六年级奥数第06讲 - 倒推法解应用题
- 格式:docx
- 大小:101.58 KB
- 文档页数:3
六年级奥数专项用倒推法解题Company number:【0089WT-8898YT-W8CCB-BUUT-202108】用倒推法解题【知识与方法】:倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。
这种方法对于解答一些分数应用题同样适用。
【例题精讲】例题1:有一条铁丝,第一次剪下它的12又1米;第二次剪下剩下的13又1米;此时还剩下15米。
这条铁丝原来长多少米模仿练习1:一堆水泥,第一次用去它的12又3吨,第二次用剩下水泥的13又3吨,第三次又用去第二次余下的14又3吨,这时这堆水泥正好剩下3吨。
这堆水泥原来有多少吨例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的15运到甲仓库,再将甲仓库此时存粮的14运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。
那么,原来甲仓库和乙仓库中各存粮多少吨模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的27多12个,第二只分到余下的23少4个,第三只分到20个。
这筐桃子共有多少个(竞赛决赛试题)例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。
后来擦掉其中一个,剩下的数的平均数是。
那么,被擦掉的那个自然数是多少模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。
其余各数的平均数是35517。
擦去的数是多少(奥赛初赛A卷试题)例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。
如果一开始就放进8个这样的细胞,要充满整个瓶的41,需要多少秒 模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要多少小时【巩固与提高】1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。
小明今年多少岁2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的17 ,第二天它吃了余下桃子的16,第三天它吃了余下桃子的15 ,第四天它吃了余下桃子的14 ,第五天它吃了余下桃子的13 ,第六天它吃了余下桃子的12 ,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是多少(奥赛初赛试题)4、学校将一批糖果发给甲、乙、丙、丁四个班。
用倒推法解应用题【典型例题】同学们有些应用题的解法的思考,是从结果出发,利用已知条件一步一步倒着分析推理。
追根究底,逐步推出,使问题得到解决,这种思考的方法,我们叫倒推法。
例1. 小聪问小明:“你今年几岁?”小明回答说:“用我的年龄数减去8,乘以7,加上6,除以5,正好等于4,请你算一算,我今年几岁?”分析与解答:我们从最后的结果,“正好等于4”逐步倒着推,这个数没除以5时应该是多少?没加上6时应该是多少?没乘以7时是多少?没减去8时是多少?这样依次逆推,就可以推出小明的年龄数。
(1)“除以5,正好等于4”。
如果不除以5时此数是:4520⨯=(2)“加上6,此数是20”。
如果没加上6时,该数是:20614-=(3)“乘以7,此数是14”。
如果不乘以7时,这个数是:1472÷=(4)我的年龄数减去8,此数是2,如果不减去8时,我的年龄数是:2810+=综合算式:()45678147810⨯-÷+=÷+=(岁)验算:为了保证解题正确,可按原题的叙述顺序进行列式计算,看最后结果是否“正好等于4”。
若等于4,则解题正确。
[()][]10876527652054-⨯+÷=⨯+÷=÷=例2. 一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩下7米,这捆电线原来有多少米?分析与解答:为了帮助同学们分析数量关系,可依题意画图:全长的一半3米第一次用的 余下的一半10米第二次用的第三次用去 7米15米全长从线段图上可以看出:(1)7151012+-=(米)……就是第一次用去后余下的一半(2)12224⨯=(米)……就是余下的电线长度(3)24327+=(米)……就是全长的一半(4)27254⨯=(米)……原电线的长度综合:()[]()715102321223254+-⨯+⨯=⨯+⨯=(米)验算:第一次用去的:542330÷+=(米)第二次用去的:()54302102-÷-=(米)剩下的:54302157---=(米)答:这根电线原来有54米。
倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
二、精讲精练【例题1】一本文艺书,小明第一天看了全书的31,第二天看了余下的53,还剩下48页,这本书共有多少页?练习1:1、某班少先队员参加劳动,其中73的人打扫礼堂,剩下队员中的85打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2、一辆汽车从甲地出发,第一天走了全程的83,第二天走了余下的32,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?3、把一堆苹果分给四个人,甲拿走了其中的61,乙拿走了余下的52,丙拿走这时所剩的43,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的51又100米,第二天修了余下的72,还剩500米,这段公路全长多少米?练习2:1、一堆煤,上午运走72,下午运的比余下的31还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2、用拖拉机耕一块地,第一天耕了这块地的31又2公顷,第二天耕的比余下的21多3公顷,还剩下35公顷,这块地共有多少公顷?3、一批水泥,第一天用去了21多1吨,第二天用去了余下31少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1、小华拿出自己的画片的51给小强,小强再从自己现有的画片中拿出41给小华,这时两人各有画片12张,原来两人各有画片多少张?2、甲、乙两人各有人民币若干元,甲拿出51给乙后,乙又拿出41给甲,这时他们各有90元,他们原来各有多少元?【例题4】甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
有些数学问题,从条件出发顺向思考很难找到答案,倘若倒过来考 虑,则容易得多。
而这种采用与事情发生过程相反的顺序思考的解题方 法叫做倒推法。
用倒推法分析数学问题,关键是要掌握数量之间运算的关系。
能用 倒推法求解的数学问题常常满足下列三个条件: (1)已知最后的结果;(2)已知在到达最终结果时每一步的具体过程或具体做法; (3)未知的是最初的数量。
用倒推法解题的步骤也是从最后得出的结果出发,按照原题运算的 逆运算,步步逆推,从而推算出原数。
[例1】 已知甲、乙、丙三个容器各盛水若干千克。
第一次把甲容器 的一部分水倒入乙、丙两容器,使乙、丙两容器内的水分别增加到原来的2 倍,第二次从乙容器把水倒入丙、甲两容器,使丙、甲两容器水分别增加到 第二次倒之前容器内水的2倍;第三次从丙容器把水倒入甲、乙两容器。
使甲、乙两容器内的水分别增加到第三次倒之前容器内水的2倍,这时各 容器内的水都为16千克。
问甲、乙、丙三个容器内原来各有水多少千 克?思路剖析根据题中条件,画一个表格,用倒推法进行逆运算。
所以由表1可知,甲、乙、丙三个容器原来的水依次为26千克、14千[例2] 某仓库原有化肥若干吨。
第一次运出原化肥的一半,第二次 运进450吨,第三次又运出现有化肥的一半又50吨,结果剩余化肥的2倍 是1200吨。
问仓库原有化肥多少吨? 思路剖析这道题由于原有化肥的总吨数是未知的,所以要想求解是很不容易 的。
根据题意画出图1。
根据图1用倒推法可知,“剩余化肥的2倍是1200吨”,就可以求出剩 余化肥的吨数;根据“第三次运出现有化肥的一半又50吨”。
和剩余化肥 的吨数,就可以求出现有化肥的一半是多少吨?进而可求出现有化肥的 吨数;用现有化肥的吨数减去第二次运进的450吨,就可以求出原有化肥 的一半是多少,最后再求出原有化肥多少吨? 解答(1)剩余化肥的吨数是:1200÷2=600(吨) (2)现有化肥的一半是:600+50=650(吨) (3)现有化肥的吨数是:650×2=1300(吨) (4)原有化肥的一半是:1300-450=850(吨)(5)原有化肥的吨数是.850×2=1700(吨)综合列式计算:[(1200÷2+50)×2-450]×2=[(600+50)×2-450]×2=(650×2-450)×2=(1300-450)×2=850×2=1700(吨)答:原有化肥为1700吨。
小学奥数之倒推法例题讲解例题:商店购进一种商品来销售,第一天卖出总数的17又8个,第二天卖出余下的14又5个,第三天卖出余下的25又15个,正好卖完。
求这种商品原有多少个?分析:有时候一些应用题里面有多个单位“1”,或者说单位“1”不统一,这时候我们该怎么办呢?就像上面这题,“原来的商品个数”是一个单位“1”,第二天余下的商品是另一个单位“1”,第三天余下的商品又是另一个单位“1”。
这个时候我们就可以运用“倒推法”,从结果出发一步步往前推。
首先我们画出线段图:先推理①的数量:根据题意“第三天卖出余下的25又15个,正好卖完。
”,可知15个占了①的(1-25),因此我们用除法可以求出①的数量。
15÷(1-25)=15÷35=25(个)再推理②的数量:根据题意“第二天卖出余下的14又5个”,可知②的数量+5,就占了②的(1-14),因此我们用除法可以求出②的数量。
(25+5)÷(1-14)=40(个)最后推理③的数量:根据题意“第一天卖出总数的17又8个”,可知③的数量+8,就占了③的(1-17),因此我们用除法可以求出③的数量。
(40+8)÷(1-17)=56(个)答:这种商品原有56个。
老司机的话:这种题型虽然也可以用初中的“一元一次方程”做出来,但小学生不好理解。
我们灵活运用“线段图”和“倒推法”,可以有效率地提高小学生的思维能力,促进他们智力的开发。
“倒推法”在其他领域也有不少用处,例如名侦探查案的时候,可以根据现场的蛛丝马迹查出坏人是谁。
是一种很有趣的方法呢~。
六年级奥数培优 应用题倒推法解题1、理解三类基本倒推法应用题的分析思考方法;2、会根据题目的特征画出合适的图示进行分析解答。
例题1、一个数乘以7后,再加上7,结果再除以7,最后再减7,此时结果为7.原来这个数是多少?举一反三1、一个数减去5,再乘以5,加上5,最后再除以5,结果得2.这个数原来是多少?2、王老师今年年龄除以4,再加上4,再乘以4,最后减去4,结果得44.王老师明年多少岁考点归纳学习思考例题2、一堆西瓜,第一次卖出总数的41又4个,第二次卖出余下的21又2个,第三次又卖出余下的21又2个,还剩2个。
这堆西瓜共有多少个?举一反三 1、一批水泥,第一天用去了21多1吨,第二天用去了余下的31少2吨,还剩下16吨。
原来水泥有多少吨?2、仓库存量若干吨,第一天运了总数的101,以后8天分别运了现有存量的,71,81,91……,21,31,运了9天后,仓库还剩2015吨。
仓库原存量多少吨?例题3、甲、乙各存款若干元,甲拿了存款的51给乙后,乙再拿出现有存款的41给甲,这时他们各有180元。
两人原存款多少元?举一反三1、有甲、乙两桶油,从甲桶中倒出31油给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有36千克。
原来甲、乙两个桶中各有油多少千克?2、甲、乙两瓶酒精共有200千克,甲倒出20%给乙后,乙又倒出这时酒精的25%给甲,结果两瓶酒精的重量相等。
原来甲、乙两瓶酒精各有多少千克?1、一个数除以8后,再加上8,最后再减去8得6.这个数原来是多少?2、一堆煤,第一天运了总数的40%后,第二天运了余下的40%少12吨,结果还剩42吨。
原来这批煤共有多少吨?3、甲、乙两筐梨共有240千克,第一次甲拿20%给乙,第二次乙又拿了这时的31给甲,此时两筐梨的重量比为3:2。
原来两筐梨的重量各是多少千克?自我检测。
10
1、把一堆苹果分给四个人,甲拿走了其中的1
6
,乙拿走了余下的
2
5
,丙拿走这时所剩的
3
4
,丁拿走最后剩下的
15个,这堆苹果共有个。
2、一批水泥,第一天用去了1
2
多1吨,第二天用去了余下
1
3
少2吨,还剩下16吨,原来这批水泥有吨。
3、一瓶酒精,第一次倒出1
3
,然后倒回瓶中40克,第二次再倒出瓶中酒精的
5
9
,第三次倒出180克,瓶中好剩
下60克,原来瓶中有克酒精。
4、甲、乙、丙三个仓库面粉袋数的比是6:9:5,如果从乙仓库拿出400袋平均分给甲、丙两仓库,则甲、乙两
个仓库的数量相等。
这三个仓库共存面粉袋。
5、甲、乙两个仓库各有粮食若干吨,从甲仓库运出1
3
到乙仓库后,又从乙仓库运出
1
3
到甲仓库,这时甲、乙两
仓库的粮食储量相等。
原来甲仓库的粮食是乙仓库的。
小学奥数之用倒推法解应用题例1.___在做一道加法题时,把个位上的8误看成了9,把十位上的8误看成了3,结果和为243.问正确的答案应该是多少?解答:___把个位上的8看成9,使得和增加了1;把十位上的8看成3,使和减少了50.因此,我们可以将这道题转化为求某个数加1,减去50等于243,即:x+1-50=243x+1=293x=292例2.___有若干本书,如果他的书本数加上3,再减去4,然后除以5,再乘以6等于12本。
问___有多少本书?解答:我们可以列出以下四个式子:小明的本数+3=和(1)和-4=差(2)差÷5=商(3)商×6=12(4)根据所给式子,倒推可得___的书本数为:商=12÷6=2差=2×5=10和=10+4=14小明的书本数=14-3=11例3.___、___、___各有若干个球,___给___和___各与其现有球数相同的球,然后___和___分别按照___和自己手中的球数添球,最后三人手中各有24个球。
原来三人各有几个球?解答:以第三次添球开始倒推。
因为第三次后各人都有24个球,所以在第三次(___)添球前,___手中有24÷2=12个球,___手中也有12个球,而___的球应该是24+12+12=48个。
第二次添球后,三人手中分别有12、12、48个球,同样地,我们倒推得到第二次添球前:___手中球数是6个,___手中球数是24个,___手中的球数是6+24+12=42个。
因此,原来三人有的球数分别是:___12个,___21个,___39个。
例4.仓库里原本有若干吨煤。
第一天上午运出原有煤的一半,下午运出5吨;第二天上午运出剩下煤的一半,下午运出5吨;第三天上午又运出剩下煤的一半,下午再运出5吨。
这时仓库还剩有24吨煤。
仓库里原有煤多少吨?解答:仓库里最后剩下的煤加上第三天下午运出的5吨,等于第三天上午运出的煤,所以第三天在未运输之前,总共有煤:(24+5)×2=58吨。
10
1、把一堆苹果分给四个人,甲拿走了其中的1
6
,乙拿走了余下的
2
5
,丙拿走这时所剩的
3
4
,丁拿走最后剩下的
15个,这堆苹果共有个。
2、一批水泥,第一天用去了1
2
多1吨,第二天用去了余下
1
3
少2吨,还剩下16吨,原来这批水泥有吨。
3、一瓶酒精,第一次倒出1
3
,然后倒回瓶中40克,第二次再倒出瓶中酒精的
5
9
,第三次倒出180克,瓶中好剩
下60克,原来瓶中有克酒精。
4、甲、乙、丙三个仓库面粉袋数的比是6:9:5,如果从乙仓库拿出400袋平均分给甲、丙两仓库,则甲、乙两
个仓库的数量相等。
这三个仓库共存面粉袋。
5、甲、乙两个仓库各有粮食若干吨,从甲仓库运出1
3
到乙仓库后,又从乙仓库运出
1
3
到甲仓库,这时甲、乙两
仓库的粮食储量相等。
原来甲仓库的粮食是乙仓库的。