函数的单调性与最值
- 格式:docx
- 大小:31.40 KB
- 文档页数:3
函数的单调性与最值1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.2.函数的最值 1.下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x 3 C .y =ln x D .y =|x |答案:B2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-12答案:D3.已知函数f(x)=2x-1(x∈[2,6]),则函数的最大值为________.答案:21.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f(x)在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f(x)=1 x.3.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但f(x)·g(x),1f(x)等的单调性与其正负有关,切不可盲目类比.[小题纠偏]1.函数y=x2-6x+10在区间(2,4)上是()A.递减函数B.递增函数C.先递减再递增D.先递增再递减答案:C2.设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为________.答案:[-1,1],[5,7]考点一函数单调性的判断(基础送分型考点——自主练透)[题组练透]1.下列四个函数中,在(0,+∞)上为增函数的是()A.f(x)=3-x B.f(x)=x2-3xC.f(x)=-1x+1D.f(x)=-|x|解析:选C当x>0时,f(x)=3-x为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性. 解:法一(定义法): 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,a >0,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在(-1,1)上为减函数. 法二(导数法):f ′(x )=a (x 2-1)-2ax 2(x 2-1)2=-a (x 2+1)(x 2-1)2.又a >0, 所以f ′(x )<0,所以函数f (x )在(-1,1)上为减函数.[谨记通法]判断或证明函数的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤: 取值作差(商)变形确定符号(与1的大小)得出结论(2)导数法,其基本步骤: 求导函数确定符号得出结论考点二 求函数的单调区间(重点保分型考点——师生共研)[典例引领]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.若将[典例引领](1)中的函数变为“y =|-x 2+2x +1|”,则结论如何? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1)和(1+2,+∞);单调递减区间为(-∞,1-2)和(1,1+2).2.函数y =⎝⎛⎭⎫132x 2-3x +1的单调递增区间为( ) A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞ 解析:选B 令u =2x 2-3x +1=2⎝⎛⎭⎫x -342-18. 因为u =2⎝⎛⎭⎫x -342-18在⎝⎛⎦⎤-∞,34上单调递减,函数y =⎝⎛⎭⎫13u 在R 上单调递减. 所以y =⎝⎛⎭⎫132x 2-3x +1在⎝⎛⎦⎤-∞,34上单调递增. 考点三 函数单调性的应用(常考常新型考点——多角探明)[命题分析]高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.常见的命题角度有: (1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值1.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小2.已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:选D 因f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e), ∴b >a >c .角度三:解函数不等式3.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)解析:选B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.角度四:利用单调性求参数的取值范围或值4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝⎛⎭⎫-14,+∞ B.⎣⎡⎭⎫-14,+∞C.⎣⎡⎭⎫-14,0 D.⎣⎡⎦⎤-14,0解析:选D 当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0, 且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎡⎦⎤-14,0. 5.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log ax ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a的取值范围为________.解析:要使函数f (x )在R 上单调递增, 则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3][方法归纳]函数单调性应用问题的常见类型及解题策略(1)求函数值域或最值.常用方法有:单调性法、图象法、基本不等式法、导数法、换元法.(2)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(3)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.一抓基础,多练小题做到眼疾手快1.下列函数中,定义域是R 且为增函数的是( )A .y =2-x B .y =x C .y =log 2 xD .y =-1x解析:选B 由题知,只有y =2-x与y =x 的定义域为R ,且只有y =x 在R 上是增函数.2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].3.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( ) A .(-∞,1] B .(-∞,-1] C .[-1,+∞)D .[1,+∞)解析:选A 因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1. 4.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4. ∴a +b =6. 答案:65.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)二保高考,全练题型做到高考达标1.给定函数:①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④解析:选B ①是幂函数,在(0,+∞)上为增函数,故此项不符合要求;②中的函数图象是由y =log 12x 的图象向左平移1个单位得到的,函数y =log 12x 是(0,+∞)上的减函数,所以函数y =log 12(x +1)是(-1,+∞)上的减函数,故此项符合要求;③中的函数在(-∞,1)上为减函数,(1,+∞)上为增函数,符合要求;④中的函数在R 上为增函数,不符合要求.2.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)解析:选B 设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞). 3.函数f (x )=x1-x在( ) A .(-∞,1)∪(1,+∞)上是增函数 B .(-∞,1)∪(1,+∞)上是减函数 C .(-∞,1)和(1,+∞)上是增函数 D .(-∞,1)和(1,+∞)上是减函数解析:选C 函数f (x )的定义域为{x |x ≠1}.f (x )=x 1-x =11-x-1,根据函数y =-1x 的单调性及有关性质,可知f (x )在(-∞,1)和(1,+∞)上是增函数.4.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.5.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log ax ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,1解析:选C 当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧ 3a -1<0,g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0⇒17≤a <13.此时,log a x 是减函数,符合题意.6.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎫t -122+14,结合图象知,当t =12,即x =14时,y max =14. 答案:147.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞)8.设函数f (x )=⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧ x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)9.已知函数f (x )=1a -1x(a >0,x >0), (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在 ⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2, ∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知f (x )在⎣⎡⎦⎤12,2上为增函数,∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25. 10.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述知a 的取值范围是(0,1].三上台阶,自主选做志在冲刺名校1.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( ) A .[1,+∞)B .[0, 3 ]C .[0,1]D .[1, 3 ]解析:选D 因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x(x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x在区间[1,3]上单调递减,故“缓增区间”I 为[1, 3 ].2.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0, 因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9).由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.∴f (x )在[2,9]上的最小值为-2.。
函数的单调性与最值【知识要点】 1.函数的单调性(1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.(3)判断函数单调性的方法①根据定义;②根据图象;③利用已知函数的增减性;④利用导数;⑤复合函数单调性判定方法。
2.函数的最值求函数最值的方法:①若函数是二次函数或可化为二次函数型的函数,常用配方法;②利用函数的单调性求最值:先判断函数在给定区间上的单调性,然后利用单调性求最值; ③基本不等式法:当函数是分式形式且分子、分母不同次时常用此法。
【复习回顾】一次函数(0)y kx b k =+≠具有下列性质: (1)当0k >时,函数y 随x 的增大而增大 (2)当0k <时,函数y 随x 的增大而减小 二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而减小;当x >2ba-时,y 随着x 的增大而增大; (2)当a <0时,函数y =ax 2+bx +c 图象开口向下,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而增大;当x >2ba-时,y 随着x 的增大而减小; 提出问题:①如图所示为一次函数y=x ,二次函数y=x 2和y=-x 2的图象,它们的图象有什么变化规律?这反映了相应的函数值的哪些变化规律?①这些函数走势是什么?在什么范围上升,在什么区间下降?②如何理解图象是上升的?如何用自变量的大小关系与函数值的大小关系表示函数的增减性?③定义:一般地,设函数f(x)的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说函数f(x)在区间D 上是增函数.简称为:步调一致增函数.几何意义:增函数的从左向右看,图象是的。
函数的最值与单调性函数的最值与单调性对于数学领域来说是非常重要和常见的概念。
在本文中,我将详细介绍函数的最值和单调性,并讨论它们在数学问题中的应用。
一、函数的最值函数的最值是指函数在定义域内取得的最大值和最小值。
一个函数可能有多个最大值和最小值,也可能没有最大值或最小值。
在求解一个函数的最值时,我们可以通过以下步骤进行:1. 找到函数的定义域。
2. 求解函数的导数,并找到导数为零的点和导数不存在的点。
3. 将这些点代入函数中,得到对应的函数值。
4. 比较这些函数值,找到最大值和最小值。
举例来说,考虑函数 f(x) = 2x^2 - 3x + 1。
首先,我们需要找到函数的定义域。
由于这是一个二次函数,它的定义域是整个实数集。
然后,我们求解 f(x) 的导数 f'(x) = 4x - 3,并找到导数为零的点 x = 3/4。
将这个点代入原函数,得到 f(3/4) = 1/8。
由于这个函数是一个开口向上的抛物线,它的最小值就是 f(3/4) = 1/8。
因此,这个函数的最值是 f(3/4) = 1/8。
另外一个例子是函数 g(x) = sin(x)。
对于这个函数,它的定义域是整个实数集。
由于正弦函数的取值范围在 [-1, 1] 之间,所以 g(x) 的最大值是 1,最小值是 -1。
函数的最值在数学中经常用来确定问题的极限、最优解和最不利情况等。
二、函数的单调性函数的单调性是指函数的增减性质。
一个函数可以是递增的、递减的或是既递增又递减。
要判断一个函数的单调性,我们可以通过以下方法:1. 求解函数的导数。
2. 研究导数的符号。
如果导数在定义域内始终大于零,那么函数是递增的;如果导数在定义域内始终小于零,那么函数是递减的。
如果导数既大于零又小于零,那么函数既递增又递减。
比如考虑函数 h(x) = x^2 - 3x + 2。
我们求解 h(x) 的导数 h'(x) = 2x - 3。
通过分析导数的符号,我们可以发现当 x < 3/2 时,导数为负,说明函数 h(x) 在这个区间上是递减的;当 x > 3/2 时,导数为正,说明函数h(x) 在这个区间上是递增的。
函数的单调性与最值复习:按照列表、描点、连线等步骤画出函数2x y =的图像、图像在y 轴的右侧部分就是上升的,当在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,如果取21,x x ∈[0,+∞),得到11()y f x =,2()y f x =,那么当1x <2x 时,有1y <2y 、这时就说函数y =2()f x x =在[0,+ ∞)上就是增函数、图像在y 轴的左侧部分就是下降的,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值反而随着减小,如果取21,x x ∈[0,+∞),得到11()y f x =,2()y f x =,那么当1x <2x 时,有12y y <。
这时就说函数y =2()f x x =在[0,+ ∞)上就是减函数、1.函数的单调性(1)单调函数的定义(2)单调区间的定义若函数f (x )在区间D 上就是增函数或减函数,那么称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.注意:(1)函数的单调性也叫函数的增减性; (2)注意区间上所取两点x 1,x 2的任意性;(3)函数的单调性就是对某个区间而言的,它就是一个局部概念。
(4)若函数()f x 在其定义内的两个区间A 、B 上都就是单调增(减)函数,一般不能认简单地认为()f x 在区间A B 上就是增(减)函数、 例如1()f x x=在区间(,0)-∞上就是减函数,在区间(0,)+∞上也就是减函数,但不能说它在定义域(,0)(0,)-∞+∞上就是减函数、(3)用定义法判断函数的单调性:①定义域取值;任取x 1,x 2∈D,且x 1<x 2; ②作差;作差f (x 1)-f (x 2);③变形;通常就是因式分解与配方; ④定符号;即判断差f (x 1)-f (x 2)的正负⑤下结论.指出函数f (x )在给定的区间D 上的单调性例1 证明函数xx f 1)(=在(0,+∞)上就是减函数、证明:设1x ,2x 就是(0,+∞)上的任意两个实数,且1x <2x ,则)(1x f -)(2x f =11x -21x =2112x x x x -, 由1x ,2x ∈(0,+ ∞),得1x 2x >0,又由1x <2x ,得2x -1x >0 ,于就是)(1x f -)(2x f >0,即)(1x f > )(2x f ∴xx f 1)(=在(0,+ ∞)上就是减函数、练习:讨论函数21)(x x f -=在[-1,0]的单调性、在[-1,0]上任取x 1,x 2且x 1<x 2则2111)(x x f -=,2221)(x x f -= 从而)(1x f -2221211)(x x x f ---== 2221222111)1()1(xx x x -+----=222112122221212211))((11xx x x x x xx x x -+--+=-+--∵21x x < ∴012>-x x 另外,恒有0112221>+++x x ∵-1≤x 1<x 2≤0 则 x 1+x 2<0 则)(1x f -0)(2<x f )(1x f <)(2x f ∴ 在[-1,0]上f (x )为增函数2、基本函数的单调性例:讨论函数322+-=ax x f(x)在(-2,2)内的单调性、解:∵222332a (x-a)ax x f(x)-+=+-=,对称轴a x = ∴若2-≤a ,则322+-=ax x f(x)在(-2,2)内就是增函数;若22<<-a 则322+-=ax x f(x)在(-2,a)内就是减函数,在[a,2]内就是增函数 若2≥a ,则322+-=ax x f(x)在(-2,2)内就是减函数、3、判断函数的单调性的常见结论①设任意x 1,x 2∈[a ,b ],且x 1<x 2,那么()()210f x f x ->⇔f (x )在[a ,b ]上就是增函数;()()210f x f x -<⇔f (x )在[a ,b ]上就是减函数.②设任意x 1,x 2∈[a ,b ],那么()()21210f x f x x x ->-⇔f (x )在[a ,b ]上就是增函数;()()21210f x f x x x -<-⇔f (x )在[a ,b ]上就是减函数.③ (x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上就是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上就是减函数.例:求函数y =x 2+x -6的单调区间、4、 关于分段函数的单调性(1)若函数()()[]()[],,,,g x x a b f x h x x c d ⎧∈⎪=⎨∈⎪⎩,()g x 在区间[],a b 上就是增函数, ()h x 在区间[],c d 上就是增函数,则()f x 在区间[][],,a b c d 上不一定就是增函数,若使得()f x 在区间[][],,a b c d 上一定就是增函数,需补充条件: ()()g b h c ≤(2)若函数()()[]()[],,,,g x x a b f x h x x c d ⎧∈⎪=⎨∈⎪⎩,()g x 在区间[],a b 上就是减函数, ()h x 在区间[],c d 上就是减函数,则()f x 在区间[][],,a b c d 上不一定就是减函数,若使得()f x 在区间[][],,a bc d 上一定就是减函数,需补充条件: ()()g b h c ≥例:已知函数()(0)(3)4(0)x a x f x a x a x ⎧<⎨-+≥⎩=若对任意x 1,x 2,都有()()21210f x f x x x -<-成立,则实数a 的取值范围就是( )A.(0,14] B.(0,1) C.[14,1) D.(0,3)5.函数的最值例:f(x)=x 2-2x (x ∈[-2,4])的单调增区间为__________;f(x)max =________、6、利用函数的单调性求最值例题:已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23、(1)求证:f (x )在R 上就是减函数; (2)求f (x )在[-3,3]上的最大值与最小值.(1)证明:令0x y ==,则(0)0f =;再令y x =-,则应有()()f x f x -=-,从而在R 上任取12x x >,则121212()()()()()f x f x f x f x f x x -=+-=-、1212,0.x x x x >∴->又0x >时,()0f x <,从而12()0f x x -<,即12()()f x f x <,由定义可知函数()f x 在R 上的减函数、 (2)函数()f x 就是R 上的减函数,()f x ∴在区间[3,3]-上也就是减函数、从而可知在区间[3,3]-上,(3)f -最大,(3)f 最小、2(3)(2)(1)(1)(1)(1)3(1)3()2,3f f f f f f f =+=++==⨯-=-(3)(3) 2.f f ∴-=-=即()f x 在[3,3]-上的最大值为2,最小值为-2、练习:已知定义在区间(0,+∞)上的函数f(x)满足f (yx)=f (x )-f (y )、,且当x >1时,f(x)<0、 (1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2、(1)f(1) = f(1/1) = f(1) - f(1) = 0。
专题 函数的单调性与最值1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2.函数的最值 (1)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).(×)(2)相同单调性函数的和、差、积、商函数还具有相同的单调性.(×)(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×) (4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(5)对于函数f(x),x∈D,若x1,x2∈D,且(x1-x2)[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.(√)(6)函数f(x)=log5(2x+1)的单调增区间是(0,+∞).(×)考点一求函数的单调性(区间)A.y=x+1B.y=(x-1)2C.y=2-x D.y=log0.5(x+1)答案:A(2)函数f(x)=lg x2的单调递减区间是________.答案:(-∞,0)(3)判断并证明函数f(x)=axx2-1(其中a>0)在x∈(-1,1)上的单调性.(二次除以一次的处理;拓展一次除以一次)[方法引航]判断函数单调性的方法(1)定义法:取值,作差,变形,定号,下结论.(2)利用复合函数关系:简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,单调增;图象逐渐下降,单调减.(4)性质法:增函数与减函数的加减问题。
1.下列函数中,定义域是R且为增函数的是()A.y=e-x B.y=x C.y=ln x D.y=|x|选B.2.函数y=|x|(1-x)在区间A上是增函数,那么区间A是()A .(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12 C .[0,+∞) D.⎝ ⎛⎭⎪⎫12,+∞选B.3.已知a >0,函数f (x )=x +ax (x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.(掌握对勾函数;明确对勾函数的特征)考点二 利用函数的单调性求最值[例2] (1)函数f (x )=2x x +1在[1,2]上的最大值和最小值分别是________.答案:43,1(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________. 答案:251.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .12 f (x )的最大值为f (2)=23-2=6.考点三 函数单调性的应用[例3] (1)已知11122x y⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,则下列不等关系一定成立的是( )A .22x y <B .22log log x y <C .33x y > D .cos cos x y <(2)已知f (x )=⎩⎨⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________. 答案:⎣⎢⎡⎭⎪⎫32,2[方法引航] (1)利用单调性比较大小,首先把不在同一个单调区间上的变量转化为同一个单调区间,再结合单调性进行比较.(2)已知函数的单调性确定参数的值域范围要注意以下两点:①任意子区间上也是单调的;②注意衔接点的取值.1.在本例(2)中,若f (x )不变且a ∈⎣⎢⎡⎭⎪⎫32,2.解不等式f (4a 2-2a -5)<f (a +2).f (4a 2-2a -5)<f (a +2)的解集为⎣⎢⎡⎭⎪⎫32,74.2.定义在R 上的函数()f x =25,1,, 1.x ax x a x x---≤>⎧⎨⎩ 对任意12xx ≠都有,1212()[()()]0x x f x f x -->成立,则实数a 的取值范围是( )A. [-3,-2]B. [-3,0)C.(-∞,-2]D. (-∞,0)[易错警示]定义域的请求——求函数单调区间先求我1.函数的单调区间是定义域的子集,求函数的单调区间必须做到“定义域优先”的原则.[典例1] 函数f (x )=x 2+x -6的单调增区间为________.[答案] [2,+∞)[警示] 求函数的单调区间,应该先求定义域,在定义域内寻找减区间、增区间;若增区间或减区间是间断的,要分开写,不能用“并集符号”合并联结. 2.利用函数单调性解不等式时也要先求定义域.[典例2] 已知,定义在[-2,3]上的函数f (x )是减函数,则满足f (x )<f (2x -3)的x 的取值范围是________. [答案] ⎣⎢⎡⎭⎪⎫12,3[警示] 这类不等式应等价于:单调性和定义域构成的不等式组.[高考真题体验]1.下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x选项D 符合题意.2.设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数 故选A.3.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( ) A .f (x )=1x 2 B .f (x )=x 2+1 C .f (x )=x 3 D .f (x )=2-x故选A. 4.函数f (x )=xx -1(x ≥2)的最大值为________.答案:25.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________. 答案:⎝ ⎛⎭⎪⎫12,32课时规范训练 A 组 基础演练1.函数y =x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先递减再递增 D .先递增再递减解析:选C.2.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫1x >f (1)的实数x 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-∞,0)∪(0,1)D .(-∞,0)∪(1,+∞) x 的取值范围是x >1或x <0.3.函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( ) A .f (x )=1x B .f (x )=(x -1)2 C .f (x )=e xD .f (x )=ln(x +1) 4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A .a >-14 B .a ≥-14 C .-14≤a <0 D .-14≤a ≤0综上所述得-14≤a ≤0.5.函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3选C.6.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是________.答案:(-1,0)∪(0,1)7.y =-x 2+2|x |+3的单调增区间为________.答案:(-∞,-1],[0,1]8.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是________. 答案:(-∞,1]9.函数f (x )=x 2-4x -4在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ). (1)试写出g (t )的函数表达式; (2)求g (t )的最小值. g (t )=⎩⎪⎨⎪⎧t 2-2t -7 (t <1),-8 (1≤t ≤2),t 2-4t -4 (t >2).(2)画出g (t )的图象如图所示,由图象易知g (t )的最小值为-8. 10.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证(判断)f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.B 组 能力突破1.设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( ) A .f (a +1)>f (2) B .f (a +1)<f (2) C .f (a +1)=f (2)D .不能确定选A.2.已知f (x )=⎩⎨⎧x 2-4x +3,x ≤0-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是( ) A .(-∞,-2) B .(-∞,0) C .(0,2) D .(-2,0)选A.3.函数f (x )=log 5(2x +1)的单调递增区间是________. 答案:⎝ ⎛⎭⎪⎫-12,+∞4.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(函数背景是什么?) (1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2), 所以f (x )在(0,+∞)上是单调递减函数. (3)∵[2,9]⊆(0,+∞),∴f (x )在[2,9]上为减函数f (x )min =f (9).由题意可知f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2+f (x 2),∴f (9)=f ⎝ ⎛⎭⎪⎫93+f (3)=2f (3)=-2.∴f (x )在[2,9]上的最小值为-2.专题 函数的奇偶性与周期性1.函数的奇偶性(1)周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×)(3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.(√) (4)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(√)(5)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.(√)(6)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√) (7)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.(√) (8)若某函数的图象关于y 轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√)考点一判断函数的奇偶性命题点用函数奇偶性定义判断[例1](1)A.y=x B.y=e xC.y=cos x D.y=e x-e-x答案:D(2)下列函数中为偶函数的是()A.y=1x B.y=lg|x|C.y=(x-1)2D.y=2x答案:B(3)函数f(x)=3-x2+x2-3,则()A.不具有奇偶性B.只是奇函数C.只是偶函数D.既是奇函数又是偶函数答案:D[方法引航]判断函数的奇偶性的三种重要方法(1)定义法:(2)图象法:函数是奇(偶)函数的充要条件是它的图象关于原点(y轴)对称.(3)性质法:①“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;②“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;③“奇·偶”是奇,“奇÷偶”是奇.判断下列函数的奇偶性(1)f(x)=(x+1) 1-x 1+x;(2)f(x)=lg 1-x1+x.(其它底数)(其它变形形式)原函数是奇函数.考点二函数的周期性及应用[例2](1)下列函数不是周期函数的是()A.y=sin x B.y=|sin x| C.y=sin|x| D.y=sin(x+1) 答案:C(2)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-1f(x),且当x∈[0,2)时,f(x)=log2(x+1),则求f(-2 017)+f(2 019)的值为________.答案:0[方法引航](1)利用周期f(x+T)=f(x)将不在解析式范围之内的x通过周期变换转化到解析式范围之内,以方便代入解析式求值.(2)判断函数周期性的几个常用结论.①f(x+a)=-f(x),则f(x)为周期函数,周期T=2|a|.②f(x+a)=1f(x)(a≠0),则函数f(x)必为周期函数,2|a|是它的一个周期;③f(x+a)=-1f(x),则函数f(x)必为周期函数,2|a|是它的一个周期.1.若将本例(2)中“f(x+2)=-1f(x)”变为“f(x+2)=-f(x)”,则f(-2 017)+f(2019)=________.答案:02.若本例(2)条件变为f(x)对于x∈R,都有f(x+2)=f(x)且当x∈[0,2)时,f(x)=log 2(x +1),求f (-2 017)+f (2 019)的值.f (-2 017)+f (2 019)=2.拓展延伸:已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A .0B .mC .2mD .4m 解析:选B.考点三 函数奇偶性的综合应用[例3] (1)若函数f (x )=2x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)答案:C (注重多种解法) (2)函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f⎝ ⎛⎭⎪⎫12=25. ①确定函数f (x )的解析式;②用定义证明f (x )在(-1,1)上是增函数; ③解不等式f (t -1)+f (t )<0. 解:①a =1.∴f (x )=x 1+x2,经检验适合题意.②证明:(略)f (x )在(-1,1)上为增函数. ③0<t <12.3.设奇函数()f x 在(0,+∞)上为增函数,且)1(f =0,则不等式()()0f x f x x--<的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)(4)已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ),则当x <0时,f (x )=( )A .-x 3-ln(1-x )B .x 3+ln(1-x )C .x 3-ln(1-x )D .-x 3+ln(1-x )答案:C[方法引航] (1)根据奇偶性求解析式中的参数,是利用f (-x )=-f (x )或f (-x )=f (x )在定义域内恒成立,建立参数关系.(2)根据奇偶性求解析式或解不等式,是利用奇偶性定义进行转化.1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 答案:132.定义在R 上的偶函数y =f (x )在[0,+∞)上递减,且f ⎝ ⎛⎭⎪⎫12=0,则满足f (x )<0的x 的集合为( ) A.⎝ ⎛⎭⎪⎫-∞,12∪(2,+∞) B.⎝ ⎛⎭⎪⎫12,1∪(1,2) C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎭⎪⎫12,1∪(2,+∞) 满足不等式f<0的x 的集合为⎝ ⎛⎭⎪⎫0,12∪(2,+∞). 3.已知函数f (x )=-x +log 21-x 1+x +1,则f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12的值为( )A .2B .-2C .0D .2log 213f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12=2.[方法探究]“多法并举”解决抽象函数性质问题[典例] 定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),f (x +2)=-f (x )且f (x )在[-1,0]上是增函数,给出下列四个命题:①f (x )是周期函数;②f (x )的图象关于x =1对称;③f (x )在[1,2]上是减函数;④f (2)=f (0),其中正确命题的序号是________(请把正确命题的序号全部写出来).[分析关系] ①f (x +y )=f (x )+f (y )隐含了用什么结论?什么方法探究? ②f (x +2)=-f (x ),隐含了什么结论?用什么方法探究.③若f (x )的图象关于x =1对称,其解析式具备什么等式关系?从何处理探究? ④f (x )在[-1,0]上的图象与[1,2]上的图象有什么关系?依据什么指导? ⑤f (2),f (0)从何处计算.[解析] 第一步:f (x +y )=f (x )+f (y )对任意x ,y ∈R 恒成立. (赋值法):令x =y =0,∴f (0)=0.令x +y =0,∴y =-x ,∴f (0)=f (x )+f (-x ). ∴f (-x )=-f (x ),∴f (x )为奇函数.第二步:∵f (x )在x ∈[-1,0]上为增函数,又f (x )为奇函数,∴f (x )在[0,1]上为增函数. 第三步:由f (x +2)=-f (x )⇒f (x +4)=-f (x +2) ⇒f (x +4)=f (x ),(代换法)∴周期T =4,即f (x )为周期函数.第四步:f (x +2)=-f (x )⇒f (-x +2)=-f (-x ).(代换法) 又∵f (x )为奇函数,∴f (2-x )=f (x ),∴关于x =1对称.第五步:由f (x )在[0,1]上为增函数,又关于x =1对称, ∴[1,2]上为减函数.(对称法)第六步:由f (x +2)=-f (x ),令x =0得f (2)=-f (0)=f (0).(赋值法) [答案] ①②③④[回顾反思] 此题用图象法更直观.[高考真题体验]1.(2014·高考课标全国卷Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( ) A .f (x )g (x )是偶函数 B .|f (x )|g (x )是奇函数 C .f (x )|g (x )|是奇函数 D .|f (x )g (x )|是奇函数选C.2.已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f (6)=( )A .-2B .-1C .0D .2解析:选D3.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.答案:-24.(2015·高考课标全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案:15.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎨⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.答案:1课时规范训练 A 组 基础演练1.下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x | D .y =2-x解析:选B.2.下列函数中既不是奇函数也不是偶函数的是( ) A .y =2|x | B .y =lg(x +x 2+1) C .y =2x +2-xD .y =lg1x +1解析:选D.3.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)等于( )A .-1B .1C .-2D .2 解析:选A.4.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=( )A .-2B .0C .1D .2 解析:选A.5.设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎨⎧4x 2-2,-2≤x ≤0x ,0<x <1,则f ⎝ ⎛⎭⎪⎫52=( )A .0B .1 C.12 D .-1解析:选D.6.函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f (f (5))=________. 答案:-157.已知f (x )是定义在R 上的偶函数,f (2)=1,且对任意的x ∈R ,都有f (x +3)=f (x ),则f (2 017)=________. 答案:18.函数f (x )=e x +x (x ∈R )可表示为奇函数h (x )与偶函数g (x )的和,则g (0)=________. 答案:19.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式.∴f (x )=⎩⎪⎨⎪⎧-x lg (2+x ) x ∈[0,+∞)-x lg (2-x ) x ∈(-∞,0)B 组 能力突破1.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( ) A .2 B.154 C.174 D .a 2解析:选B.3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)解析:选D.4.定义在R上的函数f(x),对任意x均有f(x)=f(x+2)+f(x-2)且f(2 016)=2 016,则f(2 028)=________.解析:∵x∈R,f(x)=f(x+2)+f(x-2),∴f(x+4)=f(x+2)-f(x)=-f(x-2),∴f(x+6)=-f(x),∴f(x+12)=f(x),则函数f(x)是以12为周期的函数.又∵f(2 016)=2 016,∴f(2 028)=f(2 028-12)=f(2 016)=2 016.答案:2 0165.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解:(1)∵对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2),∴令x1=x2=1,得f(1)=2f(1),∴f(1)=0.(2)令x1=x2=-1,有f(1)=f(-1)+f(-1),∴f(-1)=12f(1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x),∴f(x)为偶函数.(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,∴f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数.∴0<|x-1|<16,解得-15<x<17且x≠1.∴x的取值范围是{x|-15<x<17且x≠1}.专题二次函数与幂函数1.幂函数(1)幂函数的定义形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α为常数.(2)五种幂函数的图象(3)五种幂函数的性质y=(1)二次函数的图象和性质R ①一般式:y=ax2+bx+c(a≠0).②顶点式:y=a(x+h)2+k(其中a≠0,顶点坐标为(-h,k)).③两根式:y=a(x-x1)(x-x2)(其中a≠0,x1、x2是二次函数的图象与x轴的两个交点的横坐标).3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)当α<0时,幂函数y=xα是定义域上的减函数.(×)(2)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.(×)(3)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.(×)(4)当n>0时,幂函数y=x n是定义域上的增函数.(×)(5)若函数f(x)=(k2-1)x2+2x-3在(-∞,2)上单调递增,则k=±22.(×)考点一二次函数解析式________.答案:x2+2x[方法引航]根据已知条件确定二次函数解析式,一般用待定系数法,规律如下:1.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.答案:-2x2+4考点二 二次函数图象和性质[例2] (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;解:(1) f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.[方法引航] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解; (3)对于二次函数的综合应用,要综合应用二次函数与二次方程和二次不等式之间的关系进行转化.1.若本例已知条件不变,求f (x )的最小值. 当a ≥4时,f (x )min =19-8a . 当-6≤a ≤4时,f (x )min =3-a 2. 当a <-6时,f (x )min =39+12a .2.若本例已知条件不变,f(x )=0在[-4,6]上有两个不相等实根,求a 的取值范围.解:要使f (x )=0,在[-4,6]上有两个不等实根,需⎩⎪⎨⎪⎧ f (-a )<0-4≤-a ≤6f (-4)≥0f (6)≥0即⎩⎪⎨⎪⎧3-a 2<0,-6≤a ≤4,19-8a ≥0,36+12a ≥0.解得,-134≤a <-3或3<a ≤198.3.若本例中f (x )>0在x ∈(0,6]上恒成立,求a 的取值范围. 解:x 2+2ax +3>0,在x ∈(0,6]上恒成立, 即2a >-⎝ ⎛⎭⎪⎫x +3x 在x ∈(0,6]上恒成立,只需求u =-⎝ ⎛⎭⎪⎫x +3x ,x ∈(0,6]的最大值.∵x +3x ≥23,当且仅当x =3时,取等号. ∴u max =-23, ∴2a >-23,∴a >- 3.综合运用:已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) 注重巧解 A .{1,3} B .{-3,-1,1,3} C .{2-7,1,3} D .{-2-7,1,3}解析:选D.考点三 幂函数图象与性质[例3] (1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )答案:C(2)已知函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且x ∈(0,+∞)时,f (x )是增函数,则m 的值为( ) A .-1 B .2 C .-1或2 D .3答案:B (3)已知f (x )=,若0<a <b <1,则下列各式正确的是( )A .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1bB .f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1b <f (b )<f (a )C .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1aD .f ⎝ ⎛⎭⎪⎫1a <f (a )<f ⎝ ⎛⎭⎪⎫1b <f (b )答案:C[方法引航] (1)若幂函数y =x α(α∈R )是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断.(2)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.,(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.1.若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图 象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c解析:选B.2.若,则实数a 的取值范围是________.(陷阱) 解析:不等式等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a . 解得a <-1或23<a <32. 答案:(-∞,-1)∪⎝ ⎛⎭⎪⎫23,32[规范答题] “三个二次”间的转化二次函数与一元二次方程、一元二次不等式统称为“三个二次”,它们常有机结合在一起,而二次函数是“三个二次”的核心,通过二次函数的图象将其贯穿为一体.因此,有关二次函数的问题,常利用数形结合法、分类讨论法转化为方程与不等式来解决.[典例] (本题满分12分)已知f (x )=ax 2-2x (0≤x ≤1) (1)求f (x )的最小值;(2)若f (x )≥-1恒成立,求a 的范围; (3)若f (x )=0的两根都在[0,1]内,求a 的范围.[规范解答] (1)①当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.②当a >0时,f (x )=ax 2-2x 的图象的开口方向向上,且对称轴为x =1a .2分 ⅰ.当0<1a ≤1,即a ≥1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]内,∴f (x )在⎣⎢⎡⎦⎥⎤0,1a 上递减,在⎣⎢⎡⎦⎥⎤1a ,1上递增.∴f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a =-1a .4分ⅱ.当1a >1,即0<a <1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减.∴f (x )min =f (1)=a -2. 6分③当a <0时,f (x )=ax 2-2x 的图象的开口方向向下, 且对称轴x =1a <0,在y 轴的左侧, ∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎨⎧a -2,a <1,-1a ,a ≥1.8分(2)只需f (x )min ≥-1,即可.由(1)知,当a <1时,a -2≥-1,∴a ≥1(舍去); 当a ≥1时,-1a ≥-1恒成立,∴a ≥1.10分 (3)由题意知f (x )=0时,x =0,x =2a (a ≠0), 0∈[0,1],∴0<2a ≤1,∴a ≥2.12分 [规范建议] (1)分清本题讨论的层次 第一层:函数类型a =0和a ≠0.第二层:开口方向a>0和a<0.第三层:对称轴x=1a与区间[0,1]的位置关系,左、内、右.(2)讨论后要有总结答案.[高考真题体验]1.(2016·高考全国丙卷)已知则()A.b<a<c B.a<b<cC.b<c<a D.c<a<b解析:选A.2.(2015·高考山东卷)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<bC.b<a<c D.b<c<a解析:选C.3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=1x B.y=e-xC.y=-x2+1 D.y=lg|x|解析:选C.4.设函数则使得f(x)≤2成立的x的取值范围是________.答案:(-∞,8]5.已知a>0,b>0,ab=8,则当a的值为________时,log2a·log2(2b)取得最大值.答案:4课时规范训练 A 组 基础演练1.若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝ ⎛⎭⎪⎫12的值为( )A.13B.12C.23D.43解析:选A.2.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )解析:选C.4.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么( ) A .f (-2)<f (0)<f (2) B .f (0)<f (-2)<f (2) C .f (2)<f (0)<f (-2) D .f (0)<f (2)<f (-2) 解析:选D.5.若f (x )=x 2-ax +1有负值,则实数a 的取值范围是( ) A .a ≤-2 B .-2<a <2 C .a >2或a <-2 D .1<a <3解析:选C.6.若方程x 2-11x +30+a =0的两根均大于5,则实数a 的取值范围是________. 解析:令f (x )=x 2-11x +30+a . 结合图象有⎩⎪⎨⎪⎧Δ≥0f (5)>0,∴0<a ≤14.答案:0<a ≤147.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________. 解析:由已知得⎩⎪⎨⎪⎧a >0,4ac -164a =0,⇒⎩⎪⎨⎪⎧a >0,ac -4=0.答案:a >0,ac =48.已知f (x )=4x 2-mx +5在[2,+∞)上是增函数,则实数m 的取值范围是________.解析:因为函数f (x )=4x 2-mx +5的单调递增区间为⎣⎢⎡⎭⎪⎫m 8,+∞,所以m 8≤2,即m ≤16.答案:(-∞,16]9.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值. 解:函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1, 对称轴方程为x =a .(1)当a <0时,f (x )max =f (0)=1-a , ∴1-a =2,∴a =-1.(2)当0≤a ≤1时,f (x )max =a 2-a +1, ∴a 2-a +1=2,∴a 2-a -1=0, ∴a =1±52(舍).(3)当a >1时,f (x )max =f (1)=a ,∴a =2. 综上可知,a =-1或a =2.10.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图象过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式;(2)在(1)的条件下,当x ∈[-1,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解:(1)因为f (-2)=1,即4a -2b +1=1,所以b =2a . 因为方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0. 所以4a 2-4a =0,所以a =1,所以b =2. 所以f (x )=(x +1)2.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1=⎝ ⎛⎭⎪⎫x -k -222+1-(k -2)24.由g (x )的图象知:要满足题意,则k -22≥2或k -22≤-1,即k ≥6或k ≤0,∴所求实数k 的取值范围为(-∞,0]∪[6,+∞).B 组 能力突破1.若幂函数y =(m 2-3m +3)·x m 2-m -2的图象不过原点,则m 的取值是( ) A .-1≤m ≤2 B .m =1或m =2 C .m =2D .m =1解析:选B.由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.2.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b . 其中正确的是( ) A .②④ B .①④ C .②③D .①③解析:选B.由函数图象知,a <0,与x 轴有两个交点,∴b 2-4ac >0,即b 2>4ac .对称轴x =-b2a =-1,∴2a -b =0.当x =-1时,对应最大值,f (-1)=a -b +c >0. ∵b =2a ,a <0,∴5a <2a ,即5a <b . 3.已知幂函数f (x )=,若f (a +1)<f (10-2a ),则a 的取值范围是________. 解析:∵f (x )==1x(x >0),易知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),∴⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a >-1,a <5,a >3,∴3<a <5. 答案:(3,5)5.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b2a =-1, 解得a =1,b =2.∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x -x 的最大值为-2. ∴-2≤b ≤0.故b 的取值范围是[-2,0].指数与指数函数1.根式 (1)根式的概念若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *,式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数. (2)a 的n 次方根的表示x n =a ⇒⎩⎪⎨⎪⎧x =n a (当n 为奇数且n ∈N *时),x =±n a (当n 为偶数且n ∈N *时).2.有理数指数幂 (1)幂的有关概念 ①正分数指数幂:=na m (a >0,m ,n ∈N *,且n >1);②负分数指数幂: (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质R4.(1)na n与(na)n都等于a(n∈N*).(×)(2)函数y=a-x是R上的增函数.(×)(3)函数y=a x2+1(a>1)的值域是(0,+∞).(×)(4)当x>0时,y=a x>1.(×)(5)函数y=2x-1+1,过定点(0,1).(×)考点一指数幂的运算解:[方法引航]指数幂的化简方法(1)有括号的先算括号里的,无括号的先做指数运算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.1.化简-(-1)0的结果为()(易错)A.-9B.7C.-10 D.9解析:选B.-(-1)0=-1=8-1=7.考点二指数函数图象及应用命题点1.指数函数图象的变换2.指数函数图象的应用[例2](1)函数x b的是()A.a>1,b<0 B.a>1,b>0C.0<a<1,b>0 D.0<a<1,b<0答案:D(2)k为何值时,方程|3x-1|=k无解?有一解?有两解?[方法引航](1)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(2)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.1.函数f (x )=2|x -1|的图象是( )解析:选B.f (x )=2|x -1|的图象是由y =2|x |的图象向右平移一个单位得到,故选B. 2.(2017·河北衡水模拟)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________.解析:曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].答案:[-1,1]考点三 指数函数的性质 [例3] (1)(2017·天津模拟)设y 1=40.9,y 2=80.48,y 3=⎝ ⎛⎭⎪⎫12-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2答案:D (2)不等式2-x2+2x>⎝ ⎛⎭⎪⎫12x +4的解集为________. 答案:{x |-1<x <4} (3)已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3①若f (x )有最大值3,求a 的值; ②若f (x )的值域是(0,+∞),求a 的值. 解:①令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1, 因此必有⎩⎪⎨⎪⎧a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.②由指数函数的性质知,要使y =⎝ ⎛⎭⎪⎫13g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ).故a 的值为0.[方法引航] (1)比较两个指数幂大小时,尽量化同底或同指,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.(2)解决简单的指数方程或不等式问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性的求解方法,与前面所讲一般函数的求解方法一致,只需根据条件灵活选择即可.1.若本例(1)中的三个数变为y 1=,y 2=,y 3=,则大小关系如何.解析:构造指数函数y =⎝ ⎛⎭⎪⎫25x(x ∈R ),由该函数在定义域内单调递减可得y 2<y 3,又y =⎝ ⎛⎭⎪⎫25x (x ∈R )与y =⎝ ⎛⎭⎪⎫35x (x ∈R )之间有如下结论:当x >0时,有⎝ ⎛⎭⎪⎫35x >⎝ ⎛⎭⎪⎫25x ,故,即y 1>y 3,∴y 1>y 3>y 2.答案:D2.在本例(3)中,若a =-1,求f (x )的单调区间. 解:当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). 3.在本例(3)中,若a =1,求使f (x )=1的x 的解. 解析:当a =1时,f (x )=⎝ ⎛⎭⎪⎫13x 2-4x +3=1∴x 2-4x +3=0,∴x =1或x =3. 答案:1或3[方法探究]整体换元法,巧化指数式指数式的运算化简除了定义和法则外,根据不同的题目结构,可采用整体换元等方法.一、根据整体化为同指数[典例1] 计算(3-2)2 018·(3+2)2 019的值为________. [答案]3+ 2二、根据整体化为同底数[典例2] 若67x =27,603y =81,则3x -4y =________.期末考试第一题 [解析] ∵67x =27,603y =81,[答案] -2三、根据整体构造代数式 [典例3] 已知a 2-3a +1=0,则=________.[解析] ∵a 2-3a +1=0,∵a ≠0,∴a +1a =3.[答案]5四、根据整体构造常数a x ·a -x =1 [典例4] 化简4x4x +2+41-x 41-x +2=________.[答案] 1 五、根据整体换元[典例5] 函数y =⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在区间[-3,2]上的值域是________.[解析] 因为x ∈[-3,2], 所以若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8,故y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57. 故所求函数值域为⎣⎢⎡⎦⎥⎤34,57.[答案] ⎣⎢⎡⎦⎥⎤34,57[高考真题体验]1.已知则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b解析:选A.2.已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数.记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a 解析:选B.3.下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 3 B .f (x )=3x C .f (x )=D .f (x )=⎝ ⎛⎭⎪⎫12x解析:选B.5.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________. 答案:-326.(2015·高考福建卷)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________. 答案:1课时规范训练 A 组 基础演练1.函数y =a x -a (a >0,且a ≠1)的图象可能是( )解析:选C.2.在同一坐标系中,函数y =2x 与y =⎝ ⎛⎭⎪⎫12x 的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称解析:选A4.函数y =2x -2-x 是( )A .奇函数,在区间(0,+∞)上单调递增B .奇函数,在区间(0,+∞)上单调递减C .偶函数,在区间(-∞,0)上单调递增D .偶函数,在区间(-∞,0)上单调递减 解析:选A.5.设函数f (x )=⎩⎪⎨⎪⎧1x(x >0),e x (x ≤0),若F (x )=f (x )+x ,x ∈R ,则F (x )的值域为( )A .(-∞,1]B .[2,+∞)C .(-∞,1]∪[2,+∞)D .(-∞,1)∪(2,+∞)解析:选C.6.指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. 解析:由题意知0<2-a <1,解得1<a <2. 答案:(1,2)7.计算:=________.答案:28.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________. 答案:(1,+∞)9.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值. 解:令t =a x (a >0且a ≠1), 则原函数化为y =(t +1)2-2(t >0). ①当0<a <1时,x ∈[-1,1],t =a x∈⎣⎢⎡⎦⎥⎤a ,1a , 此时f (t )在⎣⎢⎡⎦⎥⎤a ,1a 上为增函数.所以f (t )max =f ⎝ ⎛⎭⎪⎫1a =⎝ ⎛⎭⎪⎫1a +12-2=14.所以⎝ ⎛⎭⎪⎫1a +12=16,所以a =-15或a =13.又因为a >0,所以a =13.②当a >1时,x ∈[-1,1],t =a x ∈⎣⎢⎡⎦⎥⎤1a ,a ,此时f (t )在⎣⎢⎡⎦⎥⎤1a ,a 上为增函数.所以f (t )max =f (a )=(a +1)2-2=14, 解得a =3(a =-5舍去).综上得a =13或3.10.已知函数f (x )=b ·a x (其中a ,b 为常量且a >0,a ≠1)的图象经过点A (1,6),B (3,24). (1)试确定f (x );(2)若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x -m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.解:(1)∵f (x )=b ·a x 的图象过点A (1,6),B (3,24), ∴⎩⎪⎨⎪⎧b ·a =6, ①b ·a 3=24, ②②÷①得a 2=4,又a >0且a ≠1,∴a =2,b =3,∴f (x )=3·2x .(2)由(1)知⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x -m ≥0在(-∞,1]上恒成立化为m ≤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上恒成立. 令g (x )=⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x ,则g (x )在(-∞,1]上单调递减, ∴m ≤g (x )min =g (1)=12+13=56,故所求实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,56.B 组 能力突破1.偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x ,则关于x 的方程f (x )=⎝ ⎛⎭⎪⎫110x 在x ∈[0,4]上解的个数是( )A .1B .2C .3D .4解析:选D.2.已知函数f (x )=⎩⎨⎧(1-3a )x +10a ,x ≤7,a x -7,x >7是定义域上的递减函数,则实数a的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,12 B.⎝ ⎛⎦⎥⎤13,611 C.⎣⎢⎡⎭⎪⎫12,23 D.⎝ ⎛⎦⎥⎤12,611 解析:选B.3.已知f (x )=9x -13x +1,且f (a )=3,则f (-a )的值为________.结论: 答案:-1 4.设函数f (x )=aa 2-1(a x -a -x )(a >0,a ≠1)(1)讨论f(x)的单调性;(2)若m∈R满足f(m)>f(m2+2m-2),求m的范围.解:(1)当a>1时,a2-1>0,y=a x为增函数,y=a-x为减函数,从而y=a x-a -x为增函数.所以f(x)为增函数.当0<a<1时,a2-1<0,y=a x为减函数,y=a-x为增函数,从而y=a x-a-x 为减函数.所以f(x)为增函数.故当a>0且a≠1时,f(x)在定义域内单调递增.(2)由(1)知函数f(x)在R上单调递增.∴由f(m)>f(m2+2m-2)得m>m2+2m-2,即m2+m-2<0,(m+2)(m-1)<0,∴-2<m<1.故m的范围为(-2,1).对数与对数函数1.对数的概念如果a x=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质与运算法则(1)对数的运算法则:如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M(n∈R);④log m a M n=nm log a M.(2)对数的性质:①a log a N=N;②log a a N=N(a>0且a≠1).(3)对数的重要公式:①换底公式:log b N=log a Nlog a b(a,b均大于零且不等于1);②log a b=1log b a,推广log a b·log b c·log c d=log a d.3.对数函数的图象与性质(1)定义域:(0,+∞)指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称.5.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)若MN>0,则log a(MN)=log a M+log a N.(×)(2)函数y=ln 1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.(√)其它底数呢?(3)对数函数y=log a x(a>0且a≠1)的图象过定点(1,0).(√)(4)log2x2=2log2x.(×)(5)当x>1时,log a x>0.(×)(6)当x>1时,若log a x>log b x,则a<b.(×)考点一 对数式的运算[例1] (1)若x =log 43,则(2x -2-x )2等于( ) A.94 B.54 C.103 D.43答案:D(2) 2lg 2-lg 125的值为( ) (略) A .1 B .2 C .3 D .4 答案:B[方法引航] (1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.1.已知4a =2,lg x =a ,则x =________. 答案:102.已知函数f (x )=⎩⎨⎧log 2x ,x >0,3-x +1,x ≤0,则f (f (1))+f ⎝ ⎛⎭⎪⎫log 312的值是( )A .5B .3C .-1 D.72 解析:选A.。
1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间I上是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性,区间I叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为A,如果存在x0∈A,使得条件对于任意的x∈A,都有f(x)≤f(x0)对于任意的x∈A,都有f(x)≥f(x0)结论f(x0)为最大值f(x0)为最小值【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个值x1,x2”改为“存在两个值x1,x2”.()(2)对于函数f(x),x∈D,若x1,x2∈D且(x1-x2)·[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.()(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(5)所有的单调函数都有最值.( )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( )1.下列函数中,①y =1x -x ;②y =x 2-x ;③y =ln x -x ;④y =e x -x ,在区间(0,+∞)内单调递减的是__________.2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为________. 3.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________. 4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为_____________.题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,①y =ln(x +2);②y =-x +1;③y =(12)x ;④y =x +1x ,在区间(0,+∞)上为增函数的是________.(2)函数f (x )=log 12(x 2-4)的单调递增区间是____________.(3)函数y =-x 2+2|x |+3的单调增区间为_________________________.命题点2 解析式含参函数的单调性例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.引申探究若本题中的函数变为f (x )=axx 2-1 (a >0),则f (x )在(-1,1)上的单调性如何?思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连结.已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.思维升华 求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在[12,2]上的值域为[12,2],则a =________.题型三 函数单调性的应用命题点1 比较大小 例4 已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则f (x 1)________0,f (x 2)________0.(判断大小关系)命题点2 解不等式例5 已知函数f (x )为R 上的减函数,则满足f ⎪⎪⎭⎫ ⎝⎛x 1<f (1)的实数x 的取值范围是______________.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________. (2)已知⎩⎨⎧≥<+-=1,1,1)2()(x a x x a x f x满足对任意x 1≠x 2,都有0)()(2121>--x x x f x f 成立,那么a 的取值范围是________.思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x的取值范围是__________.(2)若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则a的取值范围是__________.1.确定抽象函数单调性解函数不等式典例(14分)函数f(x)对任意的m、n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.思维点拨(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本题的切入点.要构造出f(M)<f(N)的形式.解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤 (1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法. [失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连结,不要用“∪”.A 组 专项基础训练 (时间:40分钟)1.下列函数f (x )中,①f (x )=1x ;②f (x )=(x -1)2;③f (x )=e x ;④f (x )=ln(x +1),满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.(填序号)2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是__________.3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎪⎭⎫⎝⎛-21,b =f (2),c =f (3),则a ,b ,c 的大小关系为______________.4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为________.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是__________.6.函数f (x )=⎪⎩⎪⎨⎧<≥1,21,log 21x x x x的值域为________.7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.8.函数f (x )=x⎪⎭⎫⎝⎛31-log 2(x +2)在区间[-1,1]上的最大值为________.9.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1. (1)求f (1),f (19)的值;(2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.B 组 专项能力提升(时间:20分钟)11.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.12.定义新运算:当a ≥b 时,a b =a ;当a <b 时,a b =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________.13.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为_________.14.已知函数f (x )=lg(x +ax -2),其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.。
函数的单调性与最值一、知识梳理1.增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则 有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格 的)单调性,区间D 叫做y =f (x )的单调区间. 3.函数的最值 前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件①对于任意x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0)=M①对于任意x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0)=M结论 M 为最大值M 为最小值注意:1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间 只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集 符号“∪”联结,也不能用“或”联结.2.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但 f (x )·g (x ),()1f x 等的单调性与其正负有关,切不可盲目类比. [试一试]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .12xy ⎛⎫= ⎪⎝⎭D .y =x +1x解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.函数f (x )=x 2-2x (x ∈[-2,4])的单调增区间为______;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8二、方法归纳1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数; (3)图像法:如果f (x )是以图像形式给出的,或者f (x )的图像易作出,可由图像的直观性 判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的五个常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不 等式求出最值.(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 提醒:在求函数的值域或最值时,应先确定函数的定义域. [练一练]1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =e -xC .y =-x 2+1 D. y =lg|x |答案:C2.函数f (x )=1x 2+1在区间[2,3]上的最大值是________,最小值是________.答案:15 110三、考点精练考点一 求函数的单调区间1、函数()()5log 21f x x =+的单调增区间是________. 解析:要使()5log 21y x =+有意义,则210x +>,即12x >-,而5l og y u =为()0,+∞上的增函数,当12x >-时,u =2x +1也为R 上的增函数,故原函数的单调增区间是 1,2⎛⎫-+∞ ⎪⎝⎭.答案:1,2⎛⎫-+∞ ⎪⎝⎭2.函数y =x -|1-x |的单调增区间为________.解析:y =x -|1-x |=1,121,1x x x ≥⎧⎨-<⎩作出该函数的图像如图所示.由图像可知,该函数的单调增区间是(-∞,1]. 答案:(-∞,1]3.设函数y =f (x )在(),-∞+∞内有定义.对于给定的正数k ,定义函数()()()(),,k f x f x k f x k f x k ⎧≤⎪=⎨>⎪⎩取函数()2xf x -=,当k =12时,函数()k f x 的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析:选C 由f (x )>12,得-1<x <1.由f (x )≤12,得x ≤-1或x ≥1.所以()122,11,1122,1x x x f x x x -⎧≥⎪⎪=-<<⎨⎪⎪≤-⎩,故()12f x 的单调递增区间为(-∞,-1).[解题通法]求函数单调区间的方法与判断函数单调性的方法相同即: (1)定义法;(2)复合法;(3)图像法;(4)导数法.考点二 函数单调性的判断 [典例] 试讨论函数()()0kf x x k x=+>的单调性. [解] 法一:由解析式可知,函数的定义域是()(),00,-∞⋃+∞.在(0,+∞)内任取1x ,2x ,令12x x <,那么()()()()122121212121211211x x k k k f x f x x x x x k x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为120x x <<,所以210x x ->,120x x >. 故当()12,,x x k ∈+∞时,()()12f x f x <,即函数在(),k +∞上单调递增.当()12,0,x x k ∈时,()()12f x f x >,即函数在()0,k 上单调递减. 考虑到函数()()0kf x x k x=+>是奇函数,在关于原点对称的区间上具有相同的单调 性,故在(),k -∞-单调递增,在(),0k -上单调递减. 综上,函数f (x )在(),k -∞-和(),k +∞上单调递增,在(),0k -和()0,k 上单调递减. [解题通法]1.利用定义判断或证明函数的单调性时,作差后要注意差式的分解变形彻底. 2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确. [针对训练]判断函数g (x )=-2xx -1在 (1,+∞)上的单调性.解:任取x 1,x 2∈(1,+∞),且x 1<x 2, 则()()()()()12121212122221111x x x x g x g x x x x x ----=-=----, 由于1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0, 因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数. 考点三 函数单调性的应用 角度一 求函数的值域或最值1.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0, f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值. 解:(1)证明:∵函数f (x )对于任意x ,y ∈R , 总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0.再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0, f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2). 又∵当x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2). 因此f (x )在R 上是减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数, ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2,最小值为-2. 角度二 比较两个函数值或两个自变量的大小2.已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞) 时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0. 角度三 解函数不等式3.已知函数()2243,023,0x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:选B 作出函数f (x )的图像,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4,所以不等式的解集为(-1,4).角度四 求参数的取值范围或值4.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( )A .(-∞,2)B.13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D.13,28⎡⎫⎪⎢⎣⎭解析:选B 函数f (x )是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤- ⎪⎪⎝⎭⎩,由此解得a ≤138, 即实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦. [解题通法]1.含“f ”不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.2.比较函数值大小的思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图像法求解.巩固练习一、选择题1.“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件答案:A 解析:f (x )对称轴x =a ,当a ≤1时f (x )在[1,+∞)上单调递增.∴“a =1”为 f (x )在[1,+∞)上递增的充分不必要条件.2.已知函数()224,04,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)答案:C 解析:由题知f (x )在R 上是增函数,由题得2-a 2>a ,解得-2<a <1. 3.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为 ( ) A .4B .5C .6D .7答案:C解析:由题意知函数f (x )是三个函数y 1=2x ,y 2=x +2,y 3=10-x 中的较小者,作出三个函数在同一坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图 象的最高点.4.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-1,0)∪(0,1] C .(0,1)D .(0,1]答案:D 解析:f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区 间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a 的取值范围是0<a ≤1.5.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能答案:A 解析:∵f (-x )+f (x )=0,∴f (-x )=-f (x ).又∵x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,∴x 1>-x 2,x 2>-x 3,x 3>-x 1. 又∵f (x 1)>f (-x 2)=-f (x 2),f (x 2)>f (-x 3)=-f (x 3),f (x 3)>f (-x 1)=-f (x 1), ∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>0.] 二、填空题6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数,则下列结论一定正确的是________(填序号). ①y =[f (x )]2是增函数;②y =1f (x )是减函数;③y =-f (x )是减函数;④y =|f (x )|是增函数. 答案:[0,32]解析:()()()()3030x x x y x x x ⎧--≥⎪=⎨-<⎪⎩画图象如图所示:可知递增区间为[0,32].8.设0<x <1,则函数y =1x +11-x 的最小值是________.答案:4解析 y =1x +11-x =1x (1-x ),当0<x <1时,x (1-x )=-(x -12)2+14≤14,∴y ≥4.三、解答题9.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. (1)证明:当x ∈(0,+∞)时,f (x )=a -1x ,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0.f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2),即f (x )在(0,+∞)上是增函数. (2)解:由题意a -1x <2x 在(1,+∞)上恒成立,设h (x )=2x +1x ,则a <h (x )在(1,+∞)上恒成立.∵h ′(x )=2-1x 2,x ∈(1,+∞),∴2-1x 2>0,∴h (x )在(1,+∞)上单调递增.故a ≤h (1),即a ≤3. ∴a 的取值范围为(-∞,3].10.已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围. 解:设f (x )的最小值为g (a ),则只需g (a )≥0, 由题意知,f (x )的对称轴为-a2.(1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73.又a >4,故此时的a 不存在.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f (-a 2)=3-a -a 24≥0得-6≤a ≤2.又-4≤a ≤4,故-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0得a ≥-7.又a <-4,故-7≤a <-4.综上得所求a 的取值范围是-7≤a ≤2.11.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时, 有()()0f a f b a b+>+成立.(1)判断f (x )在[-1,1]上的单调性,并证明它; (2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 解:(1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数, ∴()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-由已知得()()()12120f x f x x x +->+-,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在[-1,1]上单调递增. (2)∵f (x )在[-1,1]上单调递增,∴112111121111x x x x ⎧+<⎪-⎪⎪-≤+≤⎨⎪⎪-≤<⎪-⎩∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增. ∴在[-1,1]上,f (x )≤1. 问题转化为m 2-2am +1≥1, 即m 2-2am ≥0,对a ∈[-1,1]成立. 下面来求m 的取值范围. 设g (a )=-2m ·a +m 2≥0.①若m=0,则g(a)=0≥0,自然对a∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须g(-1)≥0,且g(1)≥0,∴m≤-2,或m≥2.∴m的取值范围是m=0或|m|≥2.。
第二讲函数的单调性与最值
【自主探究】
1.(山东省潍坊市三县联考)下列四个函数中,在区间(0,1)上是减函数的是( )
A.y=log2x B.y=1
x
C.y=-(
1
2
)x D
1
3
y x
2.(改编)若函数f(x)=(3m-2)x-2在区间(-∞,+∞)上是减函数,则实数m的取值范围是 .
3.(原创)函数f(x)=x2-4|x|的单调递减区间是 .
4.函数y=log 1
2
(x2-3x+2)的单调增区间是 .
自主归纳判断函数单调性的方法:【考点演练】
一判断函数的单调性;
【例1】利用单调性的定义证明:函数f(x)=
x
x2+1
在[1,+∞)上是减函数.
【拓展演练1】
证明:函数f(x)=
2x
x2-1
在[-1,1]上是减函数
二求函数的单调区间;
【例2】(改编)求下列函数的单调区间:
(1)f(x)=-x2+4|x|-3;
(2)f(x)=log 1
2
(-x2+2x+3).
【拓展演练2】
(1)(改编)函数f (x )=|x 2-4x +3|的单调增区间为 ,减区间为 .
(2)函数y =15-14x -x 2的递增区间为 .
三 根据函数的单调性求参数的范围
【例3】(1)(2013·山东临沂模拟)若f (x )=-x 2+2ax 与
g (x )=a x +1
在区间[1,2]上都是减函数,则a 的取值范围是____________. (2)已知函数f (x )=⎩⎨⎧ ax -1 (x ≤2)log a
(x -1)+3 (x >2)是定义域上的单调递增函数,则a 的取值范围是( )
A .(1,+∞)
B .[2,+∞)
C .(1,2)
D .(1,2]
【拓展演练3】
(1)(2013·湖南师大附中模拟)若不等式x 2-log a x <0在(0,12
)内恒成立,则a 的取值范围是( )
A .(116,1)
B .(0,116)
C .(0,1)
D .(116
,1) (2)(2012·衡阳市第一次月考)
函数f (x )=⎩⎨⎧ 2x 2-8ax +3 x <1log a x x ≥1在x ∈R 内单调递减,则a 的取值范围是
( )
A .(0,12]
B .[12,1)
C .[12,58]
D .[58
,1) 【真题集训】
1.(2012·广东卷)下列函数中,在区间(0,+∞)上为增函数的是( )
A .y =ln(x +2)
B .y =-x +1
C .y =(12)x
D .y =x +1x
2.(2013·广西卷)若函数f (x )=x 2+ax +1x 在(12
,+∞)上是增函数,则a 的取值范围是( )
A .[-1,0]
B .[-1,+∞)
C .[0,3]
D .[3,+∞)
3.(2011·江苏卷)函数f (x )=log 5(2x +1)的单调增区间是 .
4.(2011·重庆卷)下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是
( )
A .(-∞,1]
B .[-1,43]
C .[0,32
) D .[1,2) 5.已知函数f (x )=(2a -1)x +log (2a -1)(x +1)在[0,1]上的最大值和最小值之和为2a -
1,则a的值为( )
A.1 B.3
4 C.
1
2 D.
1
4
6.函数y=x+x-1的最小值为
7.已知函数y=mx2-6mx+m+8的定义域为R.当m变化时,若y的最小值为f(m),求函数f(m)的值域.。