB,垂足分别是D,E,F.若AC=4,AD=3,BE=2,则BC=________.16. 如图,含30°角的三角尺的直角边AC,BC分别经过正八边形的两个顶点,则△1+△2=________°.17. 如图,正十二边形A1A2…A12,连接A3A7,A7A10,则△A3A7A10=________°.18. 在△ABC中,△A=50°,△B=30°,点D在AB边上,连接CD.若△ACD为直角三角形,则△BCD的度数为________.三、解答题(本大题共4道小题)19. 如图,AD是△ABC的角平分线,△B=35°,△BAD=30°,求△C的度数.20. 如图,CE是△ABC的外角△ACD的平分线,且CE交BA的延长线于点E,△B =25°,△E=30°,求△BAC的度数.21. 如图,△ABC是正三角形,剪去三个边长均不相等的小正三角形(即△ADN,△BEF,△CGM)后,得到一个六边形DEFGMN.(1)六边形DEFGMN的每个内角是多少度?为什么?(2)六边形DEFGMN是正六边形吗?为什么?22. 如图△所示,在△ABC中,△1=△2,△C>△B,E为AD上一点,且EF△BC 于点F.(1)试探索△DEF与△B,△C之间的数量关系;(2)如图△所示,当点E在AD的延长线上时,其余条件都不变,你在(1)中探索得到的结论是否还成立?人教版八年级数学第11章三角形复习题-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】D3. 【答案】C4. 【答案】B5. 【答案】C6. 【答案】C[解析] ∵∠DBA=130°,∠ECA=135°,∴∠ABC=180°-∠DBA=50°,∠ACB=180°-∠ECA=45°.∴∠A=180°-∠ABC-∠ACB=180°-50°-45°=85°.7. 【答案】C[解析] △一个三角形三个内角的度数之比为2△3△7,△可设这个三角形的三个内角分别为2x,3x,7x.由题意,得2x+3x+7x=180°,解得x=15°.△7x =105°.8. 【答案】B[解析] △每一个内角都等于120°,△每一个外角都是60°.△边数是36060=6.而从六边形的一个顶点出发可以画3条对角线.故选B.9. 【答案】B[解析] 如图,连接AC 并延长交EF 于点M.△AB△CF ,△△3=△1. △AD△CE ,△△2=△4.△△BAD =△3+△4=△1+△2=△FCE.△△FCE =180°-△E -△F =180°-80°-50°=50°,△△BAD =△FCE =50°.10. 【答案】B[解析] 因为△A =180°-(△B +△C)=180°-(△AED +△ADE),所以△B +△C =△AED +△ADE.在四边形BCED 中,△1+△2=360°-△B -△C -△A′ED -△A′DE =360°-(△B +△C)-(△AED +△ADE)=360°-2(180°-△A),化简得△1+△2=2△A.二、填空题(本大题共8道小题)11. 【答案】四边形具有不稳定性12. 【答案】8【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45°,所以这个正多边形的每一个内角都是180°-45°=135°,设正多边形的边数为n ,则(n -2)×180°=135°×n ,解得n =8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.13. 【答案】54°【解析】如解图,过点C 作直线CE ∥a ,则a ∥b ∥CE ,则∠1=∠ACE ,∠2=∠BCE ,∵∠ACE +∠BCE =90°,∴∠1+∠2=90°,∵∠1=36°,∴∠2=54°.14. 【答案】60[解析] △六边形ABCDEF 的内角和为(6-2)×180°=720°且每个内角都相等, △△B =720°6=120°.△AD△BC ,△△DAB =180°-△B =60°.15. 【答案】83 [解析] △S △ABC =12AC·BE =12BC·AD ,△BC =AC·BE AD =4×23=83.16. 【答案】180[解析] 正八边形的每一个内角为(8-2)×180°8=135°,所以△1+△2=2×135°-90°=180°.17. 【答案】75【解析】△多边形A 1A 2…A 12是正十二边形,作它的外接圆△O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.18. 【答案】60°或10° [解析] 分两种情况:(1)如图△,当△ADC =90°时, △△B =30°,△△BCD =90°-30°=60°;(2)如图△,当△ACD =90°时,△△A =50°,△B =30°, △△ACB =180°-30°-50°=100°. △△BCD =100°-90°=10°. 综上,△BCD 的度数为60°或10°.三、解答题(本大题共4道小题)19. 【答案】解:△AD 是△ABC 的角平分线, △△BAC =2△BAD =2×30°=60°.△△C =180°-△B -△BAC =180°-35°-60°=85°.20. 【答案】解:△△B =25°,△E =30°, △△ECD =△B +△E =55°. △CE 是△ACD 的平分线, △△ACE =△ECD =55°. △△BAC =△ACE +△E =85°.21. 【答案】解:(1)六边形DEFGMN 的各个内角都是120°. 理由:△△ADN ,△BEF ,△CGM 都是正三角形,△它们的每个内角都是60°,即六边形DEFGMN 的每个外角都是60°. △六边形DEFGMN 的每个内角都是120°. (2)六边形DEFGMN 不是正六边形.理由:△三个小正三角形(即△ADN ,△BEF ,△CGM)的边长均不相等, △DN ,EF ,GM 均不相等. △六边形DEFGMN 不是正六边形.22. 【答案】解:(1)△△1=△2,△△1=12△BAC. 又△△BAC =180°-(△B +△C),△△1=12[180°-(△B +△C)]=90°-12(△B +△C).△△EDF =△B +△1=△B +90°-12(△B +△C)=90°+12(△B -△C). △EF△BC ,△△EFD =90°.△△DEF =90°-△EDF =90°-[90°+12(△B -△C)]=12(△C -△B).(2)当点E 在AD 的延长线上时,其余条件都不变,在(1)中探索得到的结论仍成立.。
第11章三角形一.选择题(共15小题)1.图中的三角形被木板遮住了一部分,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能2.如图,AD是△ABC的中线,则下列结论正确的是()A.AD⊥BC B.∠BAD=∠CAD C.AB=AC D.BD=CD3.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm4.如果三角形的两边长分别为3和5,那么第三边l的取值范围是()A.2<l<15 B.l<8 C.2<l<8 D.10<l<16 5.图中,∠2的度数是()A.110°B.70°C.60°D.40°6.如图,在△ABC中,AD平分∠BAC,AE是高,若∠B=40°,∠C=60°,则∠EAD的度数为()A.30°B.10°C.40°D.20°7.如图,BD是∠ABC的角平分线,CD是∠ACB的角平分线,∠BDC=120°,则∠A的度数为()A.40°B.50°C.60°D.75°8.如图,三角形ABC,∠BAC=90°,AD是三角形ABC的高,图中相等的是()A.∠B=∠C B.∠BAD=∠B C.∠C=∠BAD D.∠DAC=∠C 9.如图,直角△ABC中,∠A=45°,∠CBD=60°,则∠ACB的度数等于()A.10°B.15°C.30°D.45°10.如图所示,在△ABC中,∠C=90°,则∠B为()A.15°B.30°C.50°D.60°11.下列度数不能成为某多边形的内角和的是()A.1440°B.1080°C.900°D.600°12.如图所示,已知△ABC中,∠A=80°,若沿图中虚线剪去∠A,则∠1+∠2等于()A.90°B.135°C.260°D.315°13.若一个n边形的内角和是1620°,则n的值为()A.9 B.10 C.11 D.1214.正多边形的每个内角为135度,则多边形为()A.4 B.6 C.8 D.1015.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°二.填空题(共7小题)16.自行车的主框架采用了三角形结构,这样设计的依据是三角形具有.17.如图,在Rt△ABC中,∠B=34°,∠ACB=90°,翻折△ABC,使点B落到点A上,折痕交BC于E,则∠CAE的度数为.18.在四边形ABCD中,∠B=140°,∠D=80°,则∠A+∠C为°.19.如图,在四边形ABCD中,∠A=76°,∠B=124°,∠C=56°,则∠D=度.20.如图,在△ABC中,∠BAC=40°,∠B=70°,AD是△ABC的角平分线,则∠ADB=.21.如果一个正多边形的每个外角都等于72°,那么它是正边形.22.如果一个多边形的边数由8边变成9边,其内角和增加了.三.解答题(共3小题)23.如图,求x的值.24.已知:如图,△ABC中,∠ABC=∠C,BD⊥AC于D,求证:∠DBC=∠A.25.如图,在△ABC中,∠B=30°,∠C=70°,AD是△ABC的高,AE平分∠BAC交BC于E,求∠DAE的度数.参考答案与试题解析一.选择题(共15小题)1.图中的三角形被木板遮住了一部分,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能【分析】三角形按角分类,可以分为锐角三角形、直角三角形、钝角三角形.有一个角是直角的三角形是直角三角形;有一个角是钝角的三角形是钝角三角形;三个角都是锐角的三角形是锐角三角形.【解答】解:从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角.故选:D.2.如图,AD是△ABC的中线,则下列结论正确的是()A.AD⊥BC B.∠BAD=∠CAD C.AB=AC D.BD=CD【分析】根据三角形的中线的定义即可判断.【解答】解:∵AD是△ABC的中线,∴BD=DC,故选:D.3.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm【分析】根据题意得到AB=AC+3,根据中线的定义得到BD=DC,根据三角形的周长公式计算即可.【解答】解:由题意得,AB=AC+3,∵AD是△ABC的中线,∴BD=DC,∵△ABD的周长为22,∴AB+BD+AD=AC+3+DC+AD=22,则AC+DC+AD=19,∴△ACD的周长=AC+DC+AD=19(cm),故选:A.4.如果三角形的两边长分别为3和5,那么第三边l的取值范围是()A.2<l<15 B.l<8 C.2<l<8 D.10<l<16 【分析】直接利用三角形三边关系进而得出答案.【解答】解:∵三角形的两边长分别为3和5,∴第三边l的取值范围是:2<l<8.故选:C.5.图中,∠2的度数是()A.110°B.70°C.60°D.40°【分析】根据三角形的外角的性质和三角形的内角和即可得到结论.【解答】解:∵∠1=60°+20°=80°,∴∠2=180°﹣60°﹣80°=40°,故选:D.6.如图,在△ABC中,AD平分∠BAC,AE是高,若∠B=40°,∠C=60°,则∠EAD的度数为()A.30°B.10°C.40°D.20°【分析】根据三角形内角和可求得∠BAC的度数,又因为AD平分∠BAC,所以可求得∠CAD的度数,由AE⊥BC,∠C=60°,可求得∠CAE的度数从而求得∠EAD的度数.【解答】解:∵∠B=40°,∠C=60°,∠B+∠C+∠BAC=180°∴∠BAC=80°又∵AD平分∠BAC∴∠CAD=40°∵AE⊥BC,∠C=60°∴∠AEC=90°,∠CAE=30°∴∠EAD=10°,故选:B.7.如图,BD是∠ABC的角平分线,CD是∠ACB的角平分线,∠BDC=120°,则∠A的度数为()A.40°B.50°C.60°D.75°【分析】根据角平分线的定义得到∠DBC=∠ABC,∠DCB=∠ACB,根据三角形内角和定理和计算即可.【解答】解:∵BD、CD是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠D=180°﹣(∠DBC+∠DCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=120°,∴∠A=60°;故选:C.8.如图,三角形ABC,∠BAC=90°,AD是三角形ABC的高,图中相等的是()A.∠B=∠C B.∠BAD=∠B C.∠C=∠BAD D.∠DAC=∠C 【分析】由三角形高的定义可得∠ADB=∠ADC=90°=∠BAC,由三角形内角和定理和直角三角形的性质可求解.【解答】解:∵AD是三角形ABC的高,∴∠ADB=∠ADC=90°=∠BAC,∴∠B+∠C=90°,∠BAD+∠B=90°,∠C+∠CAD=90°,∴∠B=∠DAC,∠C=∠BAD,故选:C.9.如图,直角△ABC中,∠A=45°,∠CBD=60°,则∠ACB的度数等于()A.10°B.15°C.30°D.45°【分析】根据三角形的外角性质列式计算,得到答案.【解答】解:∵∠CBD是△ABC的一个外角,∴∠ACB=∠CBD﹣∠A=15°,故选:B.10.如图所示,在△ABC中,∠C=90°,则∠B为()A.15°B.30°C.50°D.60°【分析】根据直角三角形的两个锐角互余的性质解答.【解答】解:如图所示,在△ABC中,∠C=90°,则x+2x=90°.x=30°.所以2x=60°,即∠B为60°.故选:D.11.下列度数不能成为某多边形的内角和的是()A.1440°B.1080°C.900°D.600°【分析】n(n≥3)边形的内角和是(n﹣2)180°,因而多边形的内角和一定是180的整数倍.【解答】解:不是180°的整数倍的选项只有选项D中的600°.故选:D.12.如图所示,已知△ABC中,∠A=80°,若沿图中虚线剪去∠A,则∠1+∠2等于()A.90°B.135°C.260°D.315°【分析】根据题意由三角形内角和定理可得出∠B+∠C=100°,再根据四边形的内角和定理可求出∠1+∠2.【解答】解:∵∠A=80°,∴∠B+∠C=100°,∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=260°.故选:C.13.若一个n边形的内角和是1620°,则n的值为()A.9 B.10 C.11 D.12【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=1620°,解得n=11.故选:C.14.正多边形的每个内角为135度,则多边形为()A.4 B.6 C.8 D.10【分析】根据正多边形的每个内角是135°,则知该正多边形的每个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【解答】解:∵正多边形的每个内角是135°,∴该正多边形的每个外角为45°,∵多边形的外角之和为360°,∴边数==8.故选:C.15.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:如图,∵∠1=∠A+∠C,∠2=∠B+∠F,∠1+∠2+∠D+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故选:C.二.填空题(共7小题)16.自行车的主框架采用了三角形结构,这样设计的依据是三角形具有稳定性.【分析】根据三角形具有稳定性解答.【解答】解:自行车的主框架采用了三角形结构,这样设计的依据是三角形具稳定性,故答案为:稳定性.17.如图,在Rt△ABC中,∠B=34°,∠ACB=90°,翻折△ABC,使点B落到点A上,折痕交BC于E,则∠CAE的度数为22°.【分析】由直角三角形的性质得出∠BAC=56°,由折叠的性质得出∠EAB=∠B=34°,即可得出结果.【解答】解:∵∠B=34°,∠ACB=90°,∴∠BAC=56°,∵翻折△ABC,使点B落到点A上,折痕交BC于E,∴∠EAB=∠B=34°,∴∠CAE=∠BAC﹣∠B=56°﹣34°=22°,故答案为:22°.18.在四边形ABCD中,∠B=140°,∠D=80°,则∠A+∠C为140 °.【分析】根据四边形的的内角和为360°计算即可.【解答】解:∵∠B=140°,∠D=80°,∴∠A+∠C=360°﹣∠B﹣∠D=360°﹣140°﹣80°=140°.故答案为:14019.如图,在四边形ABCD中,∠A=76°,∠B=124°,∠C=56°,则∠D=104 度.【分析】用四边形的内角和的度数减去三个内角的度数,即可求出答案.【解答】解:∵∠A=76°,∠B=124°,∠C=56°,∴∠D=360°﹣56°﹣124°﹣76°=104°.故答案为:104.20.如图,在△ABC中,∠BAC=40°,∠B=70°,AD是△ABC的角平分线,则∠ADB=90°.【分析】根据角平分线的定义求出∠CAD,根据三角形的外角性质计算,得到答案.【解答】解:∵AD是△ABC的角平分线,∴∠CAD=∠BAC=20°,∴∠ADB=∠CAD+∠C=90°,故答案为:90°.21.如果一个正多边形的每个外角都等于72°,那么它是正 5 边形.【分析】正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【解答】解:这个正多边形的边数:360°÷72°=5.故答案为:522.如果一个多边形的边数由8边变成9边,其内角和增加了180°.【分析】根据多边形的内角和定理计算即可.【解答】解:∵n边形的内角和为(n﹣2)•180°,∴边数增加1它的内角和增加1×180°=180°.故答案为:180°三.解答题(共3小题)23.如图,求x的值.【分析】根据三角形的外角性质计算,得到答案.【解答】解:由三角形的外角性质可知,x+70=x+x+10,解得,x=60.24.已知:如图,△ABC中,∠ABC=∠C,BD⊥AC于D,求证:∠DBC=∠A.【分析】由三角形的内角和定理可求2∠C+∠A=180°,由直角三角形的性质可得2∠C+2∠DBC=180°,即可得结论.【解答】证明:∵∠ABC+∠C+∠A=180°∴2∠C+∠A=180°∵BD⊥AC∴∠C+∠DBC=90°∴2∠C+2∠DBC=180°∴2∠DBC=∠A∴∠DBC=∠A.25.如图,在△ABC中,∠B=30°,∠C=70°,AD是△ABC的高,AE平分∠BAC交BC于E,求∠DAE的度数.【分析】先根据三角形内角和计算出∠BAC=80°,再利用角平分线的定义得到∠BAE=40°,再利用互余可计算出∠BAD=60°,然后计算∠DAE=20°即可.【解答】解:∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣30°﹣70°=80°,∵AE平分∠BAC,∴∠BAE=∠BAC=40°,∵AD是△ABC的高,∴∠ADB=90°,∴∠BAD=90°﹣∠B=90°﹣30°=60°,∴∠DAE=60°﹣40°=20°.。
一、选择题1.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠;②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个C解析:C【分析】 利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒,再利用三角形的外角的性质求解4∠, 从而可判断④.【详解】解:90BAC DAE ∠=∠=︒,122390∴∠+∠=∠+∠=︒,13∴∠=∠,故①符合题意, 19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故②符合题意;//,BC AD180C CAD ∴∠+∠=︒,45C ∠=︒,135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒,故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,,30BAE ∴∠=︒,如图,记,AB DE 交于,G60E∠=︒,180306090AGE∴∠=︒-︒-︒=︒,45,B C∠=∠=︒4904545.AGE B∴∠=∠-∠=︒-︒=︒4.C∴∠=∠故④符合题意,综上:符合题意的有①②④.故选:.C【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.2.下列四组线段中,不可以构成三角形的是()A.4,5,6 B.1.5,2,2.5 C.13,14,15D.12,3D解析:D【分析】计算较小两边的和,与最大的边比较,大于最大的边时三角形存在,依此判断即可.【详解】∵4+5>6,∴能构成三角形;∵1.5+2>2.5,∴能构成三角形;∵14+15>13,∴能构成三角形;∵2<1+2=3,∴不能构成三角形;故选D.【点睛】本题考查了已知线段长判断三角形的存在,熟记三角形存在的条件是解题的关键. 3.若一个三角形的三边长分别为3,7,x,则x的值可能是()A.6 B.3 C.2 D.11A解析:A根据三角形的三边关系列出不等式,即可求出x 的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x ,∴7-3<x <7+3,即4<x <10,四个选项中,A 中,4<6<10,符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.4.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40°B解析:B【分析】 利用平行线和三角形外角的性质即可求解.【详解】∵//AB CD ,∴60DEF A ∠=∠=︒.∵DEF C F ∠=∠+∠,∴604020F DEF C ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质,熟练利用其性质找到角的等量关系是解答本题的关键.5.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°A【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD ,∠AED=∠C+∠EDC ,再根据∠B=∠C ,∠ADE=∠AED 即可得出结论.【详解】解:∵∠ADC 是△ABD 的外角,∴∠ADC=∠B+∠BAD ,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE∵∠AED 是△CDE 的外角,∴∠AED=∠C+∠EDC ,∵∠ADE=∠AED ,∴∠B+∠BAD-∠CDE=∠C+∠EDC ,∵∠B=∠C ,∴∠BAD=2∠EDC ,∵10CDE ∠=︒∴∠BAD=20°;故选:A【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.6.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC ∠的度数是( )A .65︒B .75︒C .85︒D .105︒B解析:B【分析】 根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA =60︒,∠BAE =45︒,∴∠ADE = 180︒−∠CEA −∠BAE =75︒,∴∠BDC =∠ADE =75︒,故选:B【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.7.一个多边形的内角和是外角和的4倍,则这个多边形的边数为()A.10 B.8 C.6 D.4A解析:A【分析】设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n的一元一次方程,解方程即可得出结论.【详解】解:设这个多边形的边数为n,则该多边形的内角和为(n-2)×180°,依题意得:(n-2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:A【点睛】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.a b,含30角的直角三角板按如图所示放置,顶点A在直线a上,斜边8.已知直线//BC与直线b交于点D,若135∠=︒,则2∠的度数为()A.35︒B.45︒C.65︒D.75︒C解析:C【分析】如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∠=︒,∠B=30°∵135∴∠3=∠1+∠B=35°+30°=65°a b∵//∴∠2=∠3=65°故选:C【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.9.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm ,7cm ,∴第三边长的取值范围为7-3<x <7+3,即4<x <10,只有D 符合题意,故选:D .【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.10.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm C 解析:C【分析】设选择的木棒长为x ,根据第三边大于两边之差小于两边之和即可求出范围,再结合选项即可得出答案.【详解】由题意得,设选择的木棒长为x ,则8448x -<<+,即412x <<, ∴选择木棒长度为8cm .故选C .【点睛】本题考查了三角形三边关系的应用,熟练掌握三边关系是解题的关键.二、填空题11.如图,则A B C D E ∠+∠+∠+∠+∠的度数为________.180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2再通过三角形的内角和定理即可求解【详解】解:如图∵∠1是△CDF 外角∴∠C+∠D=∠1∵∠2是三角形BFG 外角∴∠B+∠1=∠2∴∠解析:180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2,再通过三角形的内角和定理即可求解【详解】解:如图,∵∠1是△CDF 外角,∴∠C+∠D=∠1,∵∠2是三角形BFG 外角,∴∠B+∠1=∠2,∴∠B+∠C+∠D=∠2,∴=2180A B C D E A E ∠+∠+∠+∠+∠∠+∠+∠=︒.故答案为:180°【点睛】本题考查了三角形的外角定理、内角和定理,通过三角形的外角定理将∠B+∠C+∠D 转化为∠2是解题关键.12.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线11【分析】先根据题意求出多边形的边数再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n 则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n ,则有(n -2)•180+360=2520,解得:n =14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.13.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.6【分析】根据DE 分别是三角形的中点得出G 是三角形的重心再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案【详解析:6【分析】根据D ,E 分别是三角形的中点,得出G 是三角形的重心,再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3,再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案.【详解】解:∵△ABC 的两条中线AD 、BE 相交于点G ,∴2GD =AG ,∵S △ABG =2,∴S △ABD =3,∵AD 是△ABC 的中线,∴S △ABC =2S △ABD =6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.14.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.54°【分析】根据折叠的性质及题意可在Rt △BEC中求解∠C 及∠CBE 的度数从而计算∠ABD 的度数则∠BDC=∠A+∠ABD 即可计算出结果【详解】由题意可得:∠A=∠∠=∠CBE ∴则在Rt △BEC 中 解析:54°【分析】根据折叠的性质及题意,可在Rt △BEC 中求解∠C 及∠CBE 的度数,从而计算∠ABD 的度数,则∠BDC=∠A+∠ABD ,即可计算出结果.【详解】由题意可得:∠A=∠A ',∠A '=∠CBE ,∴44ACB A CBE ∠=∠=∠,则在Rt △BEC 中,∠C+∠CBE=90°,即:5∠CBE=90°,∠CBE=18°,∴∠A=18°,∠C=72°,∠ABC=90°,∴72ABA ABC CBE '=-=︒∠∠∠,由折叠性质可知,ABD A BD '∠=∠,∴=36ABD A BD '∠=∠︒,∴54BDC ABD A ∠=∠+∠=︒故答案为:54°.【点睛】本体三角形的折叠问题,平行线的性质及三角形的外角定理,理解图形变化中的特点,准确结合题意计算是解题关键.15.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可【详解】解:∵BD=DC ∴S △ABD=S △ADC=×6=3(cm2)∵AE=DE ∴S △AEB=S △AEC=×3=(cm2)∴S △BEC解析:3 2【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:∵BD=DC,∴S△ABD=S△ADC=12×6=3(cm2),∵AE=DE,∴S△AEB=S△AEC=12×3=32(cm2),∴S△BEC=6-3=3(cm2),∵EF=FC,∴S△BEF=12×3=32(cm2),故答案为32.【点睛】本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在一个四边形ABCD中,AE平分∠BAD,DE平分∠ADC,且∠ABC=80°,∠BCD=70°,则∠AED=_________.75°【分析】先根据四边形的内角和求出∠BAD+∠CDA然后再根据角平分线的定义求得∠EAD+∠EDA最后根据三角的内角和定理求解即可【详解】解:∵在四边形ABCD中∠ABC=80°∠BCD=70°解析:75°.【分析】先根据四边形的内角和求出∠BAD+∠CDA,然后再根据角平分线的定义求得∠EAD+∠EDA,最后根据三角的内角和定理求解即可.【详解】解:∵在四边形ABCD中,∠ABC=80°,∠BCD=70°∴∠BAD+∠CDA=360°-80°-70°=210°∵∠EAD=12∠BAD,∠EDA=12∠CAD∴∠EAD+∠EDA=1(∠BAD+∠CDA)=105°2∴∠AED=180°-(∠EAD+∠EDA)=180°-105°=75°.故答案为75°.【点睛】本题主要考查了三角形的内角和、四边形的内角和以及角平分线的相关知识,灵活应用相关知识成为解答本题的关键.17.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.15【分析】记三角形的第三边为c先根据三角形的三边关系确定c的取值范围进而可得三角形第三边的最大值与最小值进一步即可求出答案【详解】解:记三角形的第三边为c则7-3<c<7+3即4<c<10因为第三解析:15【分析】记三角形的第三边为c,先根据三角形的三边关系确定c的取值范围,进而可得三角形第三边的最大值与最小值,进一步即可求出答案.【详解】解:记三角形的第三边为c,则7-3<c<7+3,即4<c<10,因为第三边长为奇数,所以三角形第三边长的最大值是9,最小值是5,所以三角形的周长最大值是3+7+9=19;最小值是3+7+5=15;故答案为:19,15.【点睛】本题考查了三角形的三边关系与不等式组的整数解,属于基础题型,正确理解题意、掌握解答的方法是关键.18.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95 ,王老师沿公园边由A点经B→C→D→E,一直到F时,他在行程中共转过了_____度.275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数由多边形的外角和即可求解【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数∵多边形的外角和为360°∴解析:275王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,由多边形的外角和即可求解.【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,∵多边形的外角和为360°,∴他在行程中共转过了()36018095275︒-︒-︒=︒,故答案为:275.【点睛】本题考查多边形的外角和,明确王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数是解题的关键.19.如图,在ABC 中,已知66ABC ∠=︒,54ACB ∠=︒,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,EHF ∠的度数是________.120°【分析】先根据三角形内角和定理求出∠A 的度数再根据CF是AB 上的高得出∠ACF 的度数再由三角形外角的性质即可得出结论【详解】解:∵∠ABC=66°∠ACB=54°∴∠A=60°∵CF 是AB 上解析:120°【分析】先根据三角形内角和定理求出∠A 的度数,再根据CF 是AB 上的高得出∠ACF 的度数,再由三角形外角的性质即可得出结论.【详解】解:∵∠ABC=66°,∠ACB=54°,∴∠A=60°,∵CF 是AB 上的高,∴在△ACF 中,∠ACF=180°-∠AFC-∠A=30°,在△CEH 中,∠ACF=30°,∠CEH=90°,∴∠EHF=∠ACF+∠CEH=30°+90°=120°.故答案为120°.【点睛】本题考查的是三角形内角和定理及三角形外角的性质、三角形的高线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数即可得出答案【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°答:这个三角形中最大的角是直角故答案解析:直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数,即可得出答案.【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°,答:这个三角形中最大的角是直角.故答案为:直角.【点睛】本题考查了三角形内角和定理的应用,能求出这个三角形的最大内角的度数是解此题的关键,注意:三角形的内角和等于180°.三、解答题21.如图,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1.(1)∵BA1、CA1是∠ABC与∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=,∠ACD﹣∠ABD=∠,∴∠A1=.(2)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230°,求∠F的度数.(3)如图3,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1,若E为BA延长线上一动点,连接EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.解析:(1)∠A1,A,12∠A;(2)25°;(3)①的结论是正确的,且这个定值为180°.【分析】(1)根据角平分线的定义可得∠A1BD=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,则可得出答案;(2)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(∠A+∠D),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(3)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)∵BA1是∠ABC的平分线,CA1是∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=∠A1,∠ACD﹣∠ABD=∠A,∴∠A1=12∠A.故答案为:∠A1,A,12∠A;(2)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∵∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(∠A+∠D)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=12(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;(3)△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°﹣∠Q),化简得:∠A1+∠Q=180°,因此①的结论是正确的,且这个定值为180°.【点睛】此题考查三角形的角平分线的性质,三角形内角和定理,三角形外角定理,熟练掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.22.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长. 解析:周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】 解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.23.如图,AF ,AD 分别是ABC 的高和角平分线,且34B ∠=︒,76C ∠=︒,求DAF ∠的度数.解析:21︒【分析】运用三角形的内角和定理即可求出∠BAC 的度数;根据角平分线的定义、三角形的内角和定理的推论以及直角三角形的两个锐角互余即可求出∠FAC 的度数,再由DAF DAC FAC =-∠∠∠即可得出结论.【详解】解:∵AF 是ABC 的高,∴90AFC ∠=︒,∴90907614FAC C ∠=︒-∠=︒-︒=︒,∵180BAC B C ∠+∠+∠=︒,∴180180763470BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 是ABC 的角平分线, ∴11703522DAC BAC ==⨯︒=∠∠︒, ∴21DAF DAC FAC =-∠=∠∠︒.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 24.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.解析:(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】(1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠, ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A ,则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D .25.已知一个n 边形的每一个内角都等于120°.(1)求n 的值;(2)求这个n 边形的内角和;(3)这个n 边形内一共可以画出几条对角线?解析:(1)6;(2)720°;(3)9条【分析】(1)分别用两个式子表示多边形的内角和,列出方程,求解即可;(2)根据多边形内角和公式即可求解;(3)根据对角线的定义求出每个顶点的对角线条数,再求解即可.【详解】解:(1)由题意得()2180120n n -︒=︒,解得 6n =.(2)()62180720-⨯︒=︒,所以这个多边形的内角和为720°.(3)六边形每个顶点可以引6-3=3条对角线, 所以一共可画6392⨯=条对角线. 【点睛】本题考查了多边形的内角和公式,多边形对角线的定义,熟记多边形的内角和公式,理解对角线的定义是解题关键.26.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.解析:10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE 是角平分线,∴∠EAC =12∠BAC =12×60°=30°, ∵AD 是高,∴∠ADC =90°,∴∠CAD =90°−∠C =90°−70°=20°,∴∠DAE =∠EAC −∠CAD =30°−20°=10°;∵AE ,BF 是角平分线,∴∠OAB =12∠BAC ,∠OBA =12∠ABC , ∴∠BOE =∠OAB +∠OBA =12(∠BAC +∠ABC )=12(180°−∠C )=12×(180°−70°) =55°. 【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.27.如图,已知直线//AB CD ,直线EF 分别交直线AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于一点P .试说明:90P ∠=︒.解析:证明见解析【分析】由AB∥CD,可知∠BEF与∠DFE互补,由角平分线的性质可得∠PEF+∠PFE=90°,由三角形内角和定理可得出结论.【详解】∵AB∥CD,∴∠BEF+∠DFE=180°.又∵∠BEF的平分线与∠DFE的平分线相交于点P,∴∠PEF=12∠BEF,∠PFE=12∠DFE,∴∠PEF+∠PFE=12(∠BEF+∠DFE)=90°.∵∠PEF+∠PFE+∠P=180°,∴∠P=90°.【点睛】本题主要考查了平行线的性质、角平分线的定义、三角形内角和等知识,解题时注意:两直线平行,同旁内角互补.28.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式.解析:(1)10︒;(2)11 22βα-【分析】(1)根据三角形的内角和求出∠BAC的度数,得到∠BAE的度数,求出∠AED的度数,根据AD是高线,求得答案;(2)根据三角形的内角和求出∠BAC的度数,得到∠BAE的度数,求出∠AED的度数,根据AD是高线,求得答案.【详解】(1)∵∠B=40°,∠C=60°,∴∠BAC=18080B C ︒-∠-∠=︒,∵AE 平分∠BAC ,∴∠BAE=1402BAC ∠=︒, ∴∠AED=∠B+∠BAE=80︒,∵AD 是高线,∴AD ⊥BC ,∴∠DAE=9010AED ︒-∠=︒;(2)∵∠B =α,∠C =β,∴∠180180BAC B C αβ=︒-∠-∠=︒--,∵AE 平分∠BAC ,∴∠BAE=121902B C ︒-∠-∠=121902αβ︒-- ∴∠AED=∠B+∠BAE=121902B C ︒+∠-∠=121902αβ︒+- ∵AD 是高线,∴AD ⊥BC , ∴∠DAE=190212AED C B ︒-∠=∠-∠=1122βα-, 故答案为:1122βα-. 【点睛】此题考查三角形的基础知识,三角形的角平分线的性质,三角形的内角和定理,三角形的高线,直角三角形两锐角互余,熟练掌握各知识点并应用解决问题是解题的关键.。
人教版初中数学八年级上册第11章三角形期末复习试题及答案解析八年级数学提优练习题2013.11一.选择题(共7小题)1.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O 是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有()个.A.①②③B.①②④C.①③④D.①②③④2.如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,要使PC+PB 最小,则点P应该满足()A.P B=PC B.P A=PD C.∠BPC=90°D.∠APB=∠DPC3.如图,△ABC是等腰直角三角形,△DEF是一个含30°角的直角三角形,将D放在BC的中点上,转动△DEF,设DE,DF分别交AC,BA的延长线于E,G,则下列结论:①AG=CE ②DG=DE③BG﹣AC=CE ④S△BDG﹣S△CDE=S△ABC其中总是成立的是()A.①②③B.①②③④C.②③④D.①②④4.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④5.如图,BC∥AM,∠A=90°,∠BCD=75°,点E在AB上,△CDE为等边三角形,BM交CD于F,下列结论:①∠ADE=45°,②AB=BC,③EF⊥CD,④若∠AMB=30°,则CF=DF.其中正确的有()A.①②③B.①②④C.①③④D.②③④6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有()A.1个B.2个C.3个D.4个7.如图,AM、BE是△ABC的角平分线,AM交BE于N,AL⊥BE于F交BC于L,若∠ABC=2∠C,下列结论:①B E=EC;②BF=AE+EF;③AC=BM+BL;④∠MAL=∠ABC,其中正确的结论是()A.①②③B.①④C.①②③④D.①②二.解答题(共8小题)8.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.9.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE 的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN 交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.10.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形=16.OBAC(1)∠COA的值为_________;(2)求∠CAB的度数;(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.11.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.12.(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为_________.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.13.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE 的最小值为_________.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为_________.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.14.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是_________;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.15.(2013•东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.八年级数学提优练习题2013.11参考答案与试题解析一.选择题(共7小题)1.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O 是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有()个.A.①②③B.①②④C.①③④D.①②③④考点:等腰三角形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质.4387773分析:①利用等边对等角,即可证得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;③首先证明∴△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP.④过点C作CH⊥AB于H,根据S四边形AOCP=S△ACP+S△AOC,利用三角形的面积公式即可求解.解答:解:连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠BAC=×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°,∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;故①正确;∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故②正确;在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,,∴△OPA≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP;故③正确;过点C作CH⊥AB于H,∵∠PAC=∠DAC=60°,AD⊥BC,∴CH=CD,∴S△ABC=AB•CH,S四边形AOCP=S△ACP+S△AOC=AP•CH+OA•CD=AP•CH+OA•CH=CH•(AP+OA)=CH•AC,∴S△ABC=S四边形AOCP;故④正确.故选D.点评:本题考查了等腰三角形的判定与性质,关键是正确作出辅助线.2.如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,要使PC+PB 最小,则点P应该满足()A.P B=PC B.P A=PD C.∠BPC=90°D.∠APB=∠DPC考点:轴对称-最短路线问题;直角梯形.专题:压轴题;动点型.分析:首先根据轴对称的知识,可知P点的位置是连接点B和点C关于AD的对称点E与AD的交点,利用轴对称和对顶角相等的性质可得.解答:解:如图,作点C关于AD的对称点E,连接BE交AD于P,连接CP.根据轴对称的性质,得∠DPC=∠EPD,根据对顶角相等知∠APB=∠EPD,所以∠APB=∠DPC.故选D.点评:此题的关键是应知点P是怎样确定的.要找直线上一个点和直线同侧的两个点的距离之和最小,则需要利用轴对称的性质进行确定.3.如图,△ABC是等腰直角三角形,△DEF是一个含30°角的直角三角形,将D放在BC的中点上,转动△DEF,设DE,DF分别交AC,BA的延长线于E,G,则下列结论:①AG=CE ②DG=DE③BG﹣AC=CE ④S△BDG﹣S△CDE=S△ABC其中总是成立的是()A.①②③B.①②③④C.②③④D.①②④考点:旋转的性质;全等三角形的判定与性质.4387773专题:开放型.分析:连DA,由△ABC是等腰直角三角形,D点为BC的中点,根据等腰直角三角形的性质得AD⊥BC,AD=DC,∠ACD=∠CAD=45°,得到∠GAD=∠ECD=135°,由∠EDF=90°,根据同角的余角相等得到∠1=∠2,所以△DAG≌△DCE,AG=E C,DG=DE,由此可分别判断.解答:解:连DA,如图,∵△ABC是等腰直角三角形,D点为BC的中点,∴AD⊥BC,AD=DC,∠ACD=∠CAD=45°,∴∠GAD=∠ECD=135°,又∵△DEF是一个含30°角的直角三角形,∴∠EDF=90°,∴∠1=∠2,∴△DAG≌△DCE,∴AG=EC,DG=DE,所以①②正确;∵AB=AC,∴BG﹣AC=BG﹣AB=AG=EC,所以③正确;∵S△BDG﹣S△CDE=S△BDG﹣S△ADG=S△ADB=S△ABC.所以④正确.故选B.点评:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直三角形的性质,特别是斜边上的中线垂直斜边并且等于斜边的一半.4.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④考点:等腰直角三角形;全等三角形的判定与性质;等腰三角形的判定与性质;含30度角的直角三角形.4387773分析:①根据:∠CAD=30°,AC=BC=AD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;②根据CE⊥CD,∠ECA=165°,利用SAS求证△ACD≌△BCE即可得出结论;③根据∠ACB=90°,∠CAD=30°,AC=BC,利用等腰三角形的性质和△ACD≌△BCE,求出∠CBE=30°,然后即可得出结论;④过D作DM⊥AC于M,过D作DN⊥BC于N.由∠CAD=30°,可得CM=AC,求证△CMD≌△CND,可得CN=CM=AC=BC,从而得出CN=BN.然后即可得出结论.解答:解:①∵∠CAD=30°,AC=BC=AD,∴∠ACD=∠ADC=(180°﹣30°)=75°,∵CE⊥CD,∴∠DCE=90°,∴∠ECA=165°∴①正确;②∵CE⊥CD,∠ECA=165°(已证),∴∠BAE=∠ECA﹣∠ACB=165﹣90=75°,∴△ACD≌△BCE(SAS),∴BE=BC,∴②正确;③∵∠ACB=90°,∠CAD=30°,AC=BC,∴∠CAB=∠ACB=45°∴∠BAD=∠BAC﹣∠CAD=45﹣30=15°,∵△ACD≌△BCE,∴∠CBE=30°,∴∠ABF=45+30=75°,∴∠AFB=180﹣15﹣75=90°,∴AD⊥BE.④证明:如图,过D作DM⊥AC于M,过D作DN⊥B C于N.∵∠CAD=30°,且DM=AC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°﹣∠ACD=15°,∠MDC=∠DMC﹣∠ACD=15°,∴△CMD≌△CND,∴CN=CM=AC=BC,∴CN=BN.∵DN⊥BC,∴BD=CD.∴④正确.所以4个结论都正确.故选D.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识点的理解和掌握,此题有一定的拔高难度,属于难题.5.如图,BC∥AM,∠A=90°,∠BCD=75°,点E在AB上,△CDE为等边三角形,BM交CD于F,下列结论:①∠ADE=45°,②AB=BC,③EF⊥CD,④若∠AMB=30°,则CF=DF.其中正确的有()A.①②③B.①②④C.①③④D.②③④考点:直角梯形;等边三角形的性质;含30度角的直角三角形;等腰直角三角形.4387773分析:由BC∥AM得∠CDA=105°,根据等边三角形的性质得∠CDE=60°,则∠EDA=105°﹣60°=45°;过C作CG⊥AM,则四边形ABCG为矩形,于是∠DCG=90°﹣∠BCD=15°,而∠BCE=75°﹣60°=15°,易证得Rt△CBE≌Rt△CGD,则BC=CG,得到AB=BC;由于AG=BC,而AG≠MD,则CF:FD=BC:MD≠1,不能得到F点是CD的中点,根据等边三角形的性质则不能得到EF⊥CD;若∠AMB=30°,则∠CBF=30°,在Rt△AMB中根据含30度的直角三角形三边的关系得到BM=2AB,则BM=2BC,易得∠BFC=75°,所以BF=BC,得MF=BF,由CB∥AM得CF:FD=BF:MF=1,即可有CF=DF.解答:解:∵BC∥AM,∴∠BCD+∠CDA=180°,∵∠BCD=75°,∴∠CDA=105°,∵△CDE为等边三角形,∴∠CDE=60°,∴∠EDA=105°﹣60°=45°,所以①正确;过C作CG⊥AM,如图,∵∠A=90°,∴四边形ABCG为矩形,∴∠DCG=90°﹣∠BCD=15°,而△CDE为等边三角形,∴∠DCE=60°,CE=CD,∴∠BCE=75°﹣60°=15°,∴Rt△CBE≌Rt△CGD,∴BC=CG,∴AB=BC,所以②正确;∵AG=BC,而AG≠MD,∴CF:FD=BC:MD≠1,∴F点不是CD的中点,∴EF不垂直CD,所以③错误;若∠AMB=30°,则∠CBF=30°,∴在Rt△AMB中,BM=2AB,∴BM=2BC,∵∠BCD=75°,∴∠BFC=180°﹣30°﹣75°=75°,∴BF=BC,∴MF=BF,而CB∥AM,∴CF:FD=BF:MF=1,∴CF=FD,所以④正确.故选B.点评:本题考查了直角梯形的性质:有一组对边平行,另一组对边不平行,且有一个直角.也考查了矩形和等边三角形的性质、含30度的直角三角形三边的关系以及相似三角形的判定与性质.6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有()A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质;等腰直角三角形.4387773分析:根据等腰直角三角形的性质得:AP⊥BC,AP=BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确.解答:解:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴AP⊥BC,AP=BC=PC,∠BAP=∠CAP=45°=∠C.∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA.∴△APE≌△CPF(ASA).∴①AE=CF;③EP=PF,即△EPF是等腰直角三角形;∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;④∵∠AGF=∠EGP=180°﹣∠APE﹣∠PEF=180°﹣∠APE﹣45°,∠AEP=180°﹣∠APE﹣∠EAP=180°﹣∠APE﹣45°,∴∠AEP=∠AGF.故正确的有①、③、④,共三个.因此选C.点评:此题考查全等三角形的判定和性质,综合性较强.7.如图,AM、BE是△ABC的角平分线,AM交BE于N,AL⊥BE于F交BC于L,若∠ABC=2∠C,下列结论:①BE=EC;②BF=AE+EF;③AC=BM+BL;④∠MAL=∠ABC,其中正确的结论是()A.①②③B.①④C.①②③④D.①②考点:全等三角形的判定与性质;等腰三角形的判定与性质.4387773分析:根据角平分线定义求出∠ABE=∠EBC=∠C,根据等角对等边求出BE=CE,即可判断①;证△ABE∽△ACB,推出AB2=AE×AC,求出AF2=AB2﹣BF2=AE2﹣EF2,把AB2=AE×AC代入入上式即可求出BF=AE+EF,即可判断②;延长AB到N,使BN=BM,连接MN,证△AMC≌△AMN,△AFB≌△BLF,推出AB=BL,即可判断③;设∠LAC=x°,∠LAM=y°,则∠BAM=∠MAC=(x+y)°,证△AFB≌△BLF推出∠BAF=∠BLF,∠BAF=∠BAM+∠MAL=x°+y°+y°,∠BLA=∠C+∠LAC=∠C+x°,得出方程x°+y°+y°=∠C+x°,求出∠C=2y°,∠ABC=4y°,即可判断④.解答:解:∵BE是∠ABC的角平分线,∴∠EBC=∠ABE=∠ABC,∵∠ABC=2∠C,∴∠ABE=∠EBC=∠C,∴BE=EC,∴①正确;∵∠ABE=∠ACB,∠BAC=∠EAB∴△ABE∽△ACB,∴=,∴AB2=AE×AC,在Rt△AFB与Rt△AFE中,由勾股定理得:AF2=AB2﹣BF2=AE2﹣EF2,把AB2=AE×AC代入入上式得:AE×AC﹣BF2=AE2﹣EF2,则BF2=AC×AE﹣AE2+EF2=AE×(AC﹣AE)+EF2=AE×EC+EF2=AE×BE+EF2,即(BE﹣EF)2=AE×BE+EF2,∴BE2﹣2BE×EF+EF2=AE×BE+EF2,∴BE2﹣2BE×EF=AE×BE,∴BE﹣2EF=AE,BE﹣EF=AE+EF,即BF=AE+EF,∴②正确;延长AB到N′,使BN=BM,连接MN′,则△BMN′为等腰三角形,∴∠BN′M=∠BMN′,△BN′M的一个外角∠ABC=∠BN′M+∠BM′N=2∠BN′M,则∠BN′M=∠ACB,在△AMC与△AMN′中,∴△AMC≌△AMN′(AAS),∴AN′=AC=AB+BN′=AB+BM,又∵AL⊥BE,∴∠AFB=∠LFB=90°,在△AFB与△LFB中,,∴△AFB≌△BLF(ASA),∴AB=BL,则AN′=AC=AB+BN′=AB+BM=BM+BL,即AC=BM+BL,∴③正确;设∠LAC=x°,∠LAM=y°,∵AM平分∠BAC,∴∠BAM=∠MAC=(x+y)°.∵△AFB≌△BLF,∴∠BAF=∠BLF,∵∠BAF=∠BAM+∠MAL=x°+y°+y°,∠BLA=∠C+∠LAC=∠C+x°,∴x°+y°+y°=∠C+x°,∴∠C=2y°,∵∠ABC=2∠C,∴∠ABC=4y°,即∠MAL=∠ABC,∴④正确.故选C.点评:本题考查了勾股定理,相似三角形的性质和判定,角平分线性质,相似三角形的性质和判定等知识点的综合运用.二.解答题(共8小题)8.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.考点:等腰三角形的性质;全等三角形的判定与性质.4387773专题:证明题.分析:(1)根据等腰三角形两底角相等求出∠C,再根据直角三角形两锐角互余求出∠CEG,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CEF,然后计算即可得解;(2)过点E作EH∥AB交BC于H,根据两直线平行,同位角相等可得∠ABC=∠EHC,内错角相等可得∠D=∠FEH,然后求出∠EHC=∠C,再根据等角对等边可得EC=EH,然后求出BD=EH,再利用“角角边”证明△BDF和△HEF全等,根据全等三角形对应边相等可得BF=FH,根据等腰三角形三线合一的性质可得CG=HG,即可得证.解答:(1)解:∵∠A=50°,∴∠C=(180°﹣∠A)=(180°﹣50°)=65°,∵EG⊥BC,∴∠CEG=90°﹣∠C=90°﹣65°=25°,∵∠A=50°,∠D=30°,∴∠CEF=∠A+∠D=50°+30°=80°,∴∠GEF=∠CEF﹣∠CEG=80°﹣25°=55°;(2)证明:过点E作EH∥AB交BC于H,则∠ABC=∠EHC,∠D=∠FEH,∵AB=AC,∴∠ABC=∠C,∴∠EHC=∠C,∴EC=EH,∵BD=CE,∴BD=EH,在△BDF和△HEF中,,∴△BDF≌△HEF(AAS),∴BF=FH,又∵EC=EH,EG⊥BC,∴CG=HG,∴FG=FH+HG=BF+CG.点评:本题考查了等腰三角形的性质,全等三角形的判定与性质,主要利用了等腰三角形两底角相等的性质,等角对等边的性质,(2)作辅助线构造出全等三角形是解题的关键.9.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE 的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.考点:全等三角形的判定与性质;非负数的性质:绝对值;非负数的性质:偶次方;坐标与图形性质;等腰直角三角形.4387773分析:(1)根据a=t,b=t,推出a=b即可;(2)延长AF至T,使TF=AF,连接TC,TO,证△TCF≌△AEF,推出CT=AE,∠TCF=∠AEF,再证△TCO≌△ABO,推出TO=AO,∠TOC=∠AOB,求出△TAO为等腰直角三角形即可;(3)连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,证△NTB′≌△MTH,推出TN=MT,证△NQB′≌△MQB,推出∠NB′Q=∠CBQ,求出△BQB′是等腰直角三角形即可.解答:(1)解:∵a,b满足(a﹣t)2+|b﹣t|=0(t>0).∴a﹣t=0,b﹣t=0,∴a=t,b=t,∴a=b,∵B(t,0),点C(0,t)∴OB=OC;(2)证明:延长AF至T,使TF=AF,连接TC,TO,∵F为CE中点,∴CF=EF,在△TCF和△AEF中∴△TCF≌△AEF(SAS),∴CT=AE,∠TCF=∠AEF,∴TC∥AD,∴∠TCD=∠CDA,∵AB=AE,∴TC=AB,∵AD⊥AB,OB⊥OC,∴∠COB=∠BAD=90°,∴∠ABO+∠ADO=180°,∵∠ADO+∠ADC=180°,∴∠ADC=∠ABC,∵∠TCD=∠CDA,∴∠TCD=∠ABO,在△TCO和△ABO中∴△TCO≌△ABO(SAS),∴TO=AO,∠TOC=∠AOB,∵∠AOB+∠AOC=90°,∴∠TOC+∠AOC=90°,∴△TAO为等腰直角三角形,∴∠OAF=45°;(3)解:连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,∵B和B′关于关于y轴对称,C在y轴上,∴CB=CB′,∴∠CBB′=∠CB′B,∵MH∥CN,∴∠MHB=∠CB′B,∴∠MHB=∠CBB′,∴MH=BM,∵BM=B′N,∴MH=B′N,∵MH∥CN,∴∠NB′T=∠MHT,在△NTB′和△MTH中∴△NTB′≌△MTH,∴TN=MT,又TQ⊥MN,∴MQ=NQ,∵CQ垂直平分BB′,∴BQ=B′Q,∵在∴△NQB′和△MQB中∴△NQB′≌△MQB (SSS),∴∠NB′Q=∠CBQ,而∠NB′Q+∠CB′Q=180°∴∠CBQ+∠CB′Q=180°∴∠B′CB+∠B′QB=180°,又∠B′CB=90°,∴∠B′QB=90°∴△BQB′是等腰直角三角形,∴OQ=OB=t,∴Q(0,﹣t).点评:本题考查了全等三角形的性质和判定,坐标与图形性质,等腰三角形的性质,等腰直角三角形的性质和判定,相等垂直平分线,偶次方,绝对值等知识点的综合运用.10.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形=16.OBAC(1)∠COA的值为45°;(2)求∠CAB的度数;(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.考点:全等三角形的判定与性质;坐标与图形性质.4387773分析:(1)过A作AN⊥OC于N,AM⊥OB于M,得出正方形NOMA,根据正方形性质求出∠COA=∠COB,代入求出即可;(2)求出CN=BM,证△ANC≌△AMB,推出∠NAC=∠MAB,求出∠CAB=∠NAM,即可求出答案;(3)求出∠HON=∠NMO=22.5°,延长OH至点P使PH=OH,连接MP交OA于L,求出∠HON=∠NMO=∠LMN,求出OL=ML,证△OLP≌△MLN,推出MN=OP,即可得出答案.解答:解:(1)过A作AN⊥OC于N,AM⊥OB于M,则∠ANO=∠AMO=∠COB=90°,∵A(4,4),∴AN=AM=4,∴四边形NOMA是正方形,∴∠COA=∠COB=×90°=45°.故答案为:45°;(2)∵四边形NOMA是正方形,∴AM=AN=4,OM=ON=4,∴OC×AN+OB×AM=16,∴OC+OB=8=ON+OM,即ON﹣OC=OB﹣OM,∴CN=BM,在△ANC和△AMB中,,∴△ANC≌△AMB(SAS),∴∠NAC=∠MAB,∴∠CAB=∠CAM+∠MAB=∠NAM=360°﹣90°﹣90°﹣90°=90°,即∠CAB=90°;(3)MN=2OH,证明:在Rt△OMH中,∠HON+∠NMO+∠NOM=90°,又∵∠NOM=45°,∠HON=∠NMO,∴∠HON=∠NMO=22.5°,延长OH至点P使PH=OH,连接MP交OA于L,∴OM=MP,∠OMP=2∠OMN=45°,∴∠HON=∠NMO=∠LMN,∴∠OLM=90°=∠PLO,∴OL=ML,在△OLP和△MLN中,∴△OLP≌△MLN(ASA),∴MN=OP,∵OP=2HO,∴MN=2HO.点评:本题考查了坐标与图形性质,等腰三角形的性质和判定,正方形的性质和判定,全等三角形的性质和判定等知识点的应用,题目综合性比较强,有一定的难度.11.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.考点:全等三角形的判定与性质;非负数的性质:偶次方;非负数的性质:算术平方根;坐标与图形性质;等边三角形的性质.4387773专题:探究型.分析:(1)根据二次根式以及偶次方都是非负数,两个非负数的和是0,则每个数一定同时等于0,即可求解;(2)连接OC,只要证明OC是∠AOD的角平分线即可判断AC=CD,求出∠ACD的度数即可判断位置关系;(3)延长GA至点M,使AM=OF,连接BM,由全等三角形的判定定理得出△BAM≌△BOF,△FBG≌△MBG,故可得出FG=GM=AG+OF,由此即可得出结论.解答:解:(1)根据题意得:a﹣2=0且b﹣2=0,解得:a=2,b=2,则A的坐标是(2,2);(2)AC=CD,且AC⊥CD.如图1,连接OC,CD,∵A的坐标是(2,2),∴AB=OB=2,∵△ABC是等边三角形,∴∠OBC=30°,OB=BC,∴∠BOC=∠BCO=75°,∵在直角△ABO中,∠BOA=45°,∴∠AOC=∠BOC﹣∠BOA=75°﹣45°=30°,∵△OAD是等边三角形,∴∠DOC=∠AOC=30°,即OC是∠AOD的角平分线,∴OC⊥AD,且OC平分AD,∴AC=DC,∴∠ACO=∠DCO=60°+75°=135°,∴∠ACD=360°﹣135°﹣135°=90°,∴AC⊥CD,故AC=CD,且AC⊥CD.(3)不变.延长GA至点M,使AM=OF,连接BM,∵在△BAM与△BOF中,,∴△BAM≌△BOF(SAS),∴∠ABM=∠OBF,BF=BM,∵∠OBF+∠ABG=90°﹣∠FBG=45°,∴∠MBG=45°,∵在△FBG与△MBG中,,∴△FBG≌△MBG(SAS),∴FG=GM=AG+OF,∴=1.点评:本题考查的是全等三角形的判定与性质,涉及到非负数的性质及等边三角形的性质等知识,难度适中.12.(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为2.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.考点:轴对称-最短路线问题.4387773分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P 就是所求作的位置.根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值;(2)首先在斜边AC上截取AB′=AB,连结BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.解答:解:(1)作点B关于CD的对称点E,连接AE交CD于点P此时PA+PB最小,且等于AE.作直径AC′,连接C′E.根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°,∴∠AOE=90°,∴∠C′AE=45°,又AC′为圆的直径,∴∠AEC′=90°,∴∠C′=∠C′AE=45°,∴C′E=AE=AC′=2,即AP+BP的最小值是2.故答案为:2;(2)如图,在斜边AC上截取AB′=AB,连结BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.(点到直线的距离最短)在Rt△AFB′中,∵∠BAC=45°,AB′=AB=10,∴B′F=AB′•sin45°=AB•sin45°=10×=5,∴BE+EF的最小值为.点评:此题主要考查了利用轴对称求最短路径问题以及锐角三角函数关系等知识,根据已知得出对应点P位置是解题关键.13.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE 的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.考点:圆的综合题;轴对称-最短路线问题.4387773专题:压轴题.分析:(1)观察发现:利用作法得到CE的长为BP+PE的最小值;由AB=2,点E是AB的中点,根据等边三角形的性质得到CE⊥AB,∠BCE=∠BCA=30°,BE=1,再根据含30度的直角三角形三边的关系得CE=;(2)实践运用:过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,根据垂径定理得到CD平分BE,即点E与点B关于CD对称,则AE的长就是BP+AP的最小值;由于的度数为60°,点B是的中点得到∠BOC=30°,∠AOC=60°,所以∠AOE=60°+30°=90°,于是可判断△OAE为等腰直角三角形,则AE=OA=;(3)拓展延伸:分别作出点P关于AB和BC的对称点E和F,然后连结EF,EF交AB于M、交BC于N.解答:解:(1)观察发现如图(2),CE的长为BP+PE的最小值,∵在等边三角形ABC中,AB=2,点E是AB的中点∴CE⊥AB,∠BCE=∠BCA=30°,BE=1,∴CE=BE=;故答案为;(2)实践运用如图(3),过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,∵BE⊥CD,∴CD平分BE,即点E与点B关于CD对称,∵的度数为60°,点B是的中点,∴∠BOC=30°,∠AOC=60°,∴∠EOC=30°,∴∠AOE=60°+30°=90°,∵OA=OE=1,∴AE=OA=,∵AE的长就是BP+AP的最小值.故答案为;(3)拓展延伸如图(4).点评:本题考查了圆的综合题:弧、弦和圆心角之间的关系以及圆周角定理在有关圆的几何证明中经常用到,同时熟练掌握等边三角形的性质以及轴对称﹣最短路径问题.14.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是DE=BC;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.考点:全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.4387773分析:(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,DE=BC;(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”可判断△DCP≌△DBF,则CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;(3)与(2)的证明方法一样得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,则BF﹣BP=BC,所以BF﹣BP=DE.解答:解:(1)∵∠ACB=90°,∠A=30°,∴∠B=60°,∵点D是AB的中点,∴DB=DC,∴△DCB为等边三角形,∵DE⊥BC,∴DE=BC;故答案为DE=BC.(2)BF+BP=DE.理由如下:∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,而∠CDB=60°,∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,∴∠CDP=∠BDF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,而CP=BC﹣BP,∴BF+BP=BC,∵DE=BC,∴BC=DE,∴BF+BP=DE;(3)如图,与(2)一样可证明△DCP≌△DBF,∴CP=BF,而CP=BC+BP,∴BF﹣BP=BC,∴BF﹣BP=DE.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系.15.(2013•东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.考点:全等三角形的判定与性质;等边三角形的判定.4387773专题:压轴题.分析:(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)与前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.解答:证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.。