R5460 锂电保护IC
- 格式:pdf
- 大小:507.53 KB
- 文档页数:23
R5460xxxxxx 系列概要R5460xxxxxx 系列是高耐压、CMOS 工艺的电池保护IC,用于2 节串联锂离子/锂聚合物可充电电池的过充电/过放电保护,还内置了负载短路保护电路以防止大的负载短路电流;内置了过电流保护电路以防止放电过电流和充电过电流。
该系列中的每款IC 均由六个电压检测器,一个基准单元,一个延时电路,一个负载短路保护电路,一个振荡器,一个计数器和一个逻辑模块构成。
当充电电压/充电电流由低变高,超过了对应检测器的阈值时,在一个内置固定延时后,引脚C OUT 的输出就会切换到低电平。
解除过充电保护的方法:检测到过充电或充电过电流之后,将电池与充电器断开,再接上负载,当电池电压低于过充电检测器阈值时,过充电检测器才可以被重置,C OUT 输出才会变回高电平。
如果充电器一直连接在电池上,当电池电压低于过充电解除电压时,过充电保护就会被解除。
当放电电压由高变低,小于过放电检测阈值V DET2 时,在一个内置固定延时后,引脚D OUT 的输出(和过放电检测器及过电流检测器的输出相关)将切换到低电平。
检测到过放电之后,解除过放电保护的条件如下:A/D 版本:给电池接上充电器,只要电池电压大于等于过放电检测电压;或者,不接充电器,只要电池电压高于过放电解除电压,过放电保护就会解除,D OUT 输出变回高电平。
C 版本:给电池接上充电器,只要电池电压大于等于过放电检测电压,过放电保护就会解除,D OUT输出变回高电平。
E 版本:不论电池是否接上充电器,只要电池电压大于等于过放电解除电压,过放电保护就会解除,D OUT 输出变回高电平。
F 版本:给电池接上充电器,只要电池电压大于等于过放电解除电压,过放电保护就会解除,D OUT输出变回高电平。
对于A/C/D 版本,在连接充电器的情况下,过放电检测器没有滞回功能。
对于E/F 版本,即使充电器连接在电池上,过放电检测器仍然存在滞回功能。
即使电池自放电到0V,仍然允许对其充电。
锂电池正极保护芯片嘿,朋友们!今天咱来聊聊锂电池正极保护芯片这个神奇的小玩意儿。
你说这锂电池啊,就像我们身体里流淌的血液一样重要,给各种电子设备提供着能量呢!而这正极保护芯片呢,那就是锂电池的超级卫士呀!它就好比是小区门口站岗的保安大叔,时刻守护着锂电池的安全。
想想看,如果没有这个保护芯片,那锂电池就像没了缰绳的野马,指不定啥时候就闯出乱子来啦!它可能会因为过充、过放或者其他一些啥原因受到损害,那可就麻烦咯!这保护芯片可机灵着呢,一旦察觉到有啥不对劲,立马就行动起来,坚决不让锂电池受到一点点伤害。
咱平常使用的手机啊、电脑啊,里面可都有锂电池和它的保护芯片呢。
你想想,要是没有保护芯片,咱的手机说不定哪天充电的时候就“嘭”的一声,那多吓人呀!这保护芯片就默默地在那里工作着,不声不响地为我们的电子设备保驾护航。
它就像是一个幕后英雄,我们可能平时都不会特别注意到它,但它却一直在那里坚守岗位。
你说这是不是很了不起呀?而且啊,这保护芯片的技术也是在不断进步呢!就跟我们人一样,得不断学习进步才能跟得上时代的步伐呀。
现在的保护芯片越来越智能啦,能更好地应对各种复杂的情况。
它就像是一个经验丰富的老兵,不管遇到啥样的挑战都能从容应对。
你说它厉害不厉害?反正我是觉得挺厉害的呢!那我们在使用带有锂电池和保护芯片的设备时,也得好好对待它们呀!可别乱折腾,不然保护芯片也会很无奈呀!就好比你对保安大叔不尊重,他还能好好给你站岗吗?所以呀,我们要好好爱护我们的电子设备,让保护芯片能更好地发挥它的作用。
说真的,这锂电池正极保护芯片真的是个很重要的东西呀!它让我们的电子生活更加安全、可靠。
我们真应该好好感谢这些默默奉献的小英雄呢!你说是不是呀?所以呀,大家以后可要多留意一下这个小小的保护芯片哦,它可在为我们的电子世界默默守护着呢!。
锂电保护ic锂电保护IC是一种用于锂电池保护及管理的集成电路。
随着锂电池的广泛应用,对其安全性和性能的要求也越来越高。
而锂电保护IC 则扮演着至关重要的角色,能够有效地保护锂电池免受过电压、过充、过放、过流和短路等异常情况的损害。
锂电池因其高能量密度、长寿命和轻量化等优势,被广泛应用于手机、笔记本电脑、电动车、无人机等领域。
然而,与其带来的便利性和高效性相对应的是锂电池带来的一系列安全隐患。
例如,过充会导致电池膨胀、甚至爆炸;过放会导致电池容量下降,影响其使用寿命;过流和短路会使电池内部产生过多的热量,使得电池温度升高,不仅影响电池性能,还会对周围环境造成危险。
为了解决这些问题,锂电保护IC应运而生。
锂电保护IC通常由电压检测电路、电流检测电路、温度检测电路等组成。
当锂电池内部发生异常情况时,锂电保护IC会及时发出警报信号,或者切断电池与负载之间的连接,以保护锂电池的安全运行。
首先,锂电保护IC的电压检测电路能够实时监测锂电池的电压,确保电池工作在安全范围内。
当电压超过设定的上限值时,保护IC会立即切断电池与负载之间的连接,防止电池继续充电。
而当电压低于设定的下限值时,保护IC会切断电池供电,以防止电池过放。
其次,锂电保护IC的电流检测电路能够监测电池与负载之间的电流。
当电流超过设定的最大值时,保护IC会切断电池与负载之间的连接,以防止过流产生过多的热量和电池损坏。
此外,锂电保护IC还具备温度检测功能。
当电池温度超过设定的上限值时,保护IC会发出警报,并切断电池与负载之间的连接,以防止过热导致电池内部发生热失控。
除了上述的基本功能外,一些高级的锂电保护IC还具备平衡充电和SOC估算等功能。
平衡充电功能可以确保锂电池各个单体之间的电压平衡,延长电池的寿命。
SOC估算功能可以实时估算锂电池的剩余电量,提供准确的电池使用情况。
总之,锂电保护IC通过监测和控制电池的电压、电流和温度等参数,有效地保护锂电池的安全性和性能,降低了锂电池的使用风险。
R5478N_E_20101214.doc/2010/12/14 PRELIMINARYLi-ION/POLYMER 1CELL PROTECTORR5478Nxxxx SERIESOUTLINEThe R5478Nxxxxx Series are high voltage CMOS-based protection ICs for over-charge/discharge of re-chargeable one-cell Lithium-ion (Li+) / Lithium polymer excess load current, further include a short circuit protector for preventing large external short circuit current and Excess charge/discharge-current.Each of these ICs is composed of three voltage detectors, a reference unit, a delay circuit, a short circuit protector, an oscillator, a counter, and a logic circuit. When the over-charge voltage crosses the detector threshold from a low value to a high value, the output of C OUT pin switches to low level after internal fixed delay time. The conditions to release over-charge detector are different by mask options. In terms of so called “Latch function” version, after detecting over-charge, the detector can be reset and the output of C OUT becomes "H" when a kind of load is connected to V DD after a charger is disconnected from the battery pack, and the cell voltage becomes lower than over-charge detector threshold. If a charger is continue to be connected to the battery pack, even the cell voltage becomes lower than over-charge detector threshold, over-charge state is not released. On the other hand, in terms of so called, “ Released by voltage level” version, after detecting over-charge, when the cell voltage reaches the released voltage from over-charge, the output of C OUT becomes “H”The output of D OUT pin, the output of Over-discharge detector and Excess discharge-current detector, switches to “L” level after internally fixed delay time, when discharged voltage crosses the detector threshold from a high value to a value lower than V DET2.The conditions to release over-discharge detector are also different by mask options. In terms of so called “Latch function” version, after detecting over-discharge voltage, connect a charger to the battery pack, and when the battery supply voltage becomes higher than over-discharge detector threshold, VD2 is released and the voltage of D OUT pin becomes "H" level. On the other hand, in terms of so called “Released by voltage level” version, in case that the charger is not connected, when the cell voltage becomes equal released voltage from over-discharge, over-discharge detector is released. In case that a charger is connected, and when the cell voltage becomes the released voltage from over-discharge, the over-discharge detector is released.An excess discharge-current and short circuit state can be sensed and cut off through the built in excess current detector, VD3, with D OUT being enabled to low level. Once after detecting excess discharge-current or short circuit, the VD3 is released and D OUT level switches to high by detaching a battery pack from a load system.After detecting over-discharge, supply current will be kept extremely low by halting internal circuits' op-eration.When the output of C OUT is “H”, if V- pin level is set at Vss-2V, the delay time of detector can be shortened. Especially, the delay time of over-charge detector can be reduced into approximately 1/57. Therefore, testing time of protector circuit board can be reduced. Output type of C OUT and D OUT are CMOS. 6-pin, SOT-23-6 is available.R5478Nxxxxx PRELIMINARYFEATURES•Manufactured with High Voltage Tolerant Process...Absolute Maximum Rating 30V•Low supply current..................................Supply current (At normal mode) Typ. 3.0µAC version: (detecting over-discharge) Max. 0.1µAD/J version: (detecting over-discharge) Typ. 1.2μA/Max. 2.0μA•High accuracy detector threshold.............Over-charge detector (Topt=25°C) ±25mV(Topt=-5 to 55°C) ±30mV±2.5%detectorOver-dischargeExcess discharge-current detector ±15mV•Variety of detector threshold ...................Over-charge detector thresholdC version: 4.2V-4.5V step of 0.005VD/J version: 3.65VOver-discharge detector threshold 2.1V-3.0V step of 0.100VExcess discharge-current threshold0.05V-0.20V step of 0.005VShort Detector Threshold Fixed at 0.8V•Internal fixed Output delay time...............Over-charge detector Output Delay 1s(Select among the options) Over-discharge detector Output Delay 20msExcess discharge-current detector Output Delay 12ms(C Type) / 6ms(E Type)Short Circuit detector Output Delay 300µs(C Type) / 200µs(E Type)•Output Delay Time Shortening Function..At COUT is “H”, if V- level is set at –2V, the Output Delay time ofall items except short-circuit can be reduced. (Delay Time forover-charge becomes about 1/57 of normal state.)•Conditions for release over-charge detector With Latch function (C version)With Released voltage ((D/J version)•Conditions for Release over-discharge detector Latch Type: (C version)................................................................ Released Voltage (D/J version)•Ultra Small package.................................SOT-23-6APPLICATIONS•Li+ / Li Polymer protector of over-charge, over-discharge, excess-current for battery pack•High precision protectors for cell-phones and any other gadgets using on board Li+ / Li Polymer batteryR5478Nxxxxx PRELIMINARYBLOCK DIAGRAMSC versionD/J versionR5478Nxxxxx PRELIMINARYSELECTION GUIDEIn the R5478xxxxx Series, three of the input threshold for over-charge, over-discharge, and excess discharge current detectors can be designated.Part Number is designated as follows:R5478N xxx x x-xx ←Part Number↑ ↑ ↑ ↑ ↑a b c d eCode Contentsa Package Type N: SOT-23-6b Serial Number for the R5478 Series designating input four threshold for over-charge, over-discharge, and excess discharge-current detectors.cDesignation of Output delay option of over-charge, and excess dis-charge-current.dDesignation of version symbolsC version: With Latch function after Over-charge and Over-dischargeD version: Released by voltage level from Over-charge and Over-discharge J version: Released by voltage level from Over-charge and Over-discharge Over-charge level = 3.65V OnlyeTaping Type: TR (refer to Taping Specification)PIN CONFIGURATIONSSOT-23-6123R5478Nxxxxx PRELIMINARYPIN DESCRIPTIONPin No. Symbol Description1 D OUT Output of over-discharge detection, CMOS output2 V- Pin for charger negative input3 C OUT Output of over-charge detection, CMOS output4 NC No Connection5 V DD Power supply pin, the substrate voltage level of the IC.6 V SS Vss pin. Ground pin for the ICABSOLUTE MAXIMUM RATINGSV SS=0VSymbol Item Ratings UnitV DD Supply voltage -0.3 to 12 VV-Input VoltageV- pinV DD -30 to V DD +0.3 VVC OUT VD OUT Output voltageC OUT pinD OUT pinV DD -30 to V DD +0.3V SS -0.3 to V DD +0.3VVP D Power dissipation 150 mW Topt Operating temperature range -40 to 85 °CTstg Storage temperature range -55 to 125 °C*Note: Exposure to the condition exceeded Absolute Maximum Ratings may cause the permanentdamages and affects the reliability and safety of both device and systems using the device.The functional operations cannot be guaranteed beyond specified values in the Recommended conditions.R5478Nxxxxx PRELIMINARYELECTRICAL CHARACTERISTICS Unless otherwise specified, Topt=25°C*R5478N1xxECSymbol Item Conditions Min. Typ. Max. UnitV DD1 Operating input voltage Voltage defined asV DD-V SS 1.5 5.0 VVst Minimum operating Voltage for 0Vcharging *Note 1Voltage defined asV DD-V-,V DD-V SS=0V 1.8 VV DET1 Over-charge threshold Detect rising edge of supply voltageR1=330ΩR1=330Ω (Topt=-5 to 55°C)*Note3V DET1-0.025V DET1-0.030V DET1V DET1V DET1+0.025V DET1+0.030VVtV DET1 Output delay of over-charge V DD=3.6V to 4.4V 0.7 1.0 1.3 s tV REL1 Output delay of release from over-charge V DD=4.5V to 3.6V 11 16 21 ms V DET2 Over-discharge threshold Detect falling edge of supply voltage V DET2×0.975 V DET2 V DET2×1.025 V tV DET2 Output delay of over-discharge V DD=3.6V to 2.2V 14 20 26 ms tV REL2 Output delay of release from over-discharge V DD=3V V-=3V to 0V 0.7 1.2 1.7 ms V DET3 Excess discharge-current threshold Detect rising edge of 'V-' pin voltage V DET3-0.015 V DET3 V DET3+0.015 VtV DET3 Output delay of excess dis-charge-currentV DD=3.0V, V-=0V to 0.4V 4 6 8 mstV REL3 Output delay of release from excessdischarge-current V DD=3.0V, V-=3V to 0V 0.7 1.2 1.7 msVshort Short protection voltage V DD=3.0V 0.50 0.75 0.95 V Tshort Output Delay of Short protection V DD=3.0V, V-=0V to 3V 150 200 300 µsRshort Reset resistance for Excess dis-charge-current protection V DD=3.6V, V-=1V 25 50 75 kΩV DS Delay Shortening Mode input voltage V DD=4.4V -2.6 -2.0 -1.4 VV OL1 Nch ON voltage of C OUT Iol=50µA, V DD=4.5V 0.4 0.5 VV OH1 Pch ON voltage of C OUT Ioh=-50µA, V DD=3.9V 3.4 3.7 VV OL2 Nch ON voltage of D OUT Iol=50µA, V DD=2.0V 0.2 0.5 VV OH2 Pch ON voltage of D OUT Ioh=-50µA, V DD=3.9V 3.4 3.7 VI DD Supply current V DD=3.9V, V- =0V 3.0 7.0 µAI S Standby current V DD=2.0V 0.1 µA*Note: We compensate for this characteristic related to temperature by laser-trim, however, this specification is guaranteed by design, not production tested.R5478Nxxxxx PRELIMINARY *R5478N1xxCD Unlessotherwisespecified,Topt=25°CSymbol Item Conditions Min. Typ. Max. UnitV DD1 Operating input voltage Voltage defined asV DD-V SS 1.5 5.0 VVst Minimum operating Voltage for 0Vcharging *Note 1Voltage defined asV DD-V-,V DD-V SS=0V 1.8 VV DET1 Over-charge threshold Detect rising edge of supply voltageR1=330ΩR1=330Ω (Topt=-5 to 55°C)*Note3V DET1-0.025V DET1-0.030V DET1V DET1V DET1+0.025V DET1+0.030VVV REL1Released Voltage from Over-charge Detect falling edge of supply voltage V REL1-0.05 V REL1V REL1+0.05 V tV DET1 Output delay of over-charge V DD=3.6V to 4.4V 0.7 1.0 1.3 stV REL1 Output delay of release from over-charge V DD=4.5V to 3.6V 11 16 21 msV DET2 Over-discharge threshold Detect falling edge of supply voltage V DET2×0.975 V DET2 V DET2×1.025 V V REL2Released Voltage from Over-discharge Detect rising edge of supply voltage V REL2×0.975 V REL2 V REL2×1.025 V tV DET2 Output delay of over-discharge V DD=3.6V to 2.2V 14 20 26 ms tV REL2 Output delay of release from over-discharge V DD=3V V-=3V to 0V 0.7 1.2 1.7 ms V DET3 Excess discharge-current threshold Detect rising edge of 'V-' pin voltage V DET3-0.015 V DET3 V DET3+0.015 VtV DET3 Output delay of excess dis-charge-currentV DD=3.0V, V-=0V to 0.4V 8 12 16 mstV REL3 Output delay of release from excessdischarge-current V DD=3.0V, V-=3V to 0V 0.7 1.2 1.7 msVshort Short protection voltage V DD=3.0V 0.50 0.75 0.95 V Tshort Output Delay of Short protection V DD=3.0V, V-=0V to 3V 230 300 500 µsRshort Reset resistance for Excess dis-charge-current protection V DD=3.6V, V-=1V 25 50 75 kΩV DS Delay Shortening Mode input voltage V DD=4.4V -2.6 -2.0 -1.4 VV OL1 Nch ON voltage of C OUT Iol=50µA, V DD=4.5V 0.4 0.5 VV OH1 Pch ON voltage of C OUT Ioh=-50µA, V DD=3.9V 3.4 3.7 VV OL2 Nch ON voltage of D OUT Iol=50µA, V DD=2.0V 0.2 0.5 VV OH2 Pch ON voltage of D OUT Ioh=-50µA, V DD=3.9V 3.4 3.7 VI DD Supply current V DD=3.9V, V- =0V 3.0 7.0 µAI S Standby current V DD=2.0V 1.2 2.0 µA*Note: We compensate for this characteristic related to temperature by laser-trim, however, this specification is guaranteed by design, not production tested.R5478Nxxxxx PRELIMINARY *R5478N1xxCJ Unlessotherwisespecified,Topt=25°CSymbol Item Conditions Min. Typ. Max. UnitV DD1 Operating input voltage Voltage defined asV DD-V SS 1.5 5.0 VVst Minimum operating Voltage for 0Vcharging *Note 1Voltage defined asV DD-V-,V DD-V SS=0V 1.8 VV DET1 Over-charge threshold Detect rising edge of supply voltageR1=330ΩR1=330Ω (Topt=-5 to 55°C)*Note3V DET1-0.025V DET1-0.030V DET1V DET1V DET1+0.025V DET1+0.030VVV REL1Released Voltage from Over-charge Detect falling edge of supply voltage V REL1-0.05 V REL1V REL1+0.05 V tV DET1 Output delay of over-charge V DD=3.6V to 4.4V 0.7 1.0 1.3 stV REL1 Output delay of release from over-charge V DD=4.5V to 3.6V 11 16 21 msV DET2 Over-discharge threshold Detect falling edge of supply voltage V DET2×0.975 V DET2 V DET2×1.025 V V REL2Released Voltage from Over-discharge Detect rising edge of supply voltage V REL2×0.975 V REL2 V REL2×1.025 V tV DET2 Output delay of over-discharge V DD=3.6V to 2.2V 14 20 26 ms tV REL2 Output delay of release from over-discharge V DD=3V V-=3V to 0V 0.7 1.2 1.7 ms V DET3 Excess discharge-current threshold Detect rising edge of 'V-' pin voltage V DET3-0.015 V DET3 V DET3+0.015 VtV DET3 Output delay of excess dis-charge-currentV DD=3.0V, V-=0V to 0.4V 8 12 16 mstV REL3 Output delay of release from excessdischarge-current V DD=3.0V, V-=3V to 0V 0.7 1.2 1.7 msVshort Short protection voltage V DD=3.0V 0.50 0.75 0.95 V Tshort Output Delay of Short protection V DD=3.0V, V-=0V to 3V 230 300 500 µsRshort Reset resistance for Excess dis-charge-current protection V DD=3.6V, V-=1V 25 50 75 kΩV DS Delay Shortening Mode input voltage V DD=4.4V -2.6 -2.0 -1.4 VV OL1 Nch ON voltage of C OUT Iol=50µA, V DD=4.5V 0.4 0.5 VV OH1 Pch ON voltage of C OUT Ioh=-50µA, V DD=3.9V 3.4 3.7 VV OL2 Nch ON voltage of D OUT Iol=50µA, V DD=2.0V 0.2 0.5 VV OH2 Pch ON voltage of D OUT Ioh=-50µA, V DD=3.9V 3.4 3.7 VI DD Supply current V DD=3.9V, V- =0V 3.0 7.0 µAI S Standby current V DD=2.0V 1.2 2.0 µA*Note: We compensate for this characteristic related to temperature by laser-trim, however, this specification is guaranteed by design, not production tested.R5478Nxxxxx PRELIMINARYOPERATION•VD1 / Over-Charge DetectorThe VD1 monitors V DD pin voltage while charge the battery pack. When the V DD voltage crosses over-charge detector threshold V DET1 from a low value to a value higher than the V DET1, the VD1 can detect over-charge and an external charge control Nch MOSFET turn off with C OUT pin being at "L" level.In terms of B /C version, to reset the VD1 making the C OUT pin level to "H" again after detecting over-charge, in such conditions that a time when the V DD voltage is down to a level lower than over-charge voltage, by connecting a kind of loading to V DD after disconnecting a charger from the battery pack. Output voltage of C OUT pin becomes "H", and it makes an external Nch MOSFET turn on, and charge cycle is available. In other words, once over-charge is detected, even if the supply voltage becomes low enough, if a charger is continuously connected to the battery pack, recharge is not possible. Therefore this over-charge detector has no hysteresis. To judge whether or not load is connected, the built-in excess-discharge current detector is used. In other words, by connecting some load, V- pin voltage becomes equal or more than excess-discharge current detector threshold, and reset the over-charge detecting state.In terms of D version, after detecting over-charge, if V DD pin voltage is lower than released from over-charge, even if a charger is connected, over-charge detector is released. Further, in case that V DD pin level is lower than detector threshold and higher than released voltage from over-charge, if a charger is removed and some load is connected, over-charge detector is also released.After detecting over-charge with the V DD voltage of higher than V DET1, connecting system load to the battery pack makes load current allowable through parasitic diode of external charge control FET.The C OUT level would be "H" when the V DD level is down to a level below the V DET1 by continuous drawing of load current.Internal fixed output delay times for over-charge detection and release from over-charge exist. Even when the V DD pin level becomes equal or higher level than V DET1 if the V DD voltage would be back to a level lower than the V DET1 within a time period of the output delay time, VD1 would not output a signal for turning off the charge control FET. Besides, after detecting over-charge, while the V DD is lower than over-charge detector, even if a charger is removed and a load is connected, if the voltage is recovered within output delay time of release from over-charge, over-charge state is not released.A level shifter incorporated in a buffer driver for the C OUT pin makes the "L" level of C OUT pin to the V - pin voltage and the "H" level of C OUT pin is set to V DD voltage with CMOS buffer.•VD2 / Over-Discharge DetectorThe VD2 is monitoring a V DD pin voltage. When the V DD voltage crosses the over-discharge detector threshold V DET2 from a high value to a value lower than the V DET2, the VD2 can detect an over-discharge and the external discharge control Nch MOSFET turns off with the D OUT pin being at "L" level.In terms of C version, to reset the VD2 with the D OUT pin level being "H" again after detecting over discharge, it is necessary to connect a charger to the battery pack. When the V DD voltage stays under over-discharge detector threshold V DET2, charge-current can flow through parasitic diode of an external discharge control MOSFET, then after the V DD voltage comes up to a value larger than V DET2, then, D OUT becomes "H" and dis-charging process would be able to advance through ON state MOSFET for discharge control.Connecting a charger to the battery pack makes the D OUT level being "H" instantaneously when the V DD voltage is higher than V DET2.In terms of B/D version, released operation by connecting a charger is same as C version. However, without a charger, if V DD pin voltage is equal or more than the released voltage from over-discharge, D OUT pin becomes “H” immediately.R5478Nxxxxx PRELIMINARYWhen a cell voltage equals to zero, if the voltage of a charger is equal or more than 0V-charge minimum voltage (Vst), C OUT pin becomes "H" and a system is allowable to charge.An output delay time for over-discharge detection is fixed internally. When the V DD level is down to a equal or lower level than V DET2 if the V DD voltage would be back to a level higher than the V DET2 within a time period of the output delay time, VD2 would not output a signal for turning off the discharge control FET. Output delay time for release from over-discharge is also set.After detecting over-discharge by VD2, supply current would be reduced and be into standby by halting unnecessary circuits and consumption current of IC itself is made as small as possible.The output type of D OUT pin is CMOS having "H" level of V DD and "L" level of V SS.•VD3 /Excess discharge-current Detector, Short Circuit ProtectorBoth of the excess current detector and short circuit protection can work when the both of control FETs are in "ON" state.When the V- pin voltage is up to a value between the short protection voltage Vshort /V DD and excess dis-charge-current threshold V DET3, VD3 operates and further soaring of V- pin voltage higher than Vshort makes the short circuit protector enabled. This leads the external discharge control Nch MOSFET turns off with the D OUT pin being at "L" level.An output delay time for the excess discharge-current detector is internally fixed.A quick recovery of V- pin level from a value between Vshort and V DET3 within the delay time keeps the discharge control FET staying "H" state. Output delay time for Release from excess discharge-current detection is also set.When the short circuit protector is enabled, the D OUT would be "L" and the delay time is also set.The V - pin has a built-in pull-down resistor to the Vss pin, that is, the resistance to release from ex-cess-discharge current.After an excess discharge-current or short circuit protection is detected, removing a cause of excess dis-charge-current or external short circuit makes an external discharge control FET to an "ON" state automati-cally with the V- pin level being down to the V SS level through built-in pulled down resistor. The reset resistor of excess discharge-current is off at normal state. Only when detecting excess discharge-current or short circuit, the resistor is on.Output delay time of excess discharge-current is set shorter than the delay time for over-discharge detector. Therefore, if V DD voltage would be lower than V DET2 at the same time as the excess discharge-current is detected, the R5478xxxxxx is at excess discharge-current detection mode. By disconnecting a load, VD3 is automatically released from excess discharge-current.•DS (Delay Shorten) functionOutput delay time of over-charge, over-discharge, and release from those detecting modes can be shorter than those setting value by forcing equal or less than the delay shortening mode voltage to V- pin.R5478Nxxxxx PRELIMINARY TYPICAL APPLICATIONAPPLICATION HINTSR1 and C1 will stabilize a supply voltage to the R5478xxxxxx. A recommended R1 value is less than 1kΩ.A larger value of R1 leads higher detection voltage, makes some errors because of some conduction current may flow in the R5478xxxxxx. To stabilize the operation, the value of C1 should be equal 0.01μF.R1 and R2 can operate also as parts for current limit circuit against reverse charge or applying a charger with excess charging voltage to the R5478xxxxxx, battery pack. Small value of R1 and R2 may cause over-power consumption rating of power dissipation of the R5478xxxxx. Thus, the total value of 'R1+R2' should be equal or more than 1kΩ.On the other hand, if large value of R2 is set, release from over-discharge by connecting a charger might not be possible. Recommended R2 value is equal or less than 10kΩ.The typical application circuit diagram is just an example. This circuit performance largely depends on the PCB layout and external components. In the actual application, fully evaluation is necessary.Over-voltage and the over current beyond the absolute maximum rating should not be forced to the pro-tection IC and external components.We are making our continuous effort to improve the quality and reliability of our products, but semicon-ductor products are likely to fail with certain probability. In order prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire-containment feature and fail-safe feature.We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.- 11 -R5478Nxxxxx PRELIMINARY- 12 -N : SOT23-6C : Over-Charge = Latch Over-Discharge = LatchD : Over-Charge = Auto-Release Over-Discharge = Auto Release J : Over-Charge = Auto-Release Over-Discharge = Auto Release Vdet1=3.65V onlyDelay Time VersionVoltage Version。
锂电池保护ic电路工作原理锂电池保护IC是一种用于锂电池组的电池管理系统的关键元件。
它的主要功能是监测和保护锂电池组的电压、电流和温度,以确保锂电池组的安全运行。
本文将从锂电池保护IC的工作原理、结构和应用等方面进行描述。
一、锂电池保护IC的工作原理锂电池保护IC是通过监测锂电池组的电压、电流和温度等参数来实现对锂电池组的保护。
它通过内部的比较器对这些参数进行比较和判断,当锂电池组的状态异常时,锂电池保护IC会采取相应的保护措施,以防止电池的过充、过放、过流和过温等情况的发生。
锂电池保护IC通常由电压检测电路、电流检测电路、温度检测电路和保护控制电路等部分组成。
其中,电压检测电路用于监测锂电池组的电压,当电压超过预设的上限或下限时,锂电池保护IC会发出保护信号,从而切断电池与外部电路的连接,以防止电池的过充或过放。
电流检测电路用于监测锂电池组的充放电电流,当电流超过预设的上限时,锂电池保护IC会采取相应的措施,如切断电池与外部电路的连接,以防止电池的过流。
温度检测电路用于监测锂电池组的温度,当温度超过预设的上限时,锂电池保护IC会采取相应的措施,如切断电池与外部电路的连接,以防止电池的过温。
保护控制电路是锂电池保护IC的核心部分,它通过对上述检测电路的监测结果进行比较和判断,确定是否需要采取相应的保护措施。
当锂电池组的状态异常时,保护控制电路会发出保护信号,从而触发保护措施的执行。
二、锂电池保护IC的结构锂电池保护IC通常由芯片、封装和引脚等部分组成。
芯片是锂电池保护IC的核心部分,它集成了电压检测电路、电流检测电路、温度检测电路和保护控制电路等功能。
封装是将芯片封装在外部保护壳中,以保护芯片的安全和稳定工作。
引脚是芯片与外部电路之间的连接接口,通过引脚可以实现芯片与外部电路的通信和控制。
锂电池保护IC的结构设计主要考虑芯片的功能、尺寸和功耗等因素。
在实际应用中,锂电池保护IC的尺寸通常很小,以适应电子产品的小型化和轻便化的需求。
锂电保护芯片锂电保护芯片是一种用于锂电池的电池管理系统。
它的功能是监控和保护锂电池的工作状态,确保锂电池的安全性和可靠性。
下面我们来详细介绍锂电保护芯片的特征和工作原理。
首先,锂电保护芯片具有多种保护功能。
它可以监测锂电池的电压、电流和温度等参数,并及时做出响应,避免电池因过充、过放、过流或过温而损坏。
同时,它还能防止电池的短路和极性反接等故障,保证锂电池的稳定运行。
其次,锂电保护芯片具有高精度和快速响应的特点。
它能够实时监测电池的状态,并在出现异常情况时及时断开电池与负载的连接,以防止电池过充或过放。
同时,锂电保护芯片的响应时间非常快,可以在毫秒级别内做出反应,更好地保护锂电池。
另外,锂电保护芯片还具有低功耗和小尺寸的优势。
它采用了先进的电路设计和高效的功耗管理技术,可以最大程度地减少自身的功耗,并延长电池的使用时间。
同时,锂电保护芯片的尺寸小巧,可以方便地集成在各种电子设备中,提高产品的性能和可靠性。
锂电保护芯片的工作原理主要包括两个方面,即电池监测和保护控制。
在电池监测方面,锂电保护芯片会实时检测电池的电压、电流和温度等参数,并将这些数据传输给控制单元进行处理。
而在保护控制方面,锂电保护芯片通过与控制单元的通信,实现对电池的保护控制。
当电池出现过充、过放或过流等异常情况时,锂电保护芯片会立即断开电池与负载的连接,以保护电池的安全和可靠运行。
综上所述,锂电保护芯片是一种重要的电池管理系统,具有多种保护功能、高精度和快速响应、低功耗和小尺寸等特点。
它在锂电池的使用过程中起到了监测和保护的重要作用,确保了锂电池的安全性和可靠性。
随着移动设备的普及和电动汽车的发展,锂电保护芯片的需求将会越来越大,对其技术和性能也提出了更高的要求。
锂电池电路板中保护芯片基本工作原理保护芯片是锂电池电路板中重要的组成部分,它的基本工作原理是确保锂电池在充放电过程中的安全可靠性。
本文将介绍保护芯片的基本原理,以及其在锂电池中的应用。
一、保护芯片的作用保护芯片主要起到监测、控制和保护锂电池的作用,其主要功能如下:1. 电池电量监测:保护芯片能够实时监测电池的电量,根据电池的工作状态提供准确的电量信息。
2. 温度控制:保护芯片可以监测电池的温度,当电池温度过高时,保护芯片会发出警报信号,同时采取措施保护电池避免过热。
3. 充放电控制:保护芯片根据电池的工作状态,调节和控制电池的充放电电流,保证电池的安全性和稳定性。
4. 短路保护:当电池短路时,保护芯片能够迅速切断电池与外部电路之间的连接,防止电池因短路而发生过度放电、热失控等危险情况。
5. 过充保护:保护芯片能够监测电池的电压,当电池电压过高时,保护芯片会切断电池与外部电路之间的连接,防止电池发生过度充电。
6. 过放保护:保护芯片也能够监测电池的电压,当电池电压过低时,保护芯片会切断电池与外部电路之间的连接,避免电池因过度放电而损坏。
二、保护芯片的工作原理保护芯片基本上由一个控制器和一组检测电路组成。
其工作原理主要包括以下几个方面:1. 电池状态监测:保护芯片内部的检测电路监测电池的电压、电流和温度等参数,并将这些信息传输给控制器进行处理。
2. 控制信号发出:控制器根据检测到的电池状态信息,判断是否需要采取保护措施,如断开电池与外部电路之间的连接或调整电池的充放电电流。
3. 保护措施启动:当控制器判断需要保护时,会发出相应的保护措施启动信号,控制短路保护开关、过充保护开关或过放保护开关等,以保证电池的安全运行。
4. 保护芯片复位:在保护措施被触发后,保护芯片会自动断开与电源的连接,并将电池的电路置于断开状态,以防止电池继续充放电。
5. 报警信号发出:保护芯片内部还设有一个报警电路,当保护措施被触发时,会通过声音或指示灯等方式发出警报信号,提醒用户或操作人员相关异常。
锂电池保护芯片锂电池保护芯片是一种关键的电子元器件,用于控制和保护锂电池的使用。
在现代电子设备中,锂电池广泛应用于移动电话、笔记本电脑、电动工具、电动汽车等。
锂电池具有高能量密度、长寿命和轻量化等优点,但同时也存在着一些潜在的安全隐患,例如过充、过放、过流等。
锂电池保护芯片的主要作用是监测电池的电压、电流和温度等关键参数,并采取相应的措施来保护电池的安全使用。
一般来说,锂电池保护芯片具有以下功能:1. 过充保护:当电池电压超过设定的上限时,保护芯片会自动停止电池的充电,以防止电池过充。
过充会导致电池内部的化学反应失控,引发热量聚集和电解液泄漏等危险情况。
2. 过放保护:当电池电压低于设定的下限时,保护芯片会自动切断电池的输出,以防止电池过放。
过放会损害电池的性能,并导致电池无法正常充电或供电。
3. 过流保护:当电池输出电流超过设定的限制时,保护芯片会自动切断电池的输出,以防止过大的电流对电池和电子设备造成损伤。
过大的电流会导致电池发热、电化学反应失控和设备故障等问题。
4. 温度保护:当电池温度超过设定的上限时,保护芯片会自动停止电池的充放电,以防止过热引起短路、电解液泄漏和电池损坏等问题。
过热还会引发火灾和爆炸等严重后果。
除了以上的基本功能外,锂电池保护芯片还可以具备其他辅助功能,例如剩余能量显示、温度补偿、电源管理和通信接口等。
锂电池保护芯片的设计和制造需要考虑多种因素,如电压范围、精度要求、功耗和尺寸等。
保护芯片应能够适应不同容量和形状的锂电池,并能在宽温度范围内正常工作。
此外,保护芯片还需要具备快速响应和高效稳定的工作能力,以确保电池的安全性和可靠性。
随着电子设备的不断发展和对电池性能和安全性要求的提高,锂电池保护芯片的研发和创新也在不断进行。
新型的保护芯片可能具有更高的集成度、更低的功耗和更高的性能。
此外,自主研发和掌握关键技术对于提高电池的安全性和可靠性也具有重要意义。
总之,锂电池保护芯片是保证锂电池安全使用的重要组成部分,它能够有效地监测和控制电池的运行状态,对电池进行保护和管理。
锂电池保护板常用IC、MOS场效应管,详细清单如下:S-8261AANMD-G2NT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节S-8261AAJMD-G2JT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节S-8261ABJMD-G3JT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节S-8261ABPMD-G3PT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节S-8261ABRMD-G3RT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节S-8261ABMMD-G3MT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节S-8261ACEMD-G4ET2G 封装:SOT-23-6 品牌:SEIKO 备注:磷酸铁锂保护板S-8261AAOMD-G2OT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节S-8241ACLMC-GCLT2G 封装:SOT-23-5 品牌:SEIKO 备注:单节S-8242AAA-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节S-8242AAD-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节S-8242AAF-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节S-8242AAY-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节S-8242AAK-M6T3GZ 封装:SOT-23-7 品牌:SEIKO 备注:双节S-8232AAFT-T2-G 封装:TSSOP-8 品牌:SEIKO 备注:双节S-8232ABFT-T2-G 封装:TSSOP-8 品牌:SEIKO 备注:双节S-8232AUFT-T2-G 封装:TSSOP-8 品牌:SEIKO 备注:双节S-8253AAAFT-TB-G 封装:TSSOP-8 品牌:SEIKO 备注:2-3节S-8253AAD-T8T1GZ 封装:TSSOP-8 品牌:SEIKO 备注:2-3节S-8254AAAFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节S-8254AABFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节S-8254AAFFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节S-8254AAGFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节S-8254AAJFT-TB-G 封装:TSSOP-17 品牌:SEIKO 备注:三-四节S-8254AANFT-TB-G 封装:TSSOP-18 品牌:SEIKO 备注:三-四节S-8254AAKFT-TB-G 封装:TSSOP-19 品牌:SEIKO 备注:三-四节R5400N101FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节R5400N110FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节R5400N150FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节R5400N149FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节R5402N101KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节R5402N110KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节R5402N149KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节R5402N163KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节R5402N128EC-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节R5402N163KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节R5460N207AF 封装:SOT-23-6 品牌:RICOH 备注:双节R5460N207AA 封装:SOT-23-6 品牌:RICOH 备注:双节R5460N208AA 封装:SOT-23-6 品牌:RICOH 备注:双节R5460N208AF 封装:SOT-23-6 品牌:RICOH 备注:双节R5460N212AF 封装:SOT-23-6 品牌:RICOH 备注:双节R5460N214AF 封装:SOT-23-6 品牌:RICOH 备注:双节R5460N214AC 封装:SOT-23-6 品牌:RICOH 备注:双节R1211N002D-TR-F 封装:SOT-23-6 品牌:RICOH 备注:DC/DC升压R1224N102H-TR-F 封装:SOT-23-6 品牌:RICOH 备注:DC/DC降压R1224N332F-TR-F 封装:SOT-23-6 品牌:RICOH 备注:DC/DC降压MM1414CVBE 封装:TSSOP-20 品牌:MITSUMI 备注:三-四节MM3076XNRE 封装:SOT23-6 品牌:MITSUMI 备注:单节MM3177FNRE 封装:SOT23-6 品牌:MITSUMI 备注:单节VA7021P/C 封装:SOT-23-6 品牌:中星微备注:单节,中星微代理,中国最低价格DW01+ 封装:SOT-23-6 品牌:富晶备注:单节FS312 封装:SOT-23-6 品牌:富晶备注:单节CS213 封装:SOT-23-6 品牌:新德备注:单节STC5NF20V 封装:TSSOP-8 品牌:ST 备注:配套MOS管FTD2017M 封装:TSSOP-8 品牌:三洋备注:配套MOS管ECH8601M 封装:SNT-8A 品牌:三洋备注:配套MOS管UPA1870BGR 封装:TSSOP-8 品牌:NEC 备注:配套MOS管FS8205A 封装:TSSOP-8 品牌:富晶备注:配套MOS管SM8205ACTC 封装:SOT-23-6 品牌:茂达备注:配套MOS管SM8205AOC 封装:TSSOP-8 品牌:茂达备注:配套MOS管AO8810 封装:TSSOP-8 品牌:AOS 备注:配套MOS管AO8820 封装:TSSOP-8 品牌:AOS 备注:配套MOS管AO8822 封装:TSSOP-8 品牌:AOS 备注:配套MOS管AO8830 封装:TSSOP-8 品牌:AOS 备注:配套MOS管AO9926B 封装:TSSOP-8 品牌:AOS 备注:配套MOS管SDC6073 封装:MSOP-8 品牌:SDC光大备注:单节,二合一的保护IC。