实际问题与一元二次方程解应用题(4)
- 格式:ppt
- 大小:218.00 KB
- 文档页数:12
实际问题与一元二次方程-(含答案)实际问题与一元二次方程列一元二次方程解应用题与列一元一次方程解应用题类似。
都是根据问题中的相等关系列出方程,解方程,并能根据具体问题的实际意义检验结果的合理性,进一步提高分析问题、解决问题的意识和能力。
在利用一元二次方程解决实际问题时,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性。
主要研究下列两个内容:1.列一元二次方程解决实际问题。
一般情况下,列方程解决实际问题的一般步骤为:审、设、列、解、验、答六个步骤。
找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。
2.一元二次方程根与系数的关系。
一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。
知识链接点击一:列方程解决实际问题的一般步骤应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力。
列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程。
概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案。
一般情况下列方程解决实际问题的一般步骤如下:1) 审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系。
2) 设:是在理清题意的前提下,进行未知量的假设(分直接与间接)。
3) 列:是指列方程,根据等量关系列出方程。
4) 解:就是解所列方程,求出未知量的值。
5) 验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去。
6) 答:即写出答案,不要忘记单位名称。
总之,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。
点击二:一元二次方程根与系数的关系一元二次方程根与系数的关系。
一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。
苏版初三数学课时练习:21相互问题(循环、握手、互赠礼品等)一、列一元二次方程解应用题的一样步骤:与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一样步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。
(1)设:设未知数,有直截了当和间接两种设法,因题而异;(2)找:找出等量关系;(3)列:列出一元二次方程;(4)解:求出所列方程的解;(5)验:检验方程的解是否正确,是否符合题意;(6)答:作答。
二、典型题型1n(n-1),双循环问题n(n-1) 循环问题:又可分为单循环问题2例题1、参加足球联赛的每两队之间都要进行两场竞赛,共要竞赛132场,共有多少个球队参加竞赛?【分析】设共有x个队参加竞赛,依照每两队之间都进行两场竞赛结合共比了90场即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设共有x个队参加竞赛,依照题意得:2×x(x﹣1)=132,整理得:x2﹣x﹣132=0,解得:x=12或x=﹣11(舍去).故共有12个队参加竞赛.【点评】本题考查了一元二次方程的应用,依照每两队之间都进行两场竞赛结合共比了132场列出关于x的一元一次方程是解题的关键.例题2、我们都明白连接多边形任意不相邻的两点的线段成为多边形的对角线,也都明白四边形的对角线有2条,五边形的对角线有5条(1)六边形的对角线有条,七边形的对角线有条;(2)多边形的对角线能够共有20条吗?假如能够,求出多边形的边数,假如不能够,请说明理由.【分析】(1)依照n边形的对角线有条,将n=6和n=7分别代入运算即可;(2)依照多边形的对角线有20条列出方程,解方程即可求解.【解答】解:(1)六边形的对角线有=9条,七边形的对角线有=14条.故答案为9,14;(2)设此多边形的边数为n,由题意得=20,整理,得n2﹣3n﹣40=0.解得n1=8,n2=﹣5(不合题意舍去).答:八边形的对角线能够共有20条.【点评】本题考查了一元二次方程的应用.把握n边形的对角线有条是解题的关键.三、综合练习一.选择题(共15小题)1.在一次酒会上,每两人都只碰一次杯,假如一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人2.某中学组织初三学生篮球竞赛,以班为单位,每两班之间都竞赛一场,打算安排15场竞赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.73.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送2070张照片.假如全班各有x名同学,依照题意,列出方程为()A.x(x﹣1)=2070 B.x(x﹣1)=2070×2 C.x(x+1)=2070D.2x(x+1)=20704.在一次小型会议上,参加会议的代表每人握手一次,共握手36次,则参加这次会议的人数是()A.12人B.18人C.9人D.10人5.新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺年卡,则全组送贺卡共72张,此小组人数为()A.7 B.8 C.9 D.106.要组织一次足球邀请赛,参赛的每两个队之间都要竞赛一场.打算安排28场竞赛,应邀请多少个队参赛()A.6 B.7 C.8 D.97.参加一次聚会的每两个都握了一次手,所有人共握手6次,则参加聚会的人数是()A.3人B.4人C.5人D.6人8.今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到90个红包,则该群一共有()A.9人B.10人C.11人D.12人9.从n边形的一个顶点动身,能够作(n﹣3)条对角线,若一个多边形共有35条对角线,则该多边形的边数是()A.13 B.10 C.8 D.710.某航空公司有若干个飞机场,每两个飞机场之间都开创一条航线,一共开创了10条航线,则那个航空公司共有飞机场()A.4个B.5个C.6个D.7个11.毕业典礼后,九年级(1)班有若干人,若每人给全班的其他成员赠送一张毕业纪念卡,则全班送贺卡共1190张,九年级(1)班人数为()A.34 B.35 C.36 D.3712.某次商品交易会上,所有参加会议的商家之间都签订了一份合同,共签订合同36份,参加交易会的商家有()A.3 B.6 C.9 D.1213.参加一次足球联赛的每两个队之间都进行两场竞赛,共要竞赛11 0场,共有()个队参加竞赛?A.8 B.9 C.10 D.1114.“五一”节老同学聚会,每两个人都握一次手,所有人共握手28次,则参加聚会的人数是()A.7 B.8 C.9 D.1015.学校组织一次乒乓球赛,要求每两队之间都要赛一场.若共赛了1 5场,则有几个球队参赛?设有x个球队参赛,则下列方程中正确的是()A.x(x+1)=15 B.C.x(x﹣1)=15D.三.解答题(共3小题)16.某市要组织一次排球邀请赛,参赛的每两个队之间都要竞赛一场.依照场地和时刻等条件,赛程打算安排7天,每天安排4场竞赛,竞赛组织者应邀请多少个队参赛?17.2021年12月6日,我县举行了2021年商品订货交流会,参加会议的每两家公司之间都签订一份合同,所有参会公司共签订了28份合同,共有多少家公司参加了这次会议?18.构建模型:生活中的实际问题,往往需要构建相应的数学模型来解决,这确实是模型的思想.譬如:某校要举办足球赛,若有5个球队参加竞赛,每个队都要和其他各队竞赛一场,则该校一共要安排多少场竞赛?为解决上述问题,我们构建如下数学模型:(1)如图①,在平面内画出5个点(任意3个点都不共线),其中每个点各代表一个足球队,两个队之间竞赛一场就用一条线段把他们连接起来,其中连接线段的条数确实是安排竞赛的场数.由于每个队都要与其他各队竞赛一场,即每个点与另外4个点都可连成一条线段,如此总共可连成线段是5×4条,假如不考虑线段端点的顺序,那么连成线段只有条,因此该校一共要安排=10场竞赛.(2)依照图②回答:若学校有6个足球队参加竞赛,则该校一共要安排场竞赛;(3)依照以上规律,若学校有n个足球队参加竞赛,则该校一共要安排场竞赛;问题解决:(4)小凡今年参加了学校新组建的合唱队,老师让所有人每两人相互握手,认识彼此(每两人之间不重复握手),小凡发觉所有人握手次数总和为36次,求合唱队有多少人?(写出求解过程)参考答案一.选择题(共15小题)1.C.2.C.3.A.4.C.5.C.6.C.7.B.8.B.9.B.10.B.11.B.12.C.13.D.14.B.15.D.二.解答题(共3小题)16.解:∵赛程打算安排7天,每天安排4场竞赛,∴共7×4=28场竞赛.设竞赛组织者应邀请x队参赛,则由题意可列方程为:=28.解得:x1=8,x2=﹣7(舍去),答:竞赛组织者应邀请8队参赛.17.解:设共有x家公司参加了这次会议,依照题意,得整理,得x2﹣x﹣56=0解得x1=8,x2=﹣7(不合题意,舍去)答:共有8家公司参加了这次会议.18.解:(2)有6个班级的足球队参加竞赛,学校一共要安排竞赛的场数是:=15,故答案为:15;(3)n个班级的足球队参加竞赛,学校一共要安排场竞赛,故答案为:;(4)设合唱队有x人,则=36,整理得,x2﹣x﹣72=0,解得,x1=9,x2=﹣8(舍去)答:合唱队有9人.。
21.3实际问题与一元二次方程传播问题一、列一元二次方程解应用题的一般步骤:与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。
(1)设:设未知数,有直接和间接两种设法,因题而异;(2)找:找出等量关系;(3)列:列出一元二次方程;(4)解:求出所列方程的解;(5)验:检验方程的解是否正确,是否符合题意;(6)答:作答。
二、典型题型传播问题:公式:(a+x)n=M 其中a为传染源(一般a=1),n为传染轮数,M为最后得病总人数。
例题1、(2018•中山市一模)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?【分析】等量关系为:主干1+支干数目+支干数目×支干数目=91,把相关数值代入计算即可.【解答】解:设每个支干长出x小分支,则1+x+x2=91,解得:x1=9,x2=﹣10,答:每个支干长出9小分支.【点评】考查一元二次方程的应用,得到总数91的等量关系是解决本题的关键.例题2、某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂成若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂成多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?(1)设每轮分裂中平均每个有益菌可分裂成x个有益菌,则第一轮分裂后有60(1+x)【分析】个,第二轮分裂成60(1+x)2个,第二轮后有24000个,建立方程求出其解就可以;(2)根据(1)的结论,就可以得出第三轮共有60(1+x)3个有益菌,将x的值代入就可以得出结论.【解答】解:(1)设每轮分裂中平均每个有益菌可分裂成x个有益菌,由题意,得60(1+x)2=24000,解得x1=19,x2=﹣21,∵x>0,∴x=19.答:每轮分裂中平均每个有益菌可分裂成19个有益菌.(2)由题意,得60×(1+19)3=480000个.答:经过三轮培植后有480000个有益菌.【点评】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时分别表示出每轮分解后的总数是关键.三、综合练习一.选择题(共15小题)1.(2018春•利津县期末)有一人患流感,经过两轮传染后,共有121人患上了流感,那么每轮传染中,平均一个人传染的人数为()A.8人B.9人C.10人D.11人2.(2017•迁安市一模)小明在解决一个关于计算机病毒传播的问题时,设计算机有x台,列方程3+x+x(x+3)=48,则方程的解中一定不合题意的是()A.5B.9C.﹣5D.﹣93.(2017秋•江岸区期中)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的分支,主干,分支和小分支的总数是57,则每个支干长出()根小分支.A.5根B.6根C.7根D.8根4.(2017秋•北碚区月考)中秋节当天,小明将收到的一条短信,发送给若干人,每个收到短信的人又给相同数量的人转发了这条短信,此时包括小明在内收到这条短信的人共有111人,问小明给()人发了短信?A.10B.11 C.12D.135.(2017秋•江岸区校级月考)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支.主干、支干和小分支的总数是13,则每个支干长出()A.2根小分支B.3根小分支C.4根小分支D.5根小分支6.(2017秋•新市区校级月考)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是31,每个支干长出小分支的数量是()A.5B.6C.5 或6D.77.(2017秋•青山区期中)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的分支,主干、支干和小分支的总数是21,则每个支干长出()A.5根小分支B.4根小分支C.3根小分支D.2根小分支8.(2017秋•卫辉市期中)今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到90个红包,则该群一共有()A.9人B.10人C.11人D.12人9.(2017秋•黄陂区月考)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是73,则每个支干长出的小分支数是()A.7个B.8个C.9个D.10个10.(2015秋•东平县期末)元旦当天,小明将收到的一条短信,发送给若干人,每个收到短信的人又给相同数量的人转发了这条短信,此时收到这条短信的人共有157人,问小明给()人发了短信?A.10B.11C.12D.1311.(2015秋•武汉期末)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A.2根小分支B.3根小分支C.4根小分支D.5根小分支12.(2016秋•江都区期中)有一人患了流感,经过两轮传染后共有64人患了流感.则每轮传染中平均一个人传染了几个人?()A.5人B.6人C.7人D.8人13.(2016秋•西陵区校级期中)某种电脑病毒传播的非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若病毒得不到有效控制,三轮感染后,被感染的电脑有()台.A.81B.648C.700D.72914.(2016秋•保亭县校级月考)有一人患了红眼病,经过两轮传染后共有144人患了红眼病,那每轮传染中平均一个人传染的人数为()人.A.10B.11C.12D.1315.(2015•东西湖区校级模拟)卫生部门为了控制前段时间红眼病的流行传染,对该种传染病进行研究发现,若一人患了该病,经过两轮传染后共有121人患了该病.若按这样的传染速度,第三轮传染后我们统计发现有2662人患了该病,则最开始有()人患了该病.A.1B.2C.3D.4二.填空题(共5小题)16.(2017秋•乌鲁木齐期末)有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了人.17.(2017秋•武昌区期中)某种植物主干长出若干数目的枝干,每个分支又长出同样数目的小分支,主干、枝干、小分支的总数是91,每个枝干长出小分支.18.(2017秋•鼓楼区校级期中)秋冬季节为流感病毒的高发期,若一个人患了流感,经过两轮传染后共有144人患流感,则每轮传染中平均一个人传染个人.19.(2017秋•华安县校级月考)某人用手机发短信,获得信息人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信中,平均一个人向个人发送短信.20.(2017秋•龙潭区校级月考)一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57,每个支干长出个小分支.三.解答题(共3小题)21.(2018•潮南区一模)甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?22.(2017秋•越秀区期末)有一个人患了流感,经过两轮传染后共有81人患了流感.(1)试求每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人会患流感?23.(2017秋•乐昌市期末)2015年某市曾爆发登革热疫情,登革热是一种传染性病毒,在病毒传播中,若1个人患病,則经过两轮传染就共有144人患病.(1)毎轮传染中平均一个人传染了几个人?(2)若病毒得不到有效控制,按照这样的传染速度,三轮传染后,患病的人数共有多少人?参考答案一.选择题(共15小题)1.C.2.D.3.C.4.A.5.B.6.A.7.B.8.B.9.B.10.C.11.B.12.C.13.D.14.B.15.B.二.填空题(共5小题)16.12.17.9.18.11.19.9.20.7.三.解答题(共3小题)21.设每天传染中平均一个人传染了x个人,1+x+x(x+1)=9,x=2或x=﹣4(舍去).每天传染中平均一个人传染了2个人,9+18=27,27+27×2=81,81+81×2=243,243+243×2=729,729+729×2=2187.故5天后共有2187人得病.22.解:(1)设每轮传染中平均一个人传染x个人,根据题意得:1+x+x(x+1)=81,整理,得:x2+2x﹣80=0,解得:x1=8,x2=﹣10(不合题意,舍去).答:每轮传染中平均一个人传染8个人.(2)81+81×8=729(人).答:经过三轮传染后共有729人会患流感.23.解:(1)设每轮传染中平均一个人传染了x人,由题意,得1+x+x(x+1)=144,解得x=11或x=﹣13(舍去).答:每轮传染中平均一个人传染了11个人;(2)144+144×11=1728(人).答:三轮传染后,患病的人数共有1728人.。
人教版九年级上册数学课堂作业同步期中复习:一元二次方程应用题(四)31.从5月份开始,水蜜桃和夏橙两种水果开始上市,根据市场调查,水蜜桃售价为20元/千克,夏橙售价为15元/千克.(1)某水果商城抓住商机,开始销售这两种水果.若第一周水蜜桃的平均销量比夏橙的平均销量多100千克,要使该水果商城第一周销售这两周水果的总销售额不低于9000元,则第一周至少销售水蜜桃多少千克?(2)若该水果商城第一周按照(1)中水蜜桃和夏橙的最低销量销售这两种水果,并决定第二周继续销售这两种水果.第二周水蜜桃售价降低了,销量比第一周增加了2a%,夏橙的售价保持不变,销量比第一周增加了a%.结果两种水果第二周的总销售额比第一周增加了,求a的值.32.巴蜀中学在厦天到来之际,很多学生需要更换夏季校服,欲购买校服T恤.男生的T恤每件价格50元,女生的T恤每件价格45元,第一批共购买600件.(1)第一批购买的校服的总费用不超过28000元,求女生T恤最少购买多少件?(2)箅二批购买校服,男女生购买校服的件数比为3:2,价格保持第一批的价格不变;第三批购买男生的价格在第一批购买的价格上每件减少了元,女生的价格比第一批购买的价格上每件增加了元,男生T恤的数量比第二批增加了m%,女生T恤的数量比第二批减少了m%,第二批与第三批购买校服的总费用相同,求m的值.33.手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.(1)一月份该公司投入市场的自行车至少有多少辆?(2)二月份的损坏率为20%•进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为,三月底可使用的自行车达到7752辆,求a的值.34.中秋节前夕,某公司的李会计受公司委派去超市购买若干盒美心月饼,超市给出了该种月饼不同购买数量的价格优惠,如图,折线ABCD表示购买这种月饼每盒的价格y(元)与盒数x(盒)之间的函数关系.(1)当购买这种月饼盒数不超过10盒时,一盒月饼的价格为 元;(2)求出当10<x<25时,y与x之间的函数关系式;(3)当时李会计支付了3600元购买这种月饼,那么李会计买了多少盒这种月饼?35.“谁言寸草心,报得三春晖”,每年5月的第二个星期日为母亲节,某礼品商城经营A、B两种母亲节礼盒,礼盒A售价为每份200元,礼盒B售价为每份150元.(1)已知礼盒A的进价为120元,礼盒B的进价为100元,该礼品盒商城五月份第一周准备购进两种礼盒共200份,若将两种礼盒全部销售,要使总利润不低于13600元,求最多购进礼盒B多少份?(2)为了获得更多利润,根据销售情况和市场分析,该礼品商城第二周决定将礼盒A的售价下调%,礼盒B的售价保持不变,结果与(1)中获得最低利润时的销售量相比,礼盒A的销售量增加了2a%,而礼盒B的销售量增加了a%,最终第二周的销售额比第一周的销售额增加了a%,求a的值.36.4月份,重庆市果桑(俗称桑泡儿)将进入采摘期,预计持续1个月左右,届时全市25个成规模的果桑采摘园将陆续开园迎客,某区有一果园占地250亩,育有56个品种的果桑,其中台湾超长果桑因果形奇特、口感佳而大面积种植,售价30/斤,其它各个品种售价均为20元/斤(1)清明节当天,该果园一共售出500斤果桑,其中售出其它品种的果桑总重量不超过售出台湾超长果桑重量的3倍,问至少售出台湾超长果桑多少斤?(2)为了提高台湾超长果桑的知名度,商家对台湾超长果桑进行广告宣传,4月14日售出其它品种的果桑总重量是售出台湾超长果桑重量的2倍.4月15日起果园推出优惠政策,台湾超长果桑每斤降价a%,其余品种果桑价格保持不变,当日售后统计台湾超长果桑销售数量在前一日的基础之上增加了2a%,其余果桑销售数量在前一日基础之上减少了a%,若当日总销售额与前一日总销售额持平,求a的值.37.如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为18m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.38.某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年投入资金2880万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?39.长沙市市政绿化工程中有一块面积为160m2的矩形空地,已知该矩形空地的长比宽多6m.(1)请算出该矩形空地的长与宽;(2)规划要求在矩形空地的中间留有两条互相垂直且宽度均为1m的人行甬道(其中两条人行甬道分别平行于矩形空地的长和宽),其余部分种上草.如果人行甬道的造价为260元/m2,种草区域的造价为220元/m2,那么这项工程的总造价为多少元?40.2016年5月29日,中超十一轮,重庆力帆将主场迎战河北华夏幸福,重庆“铁血巴渝”球迷协会将继续组织铁杆球迷到现场为重庆力帆加油助威.“铁血巴渝”球迷协会计划购买甲、乙两种球票共500张,并且甲票的数量不少于乙票的3倍.(1)求“铁血巴渝”球迷协会至少购买多少张甲票;(2)“铁血巴渝”球迷协会从售票处得知,售票处将给予球迷协会一定的优惠,本场比赛球票以统一价格(m+20)元出售给该协会,因此协会决定购买的票数将在原计划的基础上增加(m+10)%,购票后总共用去56000元,求m的值.参考答案31.解:(1)设第一周夏橙销售量为x千克.则水蜜桃销售量为(x+100)千克,根据题意得:20(x+100)+15x≥9000,解得:x≥200,∴x+100≥300.答:第一周至少销售水蜜桃300千克.(2)根据题意得:20(1﹣a%)×300(1+2a%)+15×200(1+a%)=9000(1+ a%),令t=a%,原方程整理为5t2﹣t=0,解得:t1=,t2=0,∴a1=20,a2=0(舍去).答:a的值为20.32.解:(1)设购买女生T恤x件,则购买男生T恤(600﹣x)件,根据题意得:45x+50(600﹣x)≤28000,解得:x≥400.答:女生T恤最少购买400件.(2)设第二批购进女生T恤2y件,则购进男生T恤3y件,根据题意得:45×2y+50×3y=(45+m)×2y(1﹣m%)+(50﹣m)×3y (1+m%),整理得:m2﹣50m=0,解得:m1=0(舍去),m2=50.答:m的值为50.33.解:(1)设一月份该公司投入市场的自行车x辆,x﹣(7500﹣1200)≥10%x,解得,x≥7000,答:一月份该公司投入市场的自行车至少有7000辆;(2)由题意可得,[7500×(1﹣20%)+1200(1+4a%)](1﹣a%)=7752,化简,得a2﹣250a+4600=0,解得:a1=230,a2=20,∵a%<20%,解得,a<80,∴a=20,答:a的值是20.34.解:(1)∵当0≤x≤10时,y=240.故答案为:240.(2)当10<x<25时,设y=kx+b(其中k、b为常数且k≠0),将B(10,240)、C(25,150)代入y=kx+b中,得:,解得:,∴当10<x<25时,y=﹣6x+300.(3)∵3600÷240=15(盒),3600÷150=24(盒),∴收费标准在BC段.根据题意得:(﹣6x+300)x=3600,解得:x1=20,x2=30(不合题意,舍去).答:李会计买了20盒这种月饼.35.解:(1)设购进礼盒Bx份,则购进礼盒A(200﹣x)份,根据题意得:(200﹣120)(200﹣x)+(150﹣100)x≥13600,解得:x≤80.答:最多购进礼盒B80份.(2)根据题意得:200(1﹣a%)(200﹣80)(1+2a%)+150×80(1+a%)=[200×(200﹣80)+150×80]×(1+a%),令m=a%,则原方程整理得:5m2﹣2m=0,解得:m1=0,m2=,∴a1=0(不合题意,舍去),a2=40.答:a的值为40.36.解:(1)设售出台湾超长果桑x斤,则其它品种售出(500﹣x)斤,根据题意得:500﹣x≤3x,解得:x≥125.答:至少售出台湾超长果桑125斤.(2)设4月14日售出的台湾超长果桑y斤,则售出其它品种果桑2y斤,根据题意得:30(1﹣a%)y(1+2a%)+20×2y(1﹣a%)=30y+20×2y,令a%为m,则原方程整理得:4m2﹣m=0,解得:m1=0,m2=,∴a1=0(不合题意,舍去),a2=25.答:a的值为25.37.解:(1)设AB=x,则BC=38﹣2x;根据题意列方程的,x(38﹣2x)=180,解得x1=10,x2=9;当x=10,38﹣2x=18(米),当x=9,38﹣2x=20(米),而墙长18m,不合题意舍去,答:若围成的面积为180m2,自行车车棚的长和宽分别为18米,10米;(2)根据题意列方程的,x(38﹣2x)=200,整理得出:x2﹣19x+100=0;△=b2﹣4ac=361﹣400=﹣39<0,故此方程没有实数根,答:因此如果墙长18m,满足条件的花园面积不能达到200m2.38.解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意得:1280(1+x)2=2880解得:x1=,x2=﹣(不合题意,应舍去),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意得:1000×8×400+(a﹣1000)×5×400≥5000000解得:a≥1900答:今年该地至少有1900户享受到优先搬迁租房奖励.39.解:(1)设该矩形空地的长为x m,则宽为(x﹣6)m,由题意可得:x(x﹣6)=160.化简得:x2﹣6x﹣160=0,解得x1=16,x2=﹣10(不合题意,舍去)当x=16时,x﹣6=16﹣6=10(m).答:该矩形空地的长为16 m,宽为10 m;(2)由题意可得:(16﹣1)(10﹣1)=135(m2),160﹣135=25(m2),135×220+25×260=29700+6500=36200(元),答:这项工程的总造价为36200元.40.解:(1)设:购买甲票x张,则购买乙票(500﹣x)张.由条件得:x≥3(500﹣x)∴x≥375,故:“铁血巴渝”球迷协会至少购买375张甲票.(2)由条件得:500[1+(m+10)%](m+20)=56000∴m2+130m﹣9000=0∴m1=50,m2=﹣180<0(舍)故:m的值为50.。
《一元二次方程》实际应用题专项练习(四)1.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.2.如图所示,A、B、C、D是矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止,点Q以2cm/s的速度向点D移动(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P,Q两点从出发开始到几秒时,点P和点Q的距离第一次是10cm?3.已知在数轴上有A,B两点,点A表示的数为4,点B在A点的左边,且AB=12.若有一动点P从数轴上点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)写出数轴上点B表示的数为,P所表示的数为(用含t的代数式表示);(2)若点P,Q分别从A,B两点同时出发,问点P运动多少秒与Q相距3个单位长度?(3)若点P,Q分别从A,B两点同时出发,分别以BQ和AP为边,在数轴上方作正方形BQCD和正方形APEF如图2所示.求当t为何值时,两个正方形的重叠部分面积是正方形APEF面积的一半?请直接写出结论:t=秒.4.一家水果店以每千克2元的价格购进某种水果若干千克,然后以每千克4元的价格出售,每天可售出100千克,通过调查发现,这种水果每千克的售价每降低1元,每天可多售出200千克.(1)若将这种水果每千克的售价降低x元,则每天销售量是多少千克?(结果用含x的代数式表示)(2)若想每天盈利300元,且保证每天至少售出260千克,那么水果店需将每千克的售价降低多少元?5.今年我国发生了较为严重的新冠肺炎疫情,口罩供不应求,某商店恰好年前新进了一批口罩,若按每个盈利1元销售,每天可售出200个,如果每个口罩的售价上涨0.5元,则销售量就减少10个,问应将每个口罩涨价多少元时,才能让顾客得到实惠的同时每天利润为480元?6.阅读下面内容,并按要求解决问题:问题:“在平面内,已知分别有2个点,3个点,4个点,5个点,…,n 个点,其中任意三个点都不在同一条直线上.经过每两点画一条直线,它们可以分别画多少条直线?”探究:为了解决这个问题,希望小组的同学们设计了如表格进行探究:(为了方便研究问题,图中每条线段表示过线段两端点的一条直线) 点数 2345… n示意图…直线条数 1 2+1=3+2+1=4+3+2+1=…请解答下列问题:(1)请帮助希望小组归纳,并直接写出结论:当平面内有n 个点时,直线条数为 ; (2)若某同学按照本题中的方法,共画了28条直线,求该平面内有多少个已知点?7.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已经成为国内外游客最喜欢的旅游目的地城市之一,在著名“网红打卡地”磁器口,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经过测算知,该小面成本为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天可多售30碗.(1)若该小面店每天至少卖出360碗,则每碗小面的售价不超过多少元?(2)为了更好的维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元.8.在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A 1、A 2、A 3…A 48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x 与通电话次数y 之间的关系用如图模型表示:(1)填写上图中第四个图中y 的值为 ,第五个图中y 的值为 . (2)通过探索发现,通电话次数y 与该班级人数x 之间的关系式为 ,当x =48时,对应的y=.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?9.幸福水果店计划用12元/盒的进价购进一款水果礼盒以备销售.(1)据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?(2)在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了m%,月销量比(1)中最低月销量800盒增加了m%,结果该月水果店销售该水果礼盒的利润达到了4000元,求m的值.10.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?参考答案1.解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.2.解:当运动时间为t秒时,PB=(16﹣3t)cm,CQ=2tcm.(1)依题意,得:×(16﹣3t+2t)×6=33,解得:t=5.答:P,Q两点从出发开始到5秒时,四边形PBCQ的面积为33cm2.(2)过点Q作QM⊥AB于点M,如图所示.∵PM=PB﹣CQ=|16﹣5t|cm,QM=6cm,∴PQ2=PM2+QM2,即102=(16﹣5t)2+62,解得:t1=,t2=(不合题意,舍去).答:P,Q两点从出发开始到秒时,点P和点Q的距离第一次是10cm.3.解:(1)因为点B在点A的左边,AB=12,点A表示4,则点B表示的数为4﹣12=﹣8;动点P从数轴上点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,则点表示的数为4﹣t;故答案为:﹣8;4﹣t.(2)依题意得,点P表示的数为4﹣t,点Q表示的数为﹣8+2t,①若点P在点Q右侧时:(4﹣t)﹣(﹣8+2t)=3,解得:t=3②若点P在点Q左侧时:(﹣8+2t)﹣(4﹣t)=3,解得:t=5 综上所述,点P运动3秒或5秒时与Q相距3个单位长度(3)①如图1,P、Q均在线段AB上∵两正方形有重叠部分∴点P在点Q的左侧,PQ=(﹣8+2t)﹣(4﹣t)=3t﹣12∵PE=AP=4﹣(4﹣t)=t∴重叠部分面积S=PQ•PE=(3t﹣12)•t∵重叠部分的面积为正方形APEF面积的一半,∴,解得:t1=0(舍去),t2=4.8.②如图2,P、Q均在线段AB外∴AB=12,AF=AP=t,∴重叠部分面积S=AB•AF=12t ∴,解得:t1=0(舍去),t2=24.故答案为:4.8或24.4.解:(1)每天的销售量是100+×20=100+200x(千克).故每天销售量是(100+200x)千克;(2)设这种水果每斤售价降低x元,根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x1=0.5,x2=1,当x=0.5时,销售量是100+200×0.5=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:水果店需将每千克的售价降低1元.5.解:设应将每个口罩涨价x元,则每天可售出(200﹣10×)件,依题意,得:(1+x)(200﹣10×)=480,化简,得:x2﹣9x+14=0,解得:x1=2,x2=7.又∵要让顾客得到实惠,∴x=2.答:应将每个口罩涨价2元时,才能让顾客得到实惠的同时每天利润为480元.6.解:(1)由表格数据的规律可得:当平面内有n个点时,直线条数为:故答案为:.(2)设该平面内有 x 个已知点. 由题意,得=28解得x 1=8,x 2=﹣7(舍) 答:该平面内有8个已知点. 7.解:(1)设每碗小面的售价为x 元, 依题意,得:300+30(25﹣x )≥360, 解得:x ≤23.答:每碗小面的售价不超过23元.(2)设每碗售价定为y 元时,店家才能实现每天利润6300元, 依题意,得:(y ﹣6)[300+30(25﹣y )]=6300, 整理,得:y 2﹣41y +420=0, 解得:y 1=20,y 2=21.∵店家规定每碗售价不得超过20元, ∴y =20.答:当每碗售价定为20元时,店家才能实现每天利润6300元.8.解:(1)观察图形,可知:第四个图中y 的值为10,第五个图中y 的值为15. 故答案为:10;15. (2)∵1=,3=,6=,10=,15=,∴y =,当x =48时,y ==1128.故答案为:y =;1128.(3)依题意,得:=190, 化简,得:x 2﹣x ﹣380=0,解得:x 1=20,x 2=﹣19(不合题意,舍去). 答:该班共有20名女生.9.解:(1)设每盒售价应为x 元, 依题意,得:980﹣30(x ﹣14)≥800, 解得:x ≤20.答:每盒售价应不高于20元. (2)依题意,得:[20(1﹣m %)﹣12×(1+25%)]×800(1+m %)=4000,整理,得:m 2﹣25m =0,解得:m 1=25,m 2=0(不合题意,舍去). 答:m 的值为25.10.解:(1)设口罩日产量的月平均增长率为x ,根据题意,得 20000(1+x )2=24200解得x 1=﹣2.1(舍去),x 2=0.1=10%, 答:口罩日产量的月平均增长率为10%. (2)24200(1+0.1)=26620(个). 答:预计4月份平均日产量为26620个.。