列一元二次方程解应用题的一般步骤
- 格式:doc
- 大小:22.00 KB
- 文档页数:2
用一元二次方程解决问题【知识要点】1. 列方程解应用题的一般步骤:(1)审题。
了解问题的实际意义,分清已知条件和未知量之间的关系。
(2)设未知数。
一般情况下求什么设什么为未知数。
(3)列方程。
根据量与量之间的关系,找出相等关系,列出方程。
(4)解方程。
灵活运用一元二次方程的四种解法。
(5)验根。
检验一元二次方程的根是否满足题意。
(6)答。
作答。
2. 一元二次方程应用题常见题类型: (1)数字问题。
(2)与面积有关的几何问题。
(3)平均变化率问题。
(4)经营问题。
(5)行程为题。
(6)工程问题。
【经典例题】1、平均变化率问题:平均变化率问题的公式A=a (1+x )na 为变化前的基数,x 为变化率(增长时x>0,减小时x<0),n 为变化次数,A 为变化后的量。
例1:某商店的一款诺基亚手机连续两次降价,售价由原来的1199元降到了899元,设平均每次降价的百分率为x ,则列方程正确的是( )A 、1199)1(8992=-x ;B 、899)1(11992=+x ;C 、1199)1(8992=+x ;D 、899)1(11992=-x 类题练习:1.某商场一月份的营业额为400万元,第一季度营业总额为1600万元,若平均每月增长率为x ,则列方程为( )A 、1600)1(4002=+x ;B 、16004004004002=++x x ; C 、[]1600)1()1(14002=++++x x ; D 、1600)21(400=++x x2.2009年一月份越南发生禽流感的养鸡场100家,后来二、•三月份发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出的方程是( ). A .100(1+x )2=250 B .100(1+x )+100(1+x )2=250 C .100(1-x )2=250 D .100(1+x )22、数字问题:多位数问题在设时,通常设某数位上的数字.若一两位数,十位数字是a,个位数字是b,该两位数可表示为10a+b.不能写成ab 的形式。
一、列一元二次方程解应用题的步骤(1)应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力,列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程.概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案.(2)一般情况下列方程解决实际问题的一般步骤如下:①审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系.(与一次方程思路相似)②设:是在理清题意的前提下,进行未知量的假设(分直接与间接).③列:是指列方程,根据等量关系列出方程.④解:就是解所列方程,求出未知量的值.⑤验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去.⑥答:即写出答案,不要忘记单位名称.二、常见应用题类型(1)数字问题解有关数字问题的应用题,首先要能正确地表示诸如多位数、奇偶数,连续的整数的形式,如一个三位数可表示为100a+10b+c,连续三个偶数可表示为2n-2,2n,2n+2(n为整数) 等,其次解这类问题的关键是正确而巧妙地设出未知量,一般采用间接设元法,如有关奇数个连续数问题,一般设中间一个数为x,再用含x的代数式表示其他数,又如多位数问题,一般设这个多位数的某个数位上的数字,再用代数式表示其余数位上的数字,等量关系由题目中的关键语句“译出”【例1】某两位数的十位数字与个位上的数字之和是5,把这个数的个位上的数字与十位上的数字对调后,所得的新两位数与原两位数的乘积为736,求原来的两位数.分析:本题等量关系比较明显:新的两位数×原来的两位数=736,关键是如何表示出这两个两位数和整理方程,要注意检验是否求得的解都符合题意.解:设原两位数的十位数字为x,则个位数字为(5-x),由题意,得[10x+(5-x)][10(5-x)+x]=736.整理,得x-5x+6=0,解得x=2,x=3.当x=2时,5-x=3,符合题意,原两位数是23.当x=3时,5-x=2 符合题意,原两位数是32.答:原来的两位数是23或32.【例2】三个连续奇数的和是129,求这三个数。
21.3实际问题与一元二次方程知识点一 列一元二次方程解应用题的一般步骤:与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。
(1)设:设未知数,有直接和间接两种设法,因题而异;(2)找:找出等量关系;(3)列:列出一元二次方程;(4)解:求出所列方程的解;(5)验:检验方程的解是否正确,是否符合题意;(6)答:作答。
知识点二 实际问题中的数量关系一、传播问题设基数为a ,每次由一个个体传播给x 个个体,则一轮传播后有)(ax a +,也就是)1(x a +个个体;二轮传播后共有)1()1(x ax x a +++,也就是2)1(x a +个个体……依次类推,n 轮传播后共有n x a )1(+个个体。
例题有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?变式练习1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?2.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?二、增长率(下降率)问题设基数为a ,平均增长(下降)率为x ,则一次增长(下降)后的值为()x a a ±,二次增长(下降)后的值为()2x a a ±……依次类推,n 次增长(下降)后的值为()nx a a ±。
例题1.某厂去年3月份的产值为50万元,5月份上升到72万元,这两个月平均每月增长的百分率是多少?2.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.001)变式练习1. 青山村种的水稻2001年平均每公顷产7200,2003年平均每公顷产8460,求水稻每公顷产量的年平均增长率.kg kg2.某银行经过最近的两次降息,使一年期存款的年利率由2.25%降至1.96%,平均每次降息的百分率是多少?(结果精确到0.01﹪)3.某市为了加快廉租房的建设力度,去年市政府共投资2亿人民币建设了廉租房8万平方米,预计明年年底,三年累计投资9.5亿元人民币建设廉租房,若在这两年内内年投资的增长率相同。
一元二次方程应用题部分一、列方程解应用题的一般步骤是1.审:审清题意:已知什么,求什么?已,未知之间有什么关系?2.设:设未知数,语句要完整,有单位(同一)的要注明单位;3.列:列代数式,列方程;4.解:解所列的方程;5.验:是否是所列方程的根;是否符合题意;6.答:答案也必需是完事的语句,注明单位且要贴近生活.注:列方程解应用题的关键是: 找出等量关系;所谓的列方程其实质上就是把要求的数用一个末知的数(字母)表示,根据题目中提供的条件列出两个代数式,这两个代数式表示同一个量(这两个代数式中至少有一个代数式中要含有末知数),用等于号把这两个代数式连接起来就得到了方程式。
二、《一元二次方程》,其应用题的范围也比较广泛,归纳起来可大致有以下几种类型:一)求互相联系的两数(数与数字方面的应用题):连续的整数:设其中一数为x ,另一数为x+1;(x-1,x ,x+1)。
连续的奇数:设其中一数为x ,另一数为x+2;(x-2,x ,x+2)。
连续的偶数:设其中一数为x ,另一数为x+2;(x-2,x ,x+2)。
和一定的两数(和为a ):设其中一数为x ,另一数为a-x 差一定的两数(差为a ):设其中一数为x ,另一数为x+a 积一定的两数(积为a ):设其中一数为x ,另一数为a/x 商一定的两数(商为a ):设其中一数为x ,另一数为ax (x/a ) 例:两个相邻偶数的积是168,求这两个偶数。
解:设其中一数为x ,另一数为x+2, 依题意得:x (x+2)=168 x 2+2x-168=0(x-12)(x+14)=0 x 1=12,x 2 =-14当x =12时,另一数为14; 当x =-14时,另一数为-12.答:这两个偶数分别为12、14或-14、-12. 二)百分数应用题(含增长率方面的题型) 三)传染问题:(几何级数)传染源:1个【 每一轮1个可传染给x 个】【前后轮患者数的比例为1:(1+x )】 患者: 第一轮后:共(1+x )个第二轮后:共(1+x )•(1+x ),即(1+x )2个第三轮后:共(1+x )•(1+x )•(1+x ),即(1+x )3个 ……第n 轮后:共(1+x )n个[注意:上面例举的是传染源为“1”的情况得到的结论。
一元二次方程的应用列方程解应用题的一般步骤(1)审:审题,弄清已知量和未知量及问题中的等量关系.(2)设:设未知数,有直接和间接两种设法,因题而异.(3)列:列方程,一般找出能够表达应用题全部含义的一个等量关系,列代数式表示等量关系中的各个量,构成方程。
(4)解:求出所列方程的解 (5)验:检验方程的解是否正确,是否符合题意.(6)答:写出答案(一)增长率问题:平均增长率公式:b x a n =+)1(为平均增长率)为增长的次数,为终止量,为起始量,x n b a (降低率问题:b x a n =-)1(为平均降低率)为降低的次数,为终止量,为起始量,x n b a ( 例1.某电脑公司2011年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2013年经营总收入要达到2160万元,且计划从2011年到2013年,每年经营总收入的增长率相同,问2012年预计经营总收入为多少万元?2.某农场去年种植了10亩地的南瓜,亩产量为2000 kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量增长率的2倍,今年南瓜的总产量为60000kg ,求南瓜亩产量的增长率.3.恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.4.汽车产业的发展,有效促进我国现代化建设,某汽车销售公司2005年盈利1500万元,到2O07年盈利2160万元,且从2005年到2007年每年盈利的增长率相同(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率不变,预计2008年盈利多少万元?5. 据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境总人数约为7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率。
列一元二次方程解应用题的一般步骤
和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤是:
“审、设、列、解、答”.
(1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.这
一步是解决问题的基础;
(2)“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设
什么,间接设元虽然所设未知数不是我们所要求的,但由于对列方程有利,因此间接设元也十分重要.恰当灵活设元直接影响着列方程与解方程的难易;
(3)“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,
再根据这个相等关系列出含有未知数的等式,即方程.找出相等关系列方程是解决问题的关键;
(4)“解”就是求出所列方程的解;
(5)“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,
如线段的长度不能为负数,降低率不能大于100%等等.因此,解出方程的根后,一定要进行检验.
(一)平均增长率问题
变化前数量×(1 x)n=变化后数量
1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450
公斤,水稻每公顷产量的年平均增长率为。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均
每次降价率是。
3.周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期
后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(利息税为20%,只需要列式子)。
4.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始
涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
5.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,
求每次降价的百分率?
6.为了绿化校园,某中学在2007年植树400棵,计划到2009年底使这三年的
植树总数达到1324棵,求该校植树平均每年增长的百分数。
7.王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期
后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)。