七年级数学上第一次月考数学试题
- 格式:doc
- 大小:387.95 KB
- 文档页数:6
苏教版七年级数学上册第一次月考考试题及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m=4+3,则以下对m的估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<6 2.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°3.估计6+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元5.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A.70°B.180°C.110°D.80°7.把1a a根号外的因式移入根号内的结果是()A .aB .aC .aD .a8.估计7+1的值()A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间9.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是()A .﹣2B .1或﹣2C .0或1D .1或﹣2或010.已知关于x 的方程2x-a=x-1的解是非负数,则a 的取值范围为()A .1a B .1a C .1a D .1a 二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.3.在关于x 、y 的方程组2728x y m xym中,未知数满足x ≥0,y >0,那么m的取值范围是_________________.4.方程32521841x x xx的解是_________.5.因式分解:34a a_____________.6.在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5)243xx x .2.甲乙两人同时解方程85mx ny mx ny①②由于甲看错了方程①,得到的解是42x y,乙看错了方程中②,得到的解是25x y ,试求正确m ,n 的值.3.如图,AB ⊥BC 于点B ,DC ⊥BC 于点C ,DE 平分∠ADC 交BC 于点E ,点F 为线段CD 延长线上一点,∠BAF =∠EDF (1)求证:∠DAF =∠F ;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED 互余的角.4.某住宅小区有一块草坪如图所示.已知AB =3米,BC =4米,CD =12米,DA=13米,且AB ⊥BC ,求这块草坪的面积.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:1a______,b______.2该调查统计数据的中位数是______,众数是______.3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、B6、C7、B8、C9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、10.3、-2≤m<34、3x.5、(2)(2)a a a6、-1或5三、解答题(本大题共6小题,共72分)1、1x2、74n,38m.3、(1)略;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.4、36平方米5、117、20;22次、2次;372;4120人.6、(1)8;(2)答案见解析:(3)200000立方厘米。
1. ﹣1 的相反数是( )3A.1B.﹣1C.3D.﹣33 32.某地连续四天每天的平均气温分别是1℃, ﹣1℃, 0℃, 2℃, 则平均气温中最低的是( )A.1℃B.﹣1℃C.0℃D.2℃3.将算式﹣5-(﹣3)+ (﹣4)写成省略加号的和的形式,正确的是( )A.5+3-4B.﹣5﹣3-4C.﹣5+3-4D.﹣5-3+44.一个数是11 0000,这个数用科学记数法表示为().A.11×104B.1.1×105C.1.1×104D.0.11×1065.下列式子成立的是( )A.﹣|﹣5|>4B.﹣3<|﹣3|C.﹣|﹣4|=4D. |﹣5.5|<56.下列四个图形中能围成正方体的是( )A. B. C. D.7.用一个平面截长方体,五棱柱,圆柱和圆锥,不能截出三角形的是( )A.长方体B.无棱柱C. 圆柱D. 圆锥8.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A. |a |>|b|B.ab<0C.b-a>0D.a+b<0(第8 题图)(第9题图)9.一个几何体的三视图如图所示,这个几何体是( )A.三棱锥B.三棱柱C. 圆柱D.长方体10.用纸片和小棒做成下面的小旗,快速旋转小棒,所形成的图形正确顺序是( )A.①②③④B.③④①②C.①③②④D.④②①③11.如图是小明收支明细,则小明当天的收支情况是( )A.收入128 元B.收入32 元C.支出128 元D.支出32 元(第11 题图)(第12 题图)12.a,b 在数轴上位置如图所示,把a ,﹣a,b ,﹣b 按照从小到大的顺序排列,正确的是( )A.﹣b<﹣a<a<bB.﹣a<﹣b<a<bC.﹣b<a<﹣a<bD.﹣b<b<﹣a<a13.如果水位升高2m 时记作+2m,水位下降2m 记作.14.一个正n 棱柱,它有18 条棱,则该棱柱有个面,个顶点.15.若( )-(﹣2)=3,则括号内的数是.16.小明同学到学到领n 盒粉笔,整齐摞在讲桌上,其三视图如图,则n 的值是.(第16 题图)17.若|a|=3 ,|b|=5,且a-b<0,则a+b 的值是.18.规定一种新运算,对于任意有理数a ,b 有a☆b=2a-b+1,请计算1☆[2☆(﹣3)]的值是.19.(12 分)计算:(1)(﹣11)+7-(﹣14)(2)(﹣5.3)+ (﹣3.2)-(﹣5.3)(3)﹣100÷4×(﹣1)520.(15 分)计算题.(1)(+8)-(﹣15)+ (﹣9)-(﹣12)(2)﹣3×2+ (﹣2)2-5(3)36×(﹣2+1 --5)9 3 1221.(6 分)如图是由6 个相同的小正方体组成的几何体,请在指定的位置画出从正面看,左面看,上面看到的这个几何体的形状图.22.(6 分)如图,数轴上有三个点 A ,B ,C ,完成下列问题.(1)A 点表示的数是 ,B 点表示的数是 ,C 点表示的数是(2)将点 B 向右移动 5 个单位长度到点 D ,D 点表示的数是 . (3)在数轴上找点 E ,使点 E 到 B ,C 两点距离相等, E 点表示的数是 (4)将点 E 移动 2 个单位长度后到 F ,点 F 表示的数是 ,23.(6 分) 一个长方形的长为4cm ,宽为 3cm ,将其绕它的一边所在的直线旋转一周,得到一 个立体图形.(1)得到的几何图形的名称为 ,这个现象用数学知识解释为 . (2)求此几何体的体积.24.(6 分)已知 a 是最大的负整数, b 是﹣2 的相反数, c 和 d 互为倒数,求 a+b -cd 的值.25.(9 分)当你把纸对折一次时,就得到 2 层,对折 2 次时,就得 4 层,照这样折下去. (1)计算当对折 5 次时,层数是 .(2)对折 n 次时,层数 m 和折纸的次数 n 的关系是 . (3)如果纸的厚度是 0.1mm ,对折 8 次时,总厚度是 .26.(9 分)某粮食仓库管理员统计 10 袋面粉的总质量,以 100 千克为标准,超过的记为正, 不足记为负,通过称量记录如下: +3 ,+4.5,﹣0.5,﹣2,﹣5,﹣1 ,+2 ,+1,﹣4 ,+1,请回 答下列问题.,.(1)第几袋面粉最接近100 千克.(2)面粉总计超过或不足多少千克.(3)这10 袋面粉总质量是多少千克.27.(9 分)某冷库一天的冷冻食品进出记录如表(运进用正数表示,运出用负数表示)(1)这天冷库的冷冻食品比原来增加了还是减少了,请说明理由.(2)根据实际情况,有两种方案:方案一:运进每吨冷冻食品费用500 元,运出每吨冷冻食品费用800 元.方案二:不管运进还是运出每吨冷冻食品费用都是600 元,从节约运费的角度考虑,选用哪一种方案比较合适.1. A2.B3.C4.B5.B6.C7.C8.D9.B10.B11.D12.C13.如果水位升高 2m 时记作+2m ,水位下降 2m 记作 ﹣2m .14.一个正 n 棱柱,它有 18 条棱,则该棱柱有 8 个面, 12 个顶点. 15.若( )-(﹣2)=3,则括号内的数是 1 .16.小明同学到学到领 n 盒粉笔,整齐摞在讲桌上,其三视图如图,则 n 的值是 7 .(第 16 题图)17.若|a|=3 ,|b|=5,且 a -b <0,则 a+b 的值是 8 或 2 .18.规定一种新运算, 对于任意有理数 a ,b 有 a ☆b=2a -b+1,请计算 1☆[2☆(﹣3)]的值是 ﹣ 5 . 三.解答题。
七年级上第一月考数学试卷一、选择题(每小题2分:共12分)1.-2的倒数是( )A. -21 B .-2 C. 21 D.2 2.有一种记分方法:以80分为基准:85分记为+5:某同学得77分应记为( )A.+3 B .-3 C.+7 D .-73.已知A 地的海拔高度为-53米:而B 地比A 地高30米:则此时B 地的海拔高度为( )A .-83B .-23 C.30 D.234.在数轴上:与表示-1的点的距离是2的点表示的数是( )A.1B.3C. ±2D.1或-35.下列各式中:正确的是( ) A. 32->43- B .-4>0 C .-3<-6 D. 3+-<3-- 6.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数:用负数记下降数)那么本周星期几水位最低?A.星期一B.星期四C.星期六D.星期五二、填空题(每小题3分:共24分)7. 比-5大3. 8.有下列各数:0.003:10:-6.6:31-:0:-80:-(-3):2--:4-:其中属于非负整数的共有 个.9.若-x 的相反数是-5.7:则x = .053=+++y x :则x +y = .11.从数轴上表示-1的点开始:向右移动6个单位长度:再向左移动5个单位长度:那么此时到达的终点所表示的数是 .12.在数-5:1:-3:5:-2中任意三个数相乘:其中最大的积为 .13.一天早晨的气温是-8℃:中午上升了12℃:午夜又下降中10℃:午夜的气温是 ℃. 213-:除数比被除数小211:则商为 . 三、解答题(每小题5分:共20分)15.计算:⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-31231416.计算:⎪⎭⎫ ⎝⎛-+-⨯-41322136.17.计算:451132131511÷⨯⎪⎭⎫ ⎝⎛-⨯.18.计算:()4313133.0121-÷⎪⎭⎫ ⎝⎛+⨯+.四.解答题(每小题7分:共28分)19.将下列各数填入相应的大括号内.-0.01:212:0:-(-4):80%:⎪⎭⎫ ⎝⎛+-23正数 …正整数 …负分数 …20.煤矿井下A 、B 、C 、D 四处的标高分别是:m m m m .请用“<”将它们连接起来.21.观察下列解题过程. 计算:⎪⎭⎫ ⎝⎛--÷⎪⎭⎫ ⎝⎛-1278743187. 解:原式=12787878743187÷⎪⎭⎫ ⎝⎛--÷⎪⎭⎫ ⎝⎛--÷⎪⎭⎫ ⎝⎛-=7128778877487⨯⎪⎭⎫ ⎝⎛--⨯⎪⎭⎫ ⎝⎛--⨯⎪⎭⎫ ⎝⎛- =223121=++- 你认为以上解题是否正确:若不正确:请写出正确的解题过程.3=m :2=n :且nm <0:求式子3m -2n 的值.五、解答题(每小题8分:共16分)23.某食品厂生产一批极易变质的食品:需要在-28℃的温度下冷冻.现在冷库的室温是-2℃:若每小时降4℃:问几小时后能降到所要求的温度?a =-1.5:b =2:c =0:d =-2.(1)请在数轴上表示数a 、b 、c 、d .(2)计算()c d b a ++的值.六、解答题(每小题10分:共20分)巡逻队员沿东向西方向的一条主道进行巡逻.某天早上从A地出发:晚上到达B地:约定向东为正方向:当天的行驶记录如下(单位:千米):+18:-9:+7:-12:-4:+12:-5:-6.(1)B地在A地的何方?相距多少千米?(2)若汽车每千米耗油1升:每升油价为7.2无:这天耗油费用为多少元?26.在一次数学测验中:七年(2)班的平均分为87分:把高于平均分的部分记作正数:低于平均分的部分记作负数:下表是该班一个小组10名同学的成绩变化情况:(1)该小组10名同学的成绩最低分是多少?最高分是多少?(2)最高分比最低分高多少?(3)该组10名同学的成绩总分是多少?(4)若该组10名同学的成绩平均分不低于87分:将得到奖励:每高一分:每人奖励2个本:否则不奖励:那么该组10名同学是否受到奖励?若奖励:共奖励多少个本?。
名校调研系列卷·七年上第一次月考试卷数学(人教版)一、选择题(每小题2分,共12分)1. 实数5−的相反数是( )A. 5B. 5−C. 15D. 15− 2. 老师评卷时,如果把得4分记为4+分,那么扣4分记为( )A. 4−分B. 4+分C. 0分D. 8分 3. 下列四个数中,属于负分数的是( )A. 6B. 1.6−C. 0D. 3− 4. 已知算式()99− 的值为1−,则“ ”内应填入的运算符号为( )A. +B. −C. ×D. ÷5. 下列计算正确的是( ) A. 1(2)(1)2−÷−=− B. 154−+=−C. ()7535−×=− D. 428−−=− 6. 有理数a 、b 在数轴上的位置如图所示,则下列各式的符号为正的是( )A. a b +B. a bC. abD. a b −二、填空题(每小题3分,共24分)7. ﹣19的倒数是_____. 8. 化简:2128−=______. 9. 若数轴上表示3−和6的两点分别是点P 和点Q ,则点P 与点Q 之间的距离是______. 10 比较大小:32−______43−(填“>,<,或=”). 11. 比3−小8数是________.12. 如图,数轴上的两个点分别表示3−和m ,请写出一个符合条件的m 的整数值:______________..的13. 某地上午气温为16C °,下午上升3C °,到半夜又下降20C °,则该地半夜的气温为_______. 14. 某同学在计算8a −÷时,误将“÷”看成“+”而算得结果是12−,则8a −÷的正确结果是______.三、解答题(每小题5分,共20分)15. 计算:()()()72053−++−−−+.16. 计算:()()1899−÷−×−17. 计算:23(36)(3)94 −×−−÷−18 计算:3571491236 −−+÷−四、解答题(每小题7分,共28分)19. (1)在如图所示的数轴上表示下列各数:0,3,1.5,4−,1,32−;(2)按从小到大的顺序用“<”号把(1)中的这些数连接起来. 20. 把下列各数填入相应集合的括号内:8.5+,132−,0.3,0, 3.4−,2024,9−,143,2−,0.67. (1)整数集合:{ };(2)分数集合:{ };(3)非负数集合:{ }.21. 阅读下面的材料: 计算:1579(8)16×−, 解:15111179(8)80(8)80(8)(8)64063916161622 ×−=−×−=×−−×−=−+=−. 应用:根据你对材料的理解,计算:2399(6)24×−. 22 列式并计算.(1) 4.3−加上 2.9−的绝对值的和; (2)5−与2的差乘以7−所得的积是多少?五、解答题(每小题8分,共16分)..23. 已知7a =,10b =,且0ab <.(1)求a 、b 的值;(2)求a b −的值.24. 定义一种新的运算“⊕”,规则如下:3a b ab ⊕−.(1)142 ⊕−=______; (2)求1(15)(3)5−⊕−⊕− 的值.六、解答题(每小题10分,共20分)25. 某校六年级(1)班学生在劳动课上采摘成熟的白萝卜,一共采摘了10筐,以每筐25千克为标准,超过的千克数记作正数,相等的千克数记作0,不足的千克数记作负数,称重后记录如下: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)2.5− 1.53− 0 1 0.5−2− 2− 1.5− 2回答下面问题: (1)这10筐白萝卜,第8筐白萝卜实际质量为多少千克.(2)以每筐25千克为标准,这10筐白萝卜总计超过或不足多少千克?(3)若白萝卜每千克售价2元,则售出这10筐白萝卜可得多少元?26. 如图,在数轴上点A 表示数是8,若动点P 从原点O 出发,以每秒2个单位长度的速度向左运动,同时另一动点Q 从点A 出发,以每秒4个单位长度的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t 秒.(1)当0.5=t 时,点Q 到原点O 的距离为_______________;(2)当 2.5t =时,求点Q 到原点O 的距离;(3)当点Q 到原点O 的距离为4时,求点P 到原点O 的距离.的。
七年级上册数学第一次月考试卷一、 选择题(每题3分,共30分)一、若是用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克应记作 ( )A 、+0.02克B 、-0.02克C 、0克D 、+0.04克 二、在-4,2,-1,0,-3中最小的一个数为 ( ) A 、2 B 、-1 C 、-3 D 、-43、以下算式正确的选项是 ( )A 、-14-5=-9B 、-3-3=0C 、22123——=+ D 、(—31)2=914、在(-1)2,(-1)3,-(-1)5,-14,|-1|,-(-1),-11—的结果中是1的有( )个A 、7B 、6C 、5D 、4五、|x+1|+|y -4|=0,那么x y =( )A 、1B 、—1C 、4D 、—4六、据统计,2016年我国高新技术产品出口总额达40570亿元,将40570亿用科学计数法表示为 ( )A 、4.0570×109B 、0.40570×1010C 、40.570×1011D 、4.0570×10127、冬季某天我国三个城市的最高气温分别离是-10℃,1℃,-7℃,它们任意两城市中最大的温差是 ( ) A 、17℃ B 、11℃ C 、8℃ D 、3℃八、新概念一种运算a △b=(a+1)÷2b,那么2△(-3△4)=( )A 、6B 、0C 、-6D 、-1 九、以下各式成立的是 ( ) A 、假设|a|=|b|,那么a=b B 、假设a 2=b 2,那么a=b C 、假设a+b ﹤0、ab ﹥0,那么a ﹤0、b ﹤0 D 、假设ba﹥0,那么a ﹥0、b ﹥0 10、以下图形都是由几个黑色和白色的正方形按必然规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是( )A. 32B. 29C. 28D. 26二、填空题(每题3分,共计15分)1一、-31的相反数为 ,倒数为 ,绝对值为 。
一、选择题(每题3分)1.下面四个数中比-2小的数是()A.1 B.0 C.-1 D.-32.下列说法正确的是()A.无限小数是无理数; B.零是整数,但不是正数,也不是负数;C.分数包括正分数、负分数和零;D.有理数不是正数就是负数.3. 一只长满羽毛的鸭子大约重( )A、50克B、2千克C、20千克D、5千克4.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A. c>a>0>b;B. a>b>0>c;C. b>0>a>c;D. b>0>c>a5. 一个数的相反数是非负数,这个数是()A、负数B、非负数C、正数D、非正数6. 下列各式中,正确的是()A、-|-16|>0B、|0.2|>|-0.2| C、-47>-57 D、|-6|<07. 把一根木棒锯成3段需12分钟,那么把它锯成10段需( )A、48分钟B、54分钟C、60分钟D、66分钟8. 绝对值大于2,而小于5的所有正整数之和为()A、7B、8C、9D、109 下列叙述正确的是()A、若|a|=|b|,则a=bB、若|a|>|b|,则a>bC、若a<b|,则|a|<|b|D、若|a|=|b|,则a=±b10 .已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()(-2.5)3=A 、3瓶 B 、4瓶 C 、5瓶 D 、6瓶 二、填空题(每题4分)11. 用 科学记数法表示250 200 000 00012.A 市某天的温差为7°C ,如果这天的最高气温为5°C ,这天的最低气温是 。
13.离原点3个单位长度的点有 个,它所表示的有理数是 ;14.数轴上一点A 表示的数为-5,将A 先向右移2个单位,再向左移10个单位,则这个点表示的数是 ;15.在数轴上,到原点距离不大于2的所有整数有 ; 16.(1)若=5,则x =; (2)若=,则x = ; 17. 计算三、问答题21.(4分)将下列各数填入相应的集合内;-2.5, -2.232232223…, 0, 11, 4.312, 0.101001000…,有理数集合﹛ …﹜ 无理数集合﹛ …﹜ 正数集合﹛ …﹜ 负数集合﹛ …﹜ 22.(6分)用数轴上的点表示下列各数及其相反数,并用“﹤”将他们连接起来 4, -0.5, -(-2), 0, +3.5, -(+5)x x 3 π1523.计算(每小题5分)(1) 12-(-18 )+(-7 )-15 ( 2) 4+(-2)+(-4)+1+(+2)(3) ; (4)(5) (-0.125)×(-8)-[1-3×(-2)]; (6) ;( 8)3210433⎛⎫⎛⎫-⨯--⨯⎪ ⎪⎝⎭⎝⎭32)65()43(21--+---323[(2)(4)]÷---2725.0)431(218)522(52⨯÷--⨯--÷7() 4.6-(-135+1.6-4)-34-32-(-3)3+(-2)2-23(9) (10) ()×(-12)(分配律)24. (6分)出租车司机小李某天下午在东西走向的中山东路上进行运营。
七年级上学期第一次月考(数学)(考试总分:150 分)一、 单选题 (本题共计13小题,总分58分)1.(4分)点 P (0,3)在( ).A .x 轴的正半轴上B .x 的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上2.(4分)9的算术平方根是 ( )A .±3B .3C .3±D . 3.(4分)2的立方根是( )A .2B .2±C .32D .32± 4.(4分)下列各式中,错误的是A .416±=B .164±=±C .2(4)4-=D .3273-=-5.(4分)己知正方体表面积为24dm 2,则这个正方体的棱长为( )A . 2dmB .6dmC . 2 dmD . 4 dm6.(4分)已知12n -是正整数,则整数n 的最大值为( )A .12B .11C .8D .37.(4分)如图,直线AB 与CD 相交于点O ,∠COE =2∠BOE . 若∠AOC =120°,则∠BOE 等于( )A .15°B .20°C .25°D .30°8.(4分)点 P 的坐标为(3a-2,8-2a ),若点 P 到两坐标轴的距离相等,则 a 的值是( ).A、32或4 B 、-2或6 C 、32或-4 D 、2或-6 9.(4分)如图,能判定AD ∥BC 的条件是( )A .∠3=∠2B .∠1=∠2C .∠B =∠DD .∠B =∠110.(4分)下列命题是真命题的是( )A .若x >y ,则x 2>y 2B .若|a|=|b|,则a=bC .若a >|b|,则a 2>b 2D .若a <1,则a >1a11.(4分)将长方形纸片ABCD 折叠,使D 与B 重合,点C 落在C '处,折痕为EF ,若∠AEB =70°,则∠EFC '的度数是 ( )A.125°B.120°C.115°D.110°12.(4分)如图,△ABC 中,AH ⊥BC ,BF 平分∠ABC ,BE ⊥BF ,EF ∥BC ,以下四个结论:①AH ⊥EF ,②∠ABF=∠EFB ,③AC ∥BE ,④∠E=∠ABE .正确的是( )A .①②③④B .①②C .①③④D .①②④C /A B C D E F13.(10分)(10分)如图,∠1+∠2=180°,∠3=108°,求∠4的度数.二、 双空题 (本题共计1小题,总分4分)14.(4分)计算:2(3)-=___; 3278-=____. 三、 填空题 (本题共计5小题,总分20分)15.(4分)与50最接近的整数是 .16.(4分)一个正数的两个平方根分别为a+3和2a+3,则a= .17.(4分)如图,DE ∥BC ,点A 在直线DE 上,则∠BAC= 度.18.(4分)如图,AB ∥CD ,ED ∥BC .∠A=20°,∠C=120°,则∠AED 的度数是 .19.(4分)如果两个角的两条边分别平行,其中一个角比另一个角的4倍少30°,则这两个角的度数分别为 .四、 计算题 (本题共计1小题,总分10分)20.(10分)(10分)(1)计算:22)(-+25+364-;⑵求下式中x 的值: 4(x-1)2-81=0五、 解答题 (本题共计6小题,总分58分)21.(10分)(10分)(1)若a+7的算术平方根是3,2b+2的立方根是﹣2,求a b 的值.(2)已知:x ﹣2的平方根是±2,2x+y+7的立方根是3,求)(22y x +的算术平方根. 22.(10分)(10分)完成下列推理过程:如图,已知∠A =∠EDF ,∠C =∠F ,求证:BC ∥EF证明:∵∠A =∠EDF ( )∴________∥________( )∴∠C =________( )又∵∠C =∠F (已知)∴_______=∠F (等量代换)∴________∥________( )23.(10分)(10分)如图,已知∠A=∠AGE, ∠D=∠DGC.(1)求证:AB//CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C 的度数.24.(10分)(10分)如图所示,已知ABC 的三个顶点的坐标分别为(2,3)A -、(5,0)B -、V (1,0)C -((1)将ABC 向右平移6个单位长度,写出111A B C 各顶点的坐标;((2)求出四边形11ABB A 的面积;((3)在x 轴上是否存在一点P ,连接PA 、PB ,使PAB S ∆=1211A ABB S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.25.(10分)(10分)已知AM ∥CN ,点B为平面内一点,AB BC ⊥于点B .(1)如图1,直接写出∠A 和∠C 之间的数量关系是______________;(2)如图2,过点B 作BD AM ⊥于点D ,求证:ABD C ∠=∠.26.(8分)如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角尺OCD 沿AB 的方向平移至图②的位置,使得顶点O 与点N 重合,CD 与MN 相交于点E ,求∠CEN 的度数;(2)将图①中三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在∠MON 的内部,如图③,且OD 恰好平分∠MON ,CD 与MN 相交于点E ,求∠CEN 的度数;(3)将图①中三角尺OCD 绕点O 按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第秒时,边CD 恰好与边MN 平行;在第秒时,直线CD 恰好与直线MN 垂直.y xC B A O答案一、单选题(本题共计13小题,总分58分)1.(4分) C2.(4分)B3.(4分)C4.(4分)A5.(4分)C6.(4分)B7.(4分) B8.(4分)D9.(4分)D10.(4分)C11.(4分)A12.(4分)D13.(10分)解:∵∠1+∠2=180°,∴a∥b,…………(3分)∴∠3+∠5=180°,…………(6分)∵∠3=108°,∴∠5=180°﹣108°=72°,∴∠4=72°,…………(10分) 二、双空题(本题共计1小题,总分4分)14.(4分)3、2 3三、填空题(本题共计5小题,总分20分)15.(4分)716.(4分)-217.(4分)4618.(4分)80°19.(4分) 10°,10°或42°, 138°四、计算题(本题共计1小题,总分10分)20.(10分)(1)解:原式25(4)=++-………(3分)3=………(5分)(2)解:4(x-1)2-81=04(x-1)2=81 (6分)(x-1)2=481(8分) x-1=29或x-1=-29(9分) X=211或x=-27(10分)五、 解答题 (本题共计6小题,总分58分)21.(10分)(1)解:由题意得:a+7=9,2b+2=﹣8,…………(2分)∴a=2,b=-5,∴b a =(﹣5)2=25. …………(5分)(2)解:∵x ﹣2的平方根是±2,∴x ﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27 …………(8分)把x 的值代入解得:y=8,∴x 2+y 2=100,100的算术平方根为10. …………(10分)22.(10分)证明:∵∠A =∠EDF (已知)∴___AC _____∥__DF ______( 同位角相等,两直线平行 )∴∠C =__∠CGF ______( 两直线平行,内错角相等 )又∵∠C =∠F (已知)∴∠CGF =∠F (等量代换)∴____CB ____∥___FE _____( 内错角相等,两直线平行 )(有其他合理答案也可)(每空1分,共10分)23.(10分)证明:(1)∵∠A =∠AGE ,∠D =∠DGC又∵∠AGE =∠DGC …………(1分)∴∠A =∠D …………(2分)∴AB ∥CD …………(4分)(2) ∵∠1+∠2 =180°又∵∠CGD +∠2=180°∴∠CGD =∠1∴CE ∥FB …………(5分)∴∠C =∠BFD ,∠CEB +∠B =180°…………(6分)又∵∠BEC =2∠B +30°∴2∠B +30°+∠B =180°∴∠B =50°…………(8分)又∵AB ∥CD∴∠B =∠BFD∴∠C =∠BFD =∠B =50°…………(10分)24.(10分)解:(1)A 1(4,3) B 1(1,0) C 1(5,0)(3分)(2)S 四边形ABB1A1=18(6分) (3) P (-11,0)或(1,0)(10分)25.(10分)(1) ------3分(2)如图2,,090D ∴∠=------4分过点B 作,0180D DBG ∴∠+∠=090DBG ∴∠=即, ------7分又,, ,------8分,, ∴BG ∥CN ------9分,.-----10分 26.(8分)【答案】(1)105°;(2)150°;(3)5或17;11或23.【解析】(1)在CEN ∆中,180CEN DCN MNO ∠=︒-∠-∠1804530=︒-︒-︒105=︒;(2)OD 平分MON ∠,11904522DON MPN ∴∠=∠=⨯︒=︒, 45DON D ∴∠=∠=︒,//CD AB ∴,180********CEN MNO ∴∠=︒-∠=︒-︒=︒;(3)如图1,CD 在AB 上方时,设OM 与CD 相交于F , //CD MN ,60OFD M ∴∠=∠=︒,在ODF ∆中,180MOD D OFD ∠=︒-∠-∠,1804560=︒-︒-︒,75=︒,∴旋转角为75︒,75155t =︒÷︒=秒;CD 在AB 的下方时,设直线OM 与CD 相交于F ,//CD MN ,60DFO M ∴∠=∠=︒,在DOF ∆中,180180456075DOF D DFO ∠=︒-∠-∠=︒-︒-︒=︒, ∴旋转角为75180255︒+︒=︒,2551517t =︒÷︒=秒;综上所述,第5或17秒时,边CD 恰好与边MN 平行; 如图2,CD 在OM 的右边时,设CD 与AB 相交于G , CD MN ⊥,90903060NGC MNO ∴∠=︒-∠=︒-︒=︒,604515CON NGC OCD ∴∠=∠-∠=︒-︒=︒,∴旋转角为180********CON ︒-∠=︒-︒=︒,1651511t =︒÷︒=秒,CD 在OM 的左边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGD MNO ∴∠=︒-∠=︒-︒=︒,604515AOC NGD C ∴∠=∠-∠=︒-︒=︒,∴旋转角为36036015345AOC ︒-∠=︒-︒=︒,3451523t =︒÷︒=秒,综上所述,第11或23秒时,直线CD 恰好与直线MN 垂直. 故答案为:5或17;11或23.。
七年级数学第一学期第一次学科检测(时间:120分钟 总分:150分)第一部分基础题(100分)一.选择题(每题3分,共12分)1 .(午练10T1变式)计算-X (-3)的结果是()32A. -1B. -2C. 2D.--32 .(课本P28习题T4变式)下列化简错误的是()A. - (-5) =5B. -|-4|=4C. - (-3.2) =3.2D. + (+7) =75 53 .(课本P36练一练T1变式)下列各式中,计算结果为正确的是( )A. 6- (-11) =-5B. 6-11=5C. -6-11=-17 4 .(课本P29习题T7变式)下列比较大小结果正确的是(二.填空题(每题3分,共18分) 5 .(午练4T4变式)-1的倒数是 .6 .(课本P14习题T4变式)在一次军事训练中,一架直升机“停”在离海面 80m 的低空,一艘潜水艇潜在水下50m.若直升机的高度记作+80m 则潜水艇的高度记作. 7 .(午练2T8变式)正常人行走时的步长大约是 50(填单位). 8 .(午练 5T12 变式)若|m|=|-5|,则 m=.9 .(午练6T10变式)绝对值大于2且不大于4的整数有 个.10 .(午练10T10变式)从-3, -4, 0, 5中取出两个数,所得的最大乘积是 . 三.解答题(共70分)11. (8分)(课本P17练一练变式)把下列各数填入相应的集合中:-6, 9.3, - 1,15, 0, -0.33, -0.333--, 1.41421356, -3 , 3.3030030003 …,-3.1415926. 6 正数集合:{ 日|}负数集合:{ …} 有理数集合:{ …} 无理数集合:{ …}12. (10分)(午练6T11变式)在数轴上表示下列各数,并用“V”号连接起来-(-5), -|2|, -1 1 , 0.5, -(-3), -[-4|, 3.5.213. (12分)(课本习题2.5-2.6)计算:⑴(-73)-41D. (-6) -(-11)=17 )A. 3V-7B. -5.3 V-5.4C.D. -|-3.71|>-(-0.84)(2)(-1)¥-8)166(3)(- 5)-(-0.2)+114. (12分)(午练10,11变式)计算: (1)( 1 +A- 5)x ( -60)4 12 6⑶(-5)X(-3 6)+ (-7) X ( -3-) +12X (-36) (4) 199 X (-8)7 7 7 1615. (8分)(午练11T12变式)根据下列语句列式并计算:1(2) 32与6的商减去-I 所得的差.3I 40加上-25的和与-3所得的积16. (8 分)果.(2)(-— ) x(-3 —) + (-1—) + 3;2 2 417. (12分)(午练8T13变式)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正, 向西为负,当天的行驶记录如下(单位:千米)+17, -9, +7, -17, -3, +12, -6, -8, +5, +16.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远? (2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为 8升/千米,则这次养护共耗油多少升?18 .下列说法中,正确的有()①两个有理数的和不小于每个加数 ③相反数等于本身的数为零A. 0个B. 1个C. 2个19 .计算:1-2+3-4+ • • +99-100 的值为()A. 5050B. 100C. 50D. -5020 .小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据,请确定墨迹遮盖住的整数的和为 .21 .若|a|=3, |b|=5, abv0,贝U a+b=.22 .有三个互不相等的整数 a, b, c,如果abc=3,那么a+b+c=23 .将一列有理数-1, 2,-3, 4,-5, 6,……,如图所示有序排列.根据图中的排列规律可知, “峰 1”中峰顶的位置(C 的位置)是有理数 4,那么,“峰6”中C 的位置是有理数②两个有理数的差不大于被减数④多个不为零的有理数相乘,当负因数有奇数个时积为负.D. 3个三.解答题(共32分)24. (10分)如图,小明有5张写着不同数的卡片,请你按照题目要求抽出卡片,完成下列问题(1)从中取出3张卡片,使这3张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?25. (12分)(1)已知十(-a) ]=5,求a的相反数(2)已知x的相反数是2,且2x+3a=5,求a的值.26.(10分)已知点A, B是数轴上的点,且点A表示数-3,请参照图并思考,完成下列各题:I - ।।- .....................-5 -4 -3 -2 -1 0 1 2 3 4 5(1)将A点向右移动4个单位长度,那么终点B表示的数是 ,此时A, B两点间的距离是.(2)若把数轴绕点A对折,则对折后,点B落在数轴上的位置所表示的数为.(3)若(1)中点B以每秒2个单位长度沿数轴向左运动,A不动,多长时间后,点B与点A距离为2个单位长度?试列式计算.七年级数学答案第一部分1.A2.B3.C4.C5.-76. -50m7.厘米.8. ±5.9.4 10.12…}6无理数集合:{-3 , 3.3030030003…,… }12.图略1c / C 、 C , 、—V0.5V- (-3) v 3.5V- (-5) 2(2) 7 (3)0 (4)-12 2(2)-7 (3)0 (4)-159 152(-3户 15 (-3)=-45(2) 32 +6-(- 1)=16 + : =173 3 3 316 .解:输入-1, -1+4-(-3)-5=3+3-5=1<2重新输入1, 1+4-(-3)-5=5+3-5=3>2,可以^^出.输出的结果为 3.17 . (1 )根据题意可得:向东走为“ +”,向西走为“-”;则收工时距离等于 +17-9+7-17-3+12-6-8+5+16=+14 (千米), 所以最后到达出发点正东方向移动 14千米处.(2)最远处离出发点有 17千米; (3)从开始出发,一共走的路程为 |+17|+|-9|+|+7|+|-17|+|-3|+|+12|+|-6|+|-8|+|+5|+|+16|=100 (千米),故从出发开始到结束油耗为 100X 8=800 (升).第二部分18 .C19.D20.-521. ±222.-323.-2924 . (1)抽取的3张卡片是-7、-5、+4,乘积的最大值为140. (2)抽取的2张卡片是-7、1,商的最小值-7.25 .(1)由-[-(-a) ]=5,得-a=5,则 a=-5.,a 的相反数是 8. (2)由x 的相反数是2,知x=-2,则-4+3a=5,有3a=9,解得:a=3 26.(1)1,4. (2)-7(3)[ 1-(-3)-2] 2=1,+1-(-3)+2] 2=3,+所以,1或3秒钟后,点B 与点A 距离为2个单位长度.-|-4|<-|2|<-1 13.(1)-11414.(1)10 15.(1)(40-25)。
数学试题
说明:1、本试卷分为A 卷和B 卷,其中A 卷共100分,B 卷共50分,满分150分,考试时间120分钟。
2、此试卷上不答题,所有题的答案请一律答在答题卷上。
A 卷(共100分)
一、选择题(每小题3分,共30分)
1、在数轴上距离原点4个单位长度的点所表示的数是(▲) A.4 B.–4 C. 2或–2 D. 4或–4
2、如果a ,b 满足0>+b a ,0<⋅b a ,则下列式子正确的是(▲) A.
b
a > B .
b
a <
C.当0>a ,0<b 时,b
a >
D.当0<a ,0>b 时,
b
a >
3、若x 是最大的负整数,y 是最小的正整数,z 是绝对值最小的数,w 是相反数等于它本身的数,则x-z +y-w 的值是(▲)
A. 0
B.-1
C. 1
D.-2 4、下列式子中,正确的是(▲)
A. 5-|-5|=10
B. (-1)99
= -99 C.-102
= (-10)×(-10) D.-(-22
)=4 5、数a 、b 在数轴上的位置如图所示,则下列各式正确的是(▲)
A.
a b > B.a b >- C.a b < D.a b -<-
6、下列各组数中,相等的一组是(▲)
A.3)3
2(-和323- B.32-与3)2(- C.23-与2)3(- D.223⨯与2)23(⨯
7、下列代数式的值中,一定是正数的是(▲)
A.2(1)+x
B.1+x
C.2()1-+x
D.21-+x
8、如果a a -=,那么(▲)
A.–a 一定是负数
B.–a 一定是非负数
C.a 一定是正数
D.a 不能是0
9、下列说法中正确的有(▲)
①同号两数相乘,符号不变;②异号两数相乘,积取负号;③数a 、b 互为相反数,它们的积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积. A.1个 B.2个 C..3个 D..4个 10、观察图中正方形四个顶点所标的数字规律,可知数2013应标在(▲)
A.第503个正方形的左下角
B.第503个正方形的右下角
C.第504个正方形的左下角
D.第504个正方形的右下角
二、填空题(共16分)
11、(3分)的倒数是 ▲ ;1()3
--的相反数等于 ▲ ;
= ▲ .
12、(2分)将 -32
,
,0,1
2
-
,110-这五个数按从小到大顺序排列 ▲ .
13、(2分)倒数等于它本身的数是 ▲ ;绝对值等于它本身的数是 ▲. 14、(2分)绝对值不小于1且小于4的所有负整数的和是 ▲ .
15、(2分)已知2
21(2)0x y -++=,则2006
()
xy = ▲ .
16、(3分)把下列各数填入相应的集合里: -14、45、-3.3、0、43-
、-(-23
2)、-5-、100% 正整数集:{ ▲ }; 负分数集:{ ▲ };非负数集:{ ▲ }. 17、(2分)数轴上,点A 、B 分别表示15-和1
3
,则线段AB 的中点所表示的数是__▲___.
11、 , , ;12、 ; 13、 , ; 14、 ;15、 ;16、 ; , ;17、 ; 三、解答题:(共54分) 18、计算题(每小题5分,共40分)
(1) 4)3(2---+- (2)(+0.36)-(+7.4)-(-0.3)+(-0.6)+(+0.64) (3)21742)213(73+---- (4) 25.1)12
1
2(÷-
(5)346()()43÷-⨯- (6)5
21)21(212)75(75211÷-+⨯--⨯
(7))17(59
589-⨯
(8) (-1)2013+(-5)2
×32(-1)25
2
-1÷+
19、(4分)若a 、b 互为相反数,c 、d 互为倒数, m 为数轴上与1的距离为2的数,求2
101
m 10a b
cd m +-+-1的值.
20、(6分)某下岗工人在路边开了一个小吃店,上星期日收入20元,•下表是本周星期一至星期五小吃店的收入变化情况(多收入为正,少收入为负).
(1)算出星期五该小店的收入情况; (2)算出该小店这五天平均收入多少元?
(3)请用折线统计图表示该小店这五天的收入情况,并观察折线统
计图,•写出一个正确的结论。
21、(4分)已知:,
,且a b b a -=-,求
的值.
B 卷(共50分)
一、填空题:(每小题4分,共20分)
22、冰箱开始启动时的内部温度为10o C ,若每2小时冰箱内部的温度降低9o
C ,那么3小时后冰箱内部温度是_______o
C .
23、如果a 、b 、c 为非零的有理数,当x=
|
|||||||abc abc c c b b a a -
++时, 3
23x x -+= . 24、如图,△ABC 、△DEF 、△GHK 是大小相同的等边三角形,它们的面积都是16,又知△AHF 的面积
为25
,三张纸片互相重合部分(即中间小三角形)的面积为4
,则图中三个阴影部分面积的和
为_______
.
A B
C
D 内部有1个点
A B
C
D 内部有2 个点
A B
C
D
内部有3个点
25、如图,正方形ABCD 内部有若干个点,用这些点以及正方形ABCD 的顶点A 、B 、C 、D 把原正 方形分割成一些三角形(互相不重叠):填写下表:
26、计算:)8(]1)3
()1[()31(]1)2
()2[(2
2
2
3
-÷+-÷---⨯--⨯-= . 二、解答题(共30分) 27.(每小题5分,共10分)
(1)计算:4)2(3)3(322-+-⨯+-÷--)12()43
32125(-⨯-+
(2)已知|a b -2|与3|a -2|互为相反数,试求下式:
()()()()
()()
1111
112220132013ab a b a b a b ++++
++++++的值.
28、(6分)已知有理数a 、b 、c 在数轴上对应的位置如图所示:
化简: | a -1| + | a+b | + | c -a | - | b -c | .
29、(10分)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与
3.并回答下列各题:
(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗? 答:____ .
(2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离 可以表示为____ ;若6x -=3,则x=_ .
(3)结合数轴求出21x x -++的最小值为 ,此时符合条件的整数x 为____ .
30、(4分)QQ空间是展示自我和沟通交流的网络平台.它既是网络日记本,又可以上传图片、视频等.QQ空间等级是用户资料和身份的象征,按照空间积分划分不同的等级.当用户在10级以上(含10级),每个等级与对应的积分有一定的关系.现在第10级的积分是90,第11级的积分是160,第12级的积分是250,第13级的积分是360,第14级的积分是490……
(1)若某用户的空间积分达到1000,则他(她)的等级是第级.
(2)若某用户是第n级(n=10、11、12、13……),则他(她)的积分是_
(用含有n的式子表示,直接写出答案).。