2020版物理新增分大一轮江苏专用版讲义:第十二章 热学 第2讲 Word版含解析
- 格式:doc
- 大小:808.00 KB
- 文档页数:17
专题十二热学挖命题【考情探究】分析解读本专题为选考内容,概念规律繁多,但要求较低,全部是Ⅰ级要求,复习时应注意以下几点(1)加强对基本概念和基本规律的理解记忆。
(2)固体液体部分内容常结合实例考查晶体和非晶体的特点及表面张力产生的原因;会用表面张力解释一些生活现象。
(3)建立宏观量与微观量的关系。
分子动能与温度相对应,分子势能与体积相对应,物体内能与温度体积物质的量相对应。
物体内能的改变同做功和热传递相对应。
(4)加强类似高考的典型题的练习,提高分析问题和解决问题的能力。
命题趋势试题将坚持立足基本概念,贴近教材和教学实际,情境接近生活经历,关注社会问题,亲近自然,体现“从生活走向物理,从物理走向社会”的课程理念。
试题关注学科素养,引导学生学以致用,引导高中教学,注重培养学生应用知识解决实际问题的能力。
【真题典例】破考点【考点集训】考点一分子动理论、内能1.[2018江苏泰州调研,12A(1)]以下说法正确的是()A.布朗运动反映了悬浮小颗粒内部分子在不停地做无规则的热运动B.从平衡位置开始增大分子间距离,分子间的引力将增大、斥力将减小C.对大量事实的分析表明:热力学零度不可能达到D.热量自发地由内能多的物体传递给内能少的物体答案C2.[2018江苏扬州期中,12A(1)](多选)PM2.5是指空气中直径小于2.5微米的悬浮颗粒物,其悬浮在空中做无规则运动,很难自然沉降到地面。
下列说法中正确的是()A.气温越高,PM2.5运动越剧烈B.PM2.5在空气中的运动属于布朗运动C.PM2.5在空气中的运动就是分子的热运动D.倡导低碳生活有利于减小PM2.5在空气中的浓度答案ABD3.[2018江苏无锡摸底,12A(1)](多选)关于分子动理论的规律,下列说法正确的是()A.扩散现象说明物质分子在做永不停息的无规则运动B.两个分子间的距离为r0时,分子势能最小C.两个分子距离减小时,分子间引力和斥力都在增大D.如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡,用来表征它们所具有的“共同热学性质”的物理量叫做内能答案ABC4.[2018江苏苏州调研,12A(3)]目前,环境污染已非常严重,瓶装纯净水已经占领柜台,再严重下去,瓶装纯净空气也会上市。
第1讲 分子动理论 内能一、分子动理论1.物体是由大量分子组成的 (1)分子的大小①分子的直径(视为球模型):数量级为10-10m ;②分子的质量:数量级为10-26kg.(2)阿伏加德罗常数①1 mol 的任何物质都含有相同的粒子数.通常可取N A =6.02×1023 mol -1;②阿伏加德罗常数是联系宏观物理量和微观物理量的桥梁.自测1 已知铜的摩尔质量为M (kg /mol),铜的密度为ρ(kg/m 3),阿伏加德罗常数为N A (mol -1),下列说法正确的是( )A.1个铜原子的质量为N AMB.1个铜原子的质量为MN AC.1个铜原子所占的体积为MN AρD.1个铜原子所占的体积为ρMN A答案 B解析 1 mol 铜的质量等于N A 个铜原子的质量之和,所以一个铜原子的质量为m =MN A ,A 错误,B 正确;1 mol 铜的体积为M ρ,这是N A 个铜原子所占体积的总和,所以每个铜原子所占的体积为MρN A ,C 、D 错误.2.分子永不停息地做无规则运动 (1)扩散现象①定义:不同物质能够彼此进入对方的现象;②实质:扩散现象并不是外界作用引起的,也不是化学反应的结果,而是由分子的无规则运动产生的物质迁移现象,温度越高,扩散现象越明显. (2)布朗运动①定义:悬浮在液体或气体中的小颗粒的永不停息的无规则运动; ②实质:布朗运动反映了液体或气体分子的无规则运动; ③特点:颗粒越小,运动越明显;温度越高,运动越剧烈. (3)热运动①分子永不停息的无规则运动叫做热运动;②特点:分子的无规则运动和温度有关,温度越高,分子运动越激烈.自测2 如图1是观察布朗运动时每隔30 s 记录1次的微粒位置连线图,开始时微粒在位置1,以后的位置依次是2、3、4、……,由此图得到的下列结论中正确的是( )图1A.此图反映了观察时间内微粒的运动轨迹B.此图只是间接地反映了液体分子的运动是无规则运动C.若在第75 s 再观察一次,微粒应处于位置3和位置4连线的中点D.微粒在从位置7到位置8的这30 s 内运动得最快答案 B3.分子间同时存在引力和斥力(1)物质分子间存在空隙,分子间的引力和斥力是同时存在的,实际表现出的分子力是引力和斥力的合力;(2)分子力随分子间距离变化的关系:分子间的引力和斥力都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力比引力变化得快;(3)分子力与分子间距离的关系图线由分子间的作用力与分子间距离关系图线(如图2所示)可知:图2①当r=r0时,F引=F斥,分子力为零;②当r>r0时,F引>F斥,分子力表现为引力;③当r<r0时,F引<F斥,分子力表现为斥力;④当分子间距离大于10r0(约为10-9 m)时,分子力很弱,可以忽略不计.二、温度和内能1.温度一切达到热平衡的系统都具有相同的温度.2.两种温标摄氏温标和热力学温标.关系:T=t+273.15 K.3.分子的动能(1)分子动能是分子热运动所具有的动能;(2)分子热运动的平均动能是所有分子热运动动能的平均值,温度是分子热运动的平均动能的标志;(3)分子热运动的总动能是物体内所有分子热运动动能的总和.4.分子的势能(1)意义:由于分子间存在着引力和斥力,所以分子具有由它们的相对位置决定的能.(2)分子势能的决定因素①微观上:决定于分子间距离和分子排列情况;②宏观上:决定于体积和状态.5.物体的内能(1)概念理解:物体中所有分子热运动的动能和分子势能的总和,是状态量;(2)决定因素:对于给定的物体,其内能大小由物体的温度和体积决定,即由物体内部状态决定;(3)影响因素:物体的内能与物体的位置高低、运动速度大小无关;(4)改变物体内能的两种方式:做功和热传递.自测3 (2017·南通市第一次调研)在分子间作用力表现为引力的情况下,当分子间的距离增大时,分子间的引力 (选填“增大”“减小”或“不变”),分子势能 (选填“增大”“减小”或“不变”). 答案 减小 增大三、实验:用油膜法估测分子的大小 1.实验原理实验采用使油酸在水面上形成一层单分子油膜的方法估测分子的大小.当把一滴用酒精稀释过的油酸滴在水面上时,油酸就在水面上散开,其中的酒精溶于水,并很快挥发,在水面上形成如图3甲所示形状的一层纯油酸薄膜.如果算出一定体积的油酸在水面上形成的单分子油膜的面积,即可算出油酸分子的大小.用V 表示一滴油酸酒精溶液中所含纯油酸的体积,用S 表示单分子油膜的面积,用d 表示分子的直径,如图乙所示,则d =V S.图32.实验器材盛水浅盘、注射器(或滴管)、容量瓶、坐标纸、玻璃板、痱子粉(或细石膏粉)、油酸酒精溶液、量筒、彩笔. 3.实验步骤(1)用稀酒精溶液及清水清洗浅盘,充分洗去油污、粉尘,以免给实验带来误差.(2)配制油酸酒精溶液,取纯油酸1 mL ,注入500 mL 的容量瓶中,然后向容量瓶内注入酒精,直到液面达到500 mL 刻度线为止,摇动容量瓶,使油酸充分溶解在酒精中,这样就得到了500 mL 含1 mL 纯油酸的油酸酒精溶液.(3)用注射器(或滴管)将油酸酒精溶液一滴一滴地滴入量筒中,并记下量筒内增加一定体积V n 时的滴数n .(4)根据V 0=V nn算出每滴油酸酒精溶液的体积V 0.(5)向浅盘里倒入约2 cm 深的水,并将痱子粉或细石膏粉均匀地撒在水面上. (6)用注射器(或滴管)将一滴油酸酒精溶液滴在水面上.(7)待油酸薄膜的形状稳定后,将玻璃板放在浅盘上,并将油酸膜的形状用彩笔画在玻璃板上. (8)将画有油酸薄膜轮廓的玻璃板放在坐标纸上,算出油酸薄膜的面积S (求面积时以坐标纸上边长为1 cm 的正方形为单位计算轮廓内正方形的个数,不足半个的舍去,多于半个的算一个).(9)根据油酸酒精溶液的配制比例,算出一滴油酸酒精溶液中纯油酸的体积V ,并代入公式d =VS 算出油酸薄膜的厚度d .(10)重复以上实验步骤,多测几次油酸薄膜的厚度,并求平均值,即为油酸分子的大小.命题点一 阿伏加德罗常数的应用1.求解分子直径时的两种模型(对于固体和液体) (1)把分子看成球形,d =36V 0π. (2)把分子看成小立方体,d =3V 0.提醒 对于气体,利用d =3V 0算出的不是分子直径,而是气体分子间的平均距离. 2.宏观量与微观量的相互关系(1)微观量:分子体积V 0、分子直径d 、分子质量m 0.(2)宏观量:物体的体积V 、摩尔体积V mol 、物体的质量m 、摩尔质量M 、物体的密度ρ. (3)相互关系①一个分子的质量:m 0=M N A =ρV molN A.②一个分子的体积:V 0=V mol N A =MρN A (注:对气体,V 0为分子所占空间体积);③物体所含的分子数:N =V V mol ·N A =m ρV mol ·N A 或N =m M ·N A =ρVM ·N A.例1 (2018·南京市、盐城市一模)铁的密度ρ=7.8×103 kg /m 3、摩尔质量M =5.6×10-2kg/mol ,阿伏加德罗常数N A =6.0×1023 mol -1.可将铁原子视为球体,试估算:(结果均保留一位有效数字)(1)1克铁含有的分子数; (2)铁原子的直径大小. 答案 见解析解析 (1)N =m N AM ≈1×1022个(2)ρ=M V mol ,V 0=16πd 3 又N A =V molV 0d =36M πρN A≈3×10-10 m 变式1 (2018·南京市学情调研)氙气灯在亮度、耗能及寿命上都比传统灯有优越性.某轿车的灯泡的容积V =1.5 mL ,充入氙气的密度ρ=5.9 kg /m 3,摩尔质量M =0.131 kg/mol ,阿伏加德罗常数N A =6×1023 mol -1.试估算灯泡中:(结果均保留一位有效数字) (1)氙气分子的总个数; (2)氙气分子间的平均距离. 答案 见解析解析 (1)充入灯泡氙气的物质的量n =ρV M ,分子数N =nN A =ρVN AM ≈4×1019个(2)每个分子所占的空间为V 0=VN,则分子间平均距离a =3V N≈3×10-9 m 命题点二 布朗运动与分子热运动1.布朗运动(1)研究对象:悬浮在液体或气体中的小颗粒; (2)运动特点:无规则、永不停息; (3)相关因素:颗粒大小,温度;(4)物理意义:说明液体或气体分子做永不停息的无规则的热运动. 2.扩散现象:相互接触的物体分子彼此进入对方的现象. 产生原因:分子永不停息地做无规则运动. 3.扩散现象、布朗运动与热运动的比较现象 扩散现象 布朗运动 热运动 活动 主体分子微小固体颗粒分子区别分子的运动,发生在固体、液体、气体任何两种物质之间比分子大得多的微粒的运动,只能在液体、气体中发生分子的运动,不能通过光学显微镜直接观察到共同点 ①都是无规则运动;②都随温度的升高而更加激烈 联系扩散现象、布朗运动都反映分子做无规则的热运动例2 (2017·江苏单科·12A(2))图4甲和乙是某同学从资料中查到的两张记录水中炭粒运动位置连线的图片,记录炭粒位置的时间间隔均为30 s ,两方格纸每格表示的长度相同.比较两张图片可知:若水温相同, (选填“甲”或“乙”)中炭粒的颗粒较大;若炭粒大小相同, (选填“甲”或“乙”)中水分子的热运动较剧烈.图4答案甲乙解析由题图可知,乙图中的炭粒运动剧烈,若水温相同,颗粒越小运动越剧烈,故甲中炭粒的颗粒较大;若炭粒大小相同,则水温越高,布朗运动越剧烈,故乙中水分子热运动较剧烈.命题点三分子力与分子势能分子力、分子势能与分子间距离的关系分子力F、分子势能E p与分子间距离r的关系图线如图5所示(取无穷远处分子势能E p=0).图5(1)当r>r0时,分子力表现为引力,当r增大时,分子力做负功,分子势能增加.(2)当r<r0时,分子力表现为斥力,当r减小时,分子力做负功,分子势能增加.(3)当r=r0时,分子势能最小.例3(2018·南京市、盐城市二模)两分子间的作用力F与分子间距离r的关系如图6中曲线所示,曲线与r轴交点的横坐标为r0,甲分子固定在坐标原点O,乙分子在分子力作用下从图中a点由静止开始运动.在r>r0阶段,乙分子的动能(选填“增大”“减小”或“先增大后减小”),两分子的势能(选填“增大”“减小”或“先减小后增大”).图6答案增大减小解析由题图可知,在r>r0阶段,分子间是引力作用,分子力对乙分子做正功,乙分子的动能增大,两分子间的分子势能减小.变式2(多选)图7为两分子系统的势能E p与两分子间距离r的关系曲线.下列说法正确的是()图7A.当r大于r1时,分子间的作用力表现为引力B.当r小于r1时,分子间的作用力表现为斥力C.当r等于r2时,分子间的作用力为零D.在r由r1变到r2的过程中,分子间的作用力做负功答案BC解析结合题图可知,分子间距离由非常近到r1时,E p减少,分子力做正功,分子力表现为斥力;当分子间距离由r1到r2时,E p减小,分子力做正功,故分子力表现为斥力,A、D错,B对;分子间距离由r2继续增大时,分子势能增加,说明分子力做负功,即分子力表现为引力,故分子间距离为r2时,分子间作用力为零,C对.命题点四分子平均动能与温度对于温度微观意义(即温度是物体分子热运动的平均动能的标志)的理解,要注意以下几个方面:(1)研究一个分子热运动的动能是没有意义的,因为它的动能在毫无规则地变化着,我们无法把握,也无需把握,因而一个分子的热运动代表不了温度.(2)温度代表着大量分子热运动的平均动能,但这并不意味着温度高每个分子热运动的动能都会大.关于气体的内能,通常情况下气体分子间的势能可以不计,即在通常情况下气体的内能与气体的体积无关.(3)特别要注意同一温度下,不同物质分子的平均动能都相同,但由于不同物质的分子质量不尽相同,所以分子运动的平均速率不尽相同.例4(2018·扬州市一模)给一定质量的0 ℃的水加热,在水的温度由0 ℃上升到4 ℃的过程中,水的体积随着温度的升高反而减小,我们称之为“反常膨胀”.查阅资料知道:在水“反常膨胀”的过程中,体积减小是由于水分子之间的结构发生了变化,但所有水分子间的总势能是增大的.由此可知,“反常膨胀”时,水分子的平均动能(选填“增大”“减小”或“不变”),吸收的热量(选填“大于”“小于”或“等于”)所有水分子的总势能增加量.答案增大大于解析温度是分子平均动能的标志,温度升高,分子的平均动能增大;分子的平均动能增大,所有水分子间的总势能增大,故内能是增大的;吸收的热量大于所有水分子的总势能增加量.命题点五对物体内能的理解内能和机械能的区别例5(多选)下列关于温度及内能的说法中正确的是()A.温度是分子平均动能的标志,所以两个动能不同的分子相比,动能大的分子温度高B.两个不同的物体,只要温度和体积相同,内能就相同C.质量和温度相同的冰和水,内能不同D.一定质量的某种物质,即使温度不变,内能也可能发生变化E.温度高的物体不一定比温度低的物体内能大答案CDE解析温度是大量分子热运动的客观体现,单个分子不能比较温度高低,A错误;物质的内能由温度、体积、物质的量及物态共同决定,故B错误,C正确;一定质量的某种物质,温度不变而体积发生变化时,内能也可能发生变化,D正确;质量不确定,只知道温度的关系,不能确定内能的大小,故E 正确.变式3(多选)关于物体的内能,下列叙述中正确的是()A.温度高的物体比温度低的物体内能大B.物体的内能不可能为零C.内能相同的物体,它们的分子平均动能一定相同D.内能不相同的物体,它们的分子平均动能可能相同E.物体的内能与物体的温度、体积、物态和分子数有关答案BDE命题点六用油膜法估测分子的大小注意事项(1)注射器针头高出水面的高度应在1 cm之内,当针头靠水面很近(油酸未滴下之前)时,会发现针头下方的粉层已被排开,这是针头中酒精挥发所致,不影响实验效果.(2)待测油酸薄膜扩散后又会收缩,要在油酸薄膜的形状稳定后再画轮廓.扩散后又收缩有两个原因:①水面受油酸液滴冲击凹陷后又恢复;②酒精挥发后液面收缩.(3)当重做实验时,将水从浅盘的一侧边缘倒出,在这侧边缘会残留油酸,可用少量酒精清洗,并用脱脂棉擦去再用清水冲洗,这样做可保持浅盘的清洁.(4)本实验只要求估测分子的大小,实验结果的数量级符合要求即可.(5)本实验中处理数据要注意两点:一是根据体积比计算出一定体积的油酸酒精溶液中纯油酸的体积;二是计算油酸薄膜面积时,必须遵循“数格子法”的原则,即不足半个的舍去,多于半个的算一个. 例6(2018·金陵中学等三校四模)用油膜法测定分子的直径, 1 mL的油酸加入酒精中配制成1 000mL 的油酸酒精溶液,1 mL 油酸酒精溶液通过滴管实验测得为80滴,取1滴油酸酒精溶液滴在撒有痱子粉的浅水槽中,待油膜界面稳定后测得油膜面积为260 cm 2. (1)则油酸分子的直径约为 m ;(结果保留一位有效数字)(2)按照一定比例配制的油酸酒精溶液置于一个敞口容器中,如果时间偏长,会影响分子尺寸测量结果导致测量值 (选填“偏大”或“偏小”). 答案 见解析解析 (1)测得油膜面积S =260 cm 2=2.6×10-2m 2,每一滴油酸酒精溶液含有纯油酸的体积为:V =11 000×180 mL =1.25×10-11 m 3,所以油酸分子的直径d =V S =1.25×10-112.6×10-2 m ≈5×10-10m. (2)置于一个敞口容器中,如果时间偏长,酒精挥发,导致油酸浓度增大,因此出现直径偏小.变式4(2018·南京市三模)在“用油膜法估测分子大小”的实验中,将1 mL的油酸溶于酒精,制成500 mL的油酸酒精溶液;测得1 mL的油酸酒精溶液有100滴;将1滴油酸酒精溶液滴入事先洒有均匀痱子粉的水槽中,待油膜充分散开后,在玻璃板上描出油膜的轮廓,随后把玻璃板放在坐标纸上,其形状如图8所示,坐标纸上正方形小方格的边长为2 cm,则一滴油酸酒精溶液中的纯油酸的体积为m3;油酸分子的直径为m.(结果均保留一位有效数字)图8答案2×10-116×10-101.(多选)关于布朗运动,下列说法中正确的是()A.布朗运动就是热运动B.布朗运动的激烈程度与悬浮颗粒的大小有关,说明分子的运动与悬浮颗粒的大小有关C.布朗运动虽不是分子运动,但它能反映分子的运动特征D.布朗运动的激烈程度与温度有关,这说明分子运动的激烈程度与温度有关答案CD解析布朗运动间接反映了液体分子永不停息地做无规则运动,布朗运动不是分子运动,所以不叫热运动,因此A错误,C正确;悬浮颗粒越小,布朗运动越显著,这是由于悬浮颗粒周围的液体分子对悬浮颗粒撞击的不平衡引起的,不能说明分子的运动与悬浮颗粒的大小有关,B错误;温度越高,布朗运动越激烈,说明温度越高,分子运动越激烈,D正确.2.(多选)关于分子间相互作用力与分子间势能,下列说法正确的是()A.在10r0距离范围内,分子间总存在着相互作用的引力B.分子间作用力为零时,分子间的势能一定是零C.当分子间作用力表现为引力时,分子间的距离越大,分子势能越小D.两个分子间的距离变大的过程中,分子间引力变化总是比斥力变化慢答案AD解析在10r0距离范围内,分子间总存在着相互作用的引力和斥力,选项A正确;分子间作用力为零时,分子间的势能最小,但不是零,选项B错误;当分子间作用力表现为引力时,随分子间距离的增大,克服分子力做功,故分子势能增大,选项C错误;两个分子间的距离变大的过程中,分子间引力变化总是比斥力变化慢,选项D正确.3.下列说法中正确的是()A.物体温度降低,其分子热运动的平均动能增大B.物体温度升高,其分子热运动的平均动能增大C.物体温度降低,其内能一定增大D.物体温度不变,其内能一定不变答案 B解析温度是物体分子平均动能的标志,所以物体温度升高,其分子热运动的平均动能增大,A错,B对;影响物体内能的因素有温度、体积和物质的量及物态,所以只根据温度的变化情况无法判断内能的变化情况,C、D错.4.(2018·南通等六市一调)油膜法估测分子的大小实验中,某实验小组用1 mL的油酸配置了500 mL的油酸酒精溶液,用滴管、量筒测得n滴油酸酒精溶液体积为V,一滴溶液在水槽中最终形成的油膜面积为S,则油酸分子直径为;实验中水面上撒的痱子粉太厚会导致分子直径测量值(选填“偏大”或“偏小”)答案V500nS偏大解析一滴油酸酒精溶液中含有的油酸体积为V500n,因一滴溶液在水槽中最终形成的油膜面积为S,所以油酸分子直径为d=V500nS=V500nS,痱子粉太厚会导致油酸在水面的扩散面积减小,从而测量的分子直径偏大.5.(2018·泰州中学等综合评估)石墨烯是目前发现的最薄、最坚硬、导电导热性能最强的一种新型纳米材料.已知1 g石墨烯展开后面积可以达到2 600 m2,试计算每1 m2的石墨烯所含碳原子的个数.阿伏加德罗常数N A=6.0×1023 mol-1,碳的摩尔质量M=12 g/mol.(计算结果保留两位有效数字)答案 1.9×1019个解析由题意可知,已知1 g石墨烯展开后面积可以达到2 600 m2,1 m2石墨烯的质量:m=12 600g,而1 m2石墨烯所含碳原子个数:n=mM N A≈1.9×1019个1.(多选)关于扩散现象,下列说法正确的是()A.温度越高,扩散进行得越快B.扩散现象是不同物质间的一种化学反应C.扩散现象是由物质分子无规则运动产生的D.扩散现象在气体、液体和固体中都能发生答案ACD解析根据分子动理论,温度越高,扩散进行得越快,故A正确;扩散现象是由物质分子无规则运动产生的,不是化学反应,故B错误,C正确;扩散现象在气体、液体和固体中都能发生,故D正确.2.(多选)以下说法不正确的是()A.布朗运动是液体分子的运动,所以它能说明分子永不停息地做无规则运动B.布朗运动反映了花粉小颗粒内部分子的无规则运动C.温度越高分子无规则运动越剧烈D.一锅水中撒一点胡椒粉,加热时发现水中的胡椒粉在翻滚,这说明温度越高布朗运动越激烈答案ABD3.(2018·前黄中学检测)下列说法正确的是()A.布朗运动的无规则性反映了液体或气体分子运动的无规则性B.悬浮在液体中的固体小颗粒越大,则其所做的布朗运动就越剧烈C.物体的温度为0 ℃时,物体的分子平均动能为零D.布朗运动的剧烈程度与温度有关,所以布朗运动也叫热运动答案 A解析布朗运动的无规则性反映了液体或气体分子运动的无规则性,选项A正确;悬浮在液体中的固体小颗粒越小,则其所做的布朗运动就越剧烈,选项B错误;无论物体的温度为多少,物体分子的平均动能永远不为零,选项C错误;布朗运动的剧烈程度与温度有关,但是布朗运动不是分子运动,所以不叫热运动,选项D错误.4.(2018·扬州中学月考)雾霾天气是对大气中各种悬浮颗粒物含量超标的笼统表述,是特定气候条件与人类活动相互作用的结果.雾霾中,各种悬浮颗粒物形状不规则,但可视为密度相同、直径不同的球体,并用PM10、PM2.5分别表示球体直径小于或等于10 μm、2.5 μm的颗粒物(PM是颗粒物的英文缩写).某科研机构对北京地区的检测结果表明,在静稳的雾霾天气中,近地面高度百米的范围内,PM10的浓度随高度的增加略有减小,大于PM10的大悬浮颗粒物的浓度随高度的增加明显减小,且两种浓度分布基本不随时间变化.据此材料,以下叙述正确的是()A.PM10表示直径小于或等于1.0×10-6 m的悬浮颗粒物B.PM10受到的空气分子作用力的合力始终大于其受到的重力C.PM10和大悬浮颗粒物都在做布朗运动D.PM2.5的浓度随高度的增加逐渐增大答案 C5.关于温度的概念,下述说法正确的是()A.温度是分子平均动能的标志,物体温度越高,则分子的平均动能越大B.温度是分子平均动能的标志,温度升高,则物体的每一个分子的动能都增加C.当某物体内能增加时,该物体的温度一定升高D.甲物体的温度比乙物体的温度高,则甲物体分子的平均速率比乙物体分子的平均速率大答案 A解析温度是分子平均动能的标志,物体温度越高,则分子的平均动能就越大,所以选项A正确.温度升高,每一个分子的动能不一定全变大,而是分子的平均动能增加,选项B错误.物体的内能是由两方面共同决定的,分子动能和分子势能,所以当物体内能增加时,单一地说该物体的温度升高是错误的,所以选项C错误.温度高的物体分子的平均动能大,而不是平均速率大,所以选项D错误.6.(多选)下列说法中正确的是()A.分子的动能与分子的势能的和叫做这个分子的内能B.物体的分子势能由物体的温度和体积决定C.物体的速度增大时,其内能可能减小D.物体做减速运动时其温度可能增加答案CD7.(2018·东台创新学校月考)分子间的相互作用力由引力与斥力共同产生,并随着分子间距的变化而变化,则()A.分子间引力随分子间距的增大而增大B.分子间斥力随分子间距的减小而增大C.分子间相互作用力随分子间距的增大而增大D.分子间相互作用力随分子间距的减小而增大答案 B解析分子力和分子间距离的关系图象如图所示,故B正确.8.(多选)(2018·江苏百校12月大联考)两分子间的斥力和引力的合力F与分子间距离r的关系如图1中曲线所示,曲线与r轴交点的横坐标为r0,若两分子相距无穷远时分子势能为零,下列说法正确的是()图1A.在r=r0时,分子势能为零B.在r>r0阶段,若两分子间距离增大,则分子势能先减小后增加C.在r>r0阶段,若两分子间距离增大,则分子势能增加D.在r<r0阶段,若两分子间距离减小,则分子势能增加答案CD。
第3节热力学定律(1)做功和热传递的实质是相同的。
(×)(2)绝热过程中,外界压缩气体做功20 J ,气体的内能一定减少。
(×) (3)物体吸收热量,同时对外做功,内能可能不变。
(√)(4)在给自行车打气时,会发现打气筒的温度升高,这是因为外界对气体做功。
(√) (5)自由摆动的秋千摆动幅度越来越小,能量正在消失。
(×) (6)利用河水的能量使船逆水航行的设想,符合能量守恒定律。
(√) (7)热机中,燃气的内能可以全部变为机械能而不引起其他变化。
(×)突破点(一) 热力学第一定律1.改变内能的两种方式的比较含义特点温度表示物体的冷热程度,是物体分子平均动能大小的标志,它是大量分子热运动的集体表现,对个别分子来说,温度没有意义状态量内能(热能)物体内所有分子动能和势能的总和,它是由大量分子的热运动和分子的相对位置所决定的能热量是热传递过程中内能的改变量,热量用来量度热传递过程中内能转移的多少过程量功做功过程是机械能或其他形式的能和内能之间的转化过程3.对公式ΔU=Q+W符号的确定符号W Q ΔU+外界对物体做功物体吸收热量内能增加-物体对外界做功物体放出热量内能减少4.三种特殊情况(1)若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加。
(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加。
(3)若过程的始末状态物体的内能不变,即ΔU=0,则W+Q=0 或W=-Q,外界对物体做的功等于物体放出的热量。
[题点全练]1.(2019·如东月考)关于温度、热量、功、内能,以下说法正确的是()A.同一物体温度高时,含有的热量多B.物体的内能越大,含有的热量就越多,温度也越高C.外界对系统做功W,内能必定增加WD.热量总是从温度高的物体传给温度低的物体解析:选D热量是过程量,只有在吸热、放热过程中才发生转移,不能说物体含有多少热量,故A、B错误;只有在绝热过程中ΔU=W,故C错误;发生热传递的条件是存在温度差,热量从高温物体向低温物体传递,故D正确。
第2讲固体、液体和气体一、固体晶体与非晶体的比较二、液体和液晶1.液体的表面张力(1)作用:液体的表面张力使液面具有收缩的趋势.(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直.2.液晶的物理性质(1)具有液体的流动性.(2)具有晶体的光学各向异性.(3)从某个方向看其分子排列比较整齐,但从另一方向看,分子的排列是杂乱无章的.自测1(多选)下列说法正确的是()A.单晶体有固定的熔点,多晶体没有固定的熔点B.单晶体中原子(或分子、离子)的排列具有空间周期性C.通常金属在各个方向的物理性质都相同,所以金属是非晶体D.液晶具有液体的流动性,同时具有晶体的各向异性特征答案BD解析单晶体和多晶体都有固定的熔点,非晶体熔点不固定,A错误.单晶体中原子(或分子、离子)的排列是规则的,具有空间周期性,表现为各向异性,B正确.通常金属显示各向同性,是多晶体,C错误.液晶的名称由来就是由于它具有液体的流动性和晶体的各向异性,D正确.三、饱和汽、饱和汽压和相对湿度1.饱和汽与未饱和汽(1)饱和汽:与液体处于动态平衡的蒸汽.(2)未饱和汽:没有达到饱和状态的蒸汽.2.饱和汽压(1)定义:饱和汽所具有的压强.(2)特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关.3.相对湿度空气中水蒸气的压强与同一温度时水的饱和汽压之比.即:相对湿度=水蒸气的实际压强同温度水的饱和汽压.自测2(多选)(2017·南京市、盐城市一模)在潮湿天气里,若空气的相对湿度为98%,洗过的衣服不容易晾干,这时()A.没有水分子从湿衣服中飞出B.有水分子从湿衣服中飞出,也有水分子回到湿衣服中C.空气中水蒸气的实际压强略小于同温度水的饱和汽压D.空气中水蒸气的实际压强比同温度水的饱和汽压小很多答案BC四、气体1.气体分子运动的特点(1)气体分子间距很大,分子力可以忽略,因此分子间除碰撞外不受其他力的作用,故气体能充满它能达到的整个空间.(2)分子做无规则的运动,速率有大有小,且时刻变化,大量分子的速率按“中间多,两头少”的规律分布.(3)温度升高时,速率小的分子数减少,速率大的分子数增多,分子的平均速率将增大,但速率分布规律不变.2.气体压强(1)产生的原因由于大量分子无规则运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强.(2)决定因素①宏观上:决定于气体的温度和体积.②微观上:决定于分子的平均动能和分子的密集程度.3.气体实验定律4.理想气体的状态方程 (1)理想气体①宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体.②微观上讲,理想气体的分子间除碰撞外无其他作用力,即分子间无分子势能. (2)理想气体的状态方程一定质量的理想气体的状态方程:p 1V 1T1=p 2V 2T 2或pVT =C .气体实验定律可看做一定质量理想气体状态方程的特例. 5.气体实验定律的微观解释 (1)等温变化一定质量的某种理想气体,温度保持不变时,分子的平均动能不变.在这种情况下,体积减小时,分子的密集程度增大,气体的压强增大. (2)等容变化一定质量的某种理想气体,体积保持不变时,分子的密集程度保持不变.在这种情况下,温度升高时,分子的平均动能增大,气体的压强增大. (3)等压变化一定质量的某种理想气体,温度升高时,分子的平均动能增大.只有气体的体积同时增大,使分子的密集程度减小,才能保持压强不变.自测3 某同学利用DIS 实验系统研究一定量理想气体的状态变化,实验后计算机屏幕显示如图1所示的p -t 图象.已知在状态B 时气体的体积为V B =3 L ,问:图1(1)气体由A →B ,B →C 各做什么变化? (2)气体在状态C 的体积是多少?答案 (1)A →B 做等容变化 B →C 做等温变化 (2)2 L解析 (1)A →B 做等容变化,B →C 做等温变化 (2)p B =1.0 atm ,V B =3 L ,p C =1.5 atm根据玻意耳定律,有p B V B=p C V C解得V C=2 L命题点一晶体与非晶体对晶体与非晶体的认识(1)不能仅凭有无规则的外形判定某些物质是晶体还是非晶体.(2)晶体中的单晶体具有各向异性,但并不是在各种物理性质上都表现出各向异性.例如,铜的机械强度在各方向上存在差异,而其导热性和导电性则表现为各向同性.(3)非晶体不稳定,经过适当时间后,会向晶体转变;而有些晶体在一定条件下也可以转化为非晶体.(4)同种物质也可能以晶体和非晶体两种不同的形态出现,也就是说,物质是晶体还是非晶体,并不是绝对的.例1(多选)下列说法正确的是()A.将一块晶体敲碎后,得到的小颗粒是非晶体B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变答案BCD变式1(多选)(2018·江苏一模)2017年5月,中国首次海域天然气水合物(可燃冰)试采成功.可燃冰是一种晶体,它是天然气的固体状态(因海底高压),学名天然气水化合物,其化学式为CH4·8H2O.研究表明1 m3的可燃冰可转化为164 m3的天然气(CH4)和0.8 m3的水(已转化为标准状态),下列关于晶体和非晶体的说法中正确的是()A.晶体有确定的熔点,非晶体没有确定的熔点B.晶体都有确定的几何形状,非晶体没有确定的几何形状C.制作晶体管、集成电路多用多晶体D.云母片导热性能各向异性,说明云母片是晶体答案AD解析晶体有确定的熔点,非晶体没有确定的熔点,故A正确;单晶体具有规则的几何形状,而多晶体和非晶体没有规则的几何形状,故B错误;制作晶体管、集成电路多用单晶体,故C错误;多晶体与非晶体具有各向同性,单晶体具有各向异性,云母片导热性能各向异性,说明云母片是晶体,故D正确.命题点二液体表面张力液体表面张力(1)形成原因:表面层中分子间的距离比液体内部分子间的距离大,分子间的相互作用力表现为引力.(2)表现特性:表面层分子间的引力使液面产生了表面张力,使液体表面好像一层绷紧的弹性薄膜.(3)表面张力的方向:和液面相切,垂直于液面上的各条分界线.(4)表面张力的效果:表面张力使液体表面具有收缩趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小.例2(多选)把一条细棉线的两端系在铁丝环上,棉线处于松驰状态.将铁丝环浸入肥皂液里,拿出来时环上留下一层肥皂液的薄膜,这时薄膜上的棉线仍是松驰的,如图2所示,用烧热的针刺破某侧的薄膜,观察到棉线的形状,图中所标的箭头方向合理的是()图2答案AD变式2(2018·南通市、泰州市一模)下列现象与液体表面张力无关的是()A.透过布制的伞面可以看见纱线缝隙,而伞面不漏雨水B.在绕地球飞行的宇宙飞船中,自由飘浮的水滴呈球形C.把玻璃管的裂口放在火焰上烧熔,它的尖端会变钝D.把两块纯净的铅压紧,它们会“粘”在一起难以分开答案 D命题点三饱和汽压与湿度与液体处于动态平衡的蒸汽叫饱和汽,在一定温度下饱和汽的分子数密度是一定的,所以饱和汽的压强也是一定的,这个压强叫做这种液体的饱和汽压.由此可见饱和汽压与温度有关,随温度升高蒸汽分子数密度增加,如图3所示,饱和汽压与饱和汽的体积无关.图3例3(2018·江苏单科·12A(1))如图4所示,一支温度计的玻璃泡外包着纱布,纱布的下端浸在水中.纱布中的水在蒸发时带走热量,使温度计示数低于周围空气温度.空气温度不变,若一段时间后发现该温度计示数减小,则()图4A.空气的相对湿度减小B.空气中水蒸气的压强增大C.空气中水的饱和汽压减小D.空气中水的饱和汽压增大答案 A解析温度计示数减小说明水在蒸发,是因为空气中的相对湿度减小了,故A正确;水的饱和汽压与温度有关,温度不变,水的饱和汽压不变,空气的相对湿度减小,所以空气中水蒸气的压强减小,故B、C、D错误.变式3(2018·南通市等七市三模)1912年,英国物理学家威尔逊发明了观察带电粒子运动径迹的云室,结构如图5所示,在一个圆筒状容器中加入少量酒精,使云室内充满酒精的饱和蒸汽.迅速向下拉动活塞,室内气体温度(选填“升高”“不变”或“降低”),酒精的饱和汽压(选填“升高”“不变”或“降低”).图5答案降低降低命题点四 气体实验定律1.应用状态方程解题的一般步骤(1)明确研究对象,即某一定质量的理想气体;(2)确定气体在始、末状态的参量p 1、V 1、T 1及p 2、V 2、T 2; (3)由状态方程列式求解; (4)讨论结果的合理性. 2.两个推论查理定律的推论:Δp =p 1T 1ΔT ;盖—吕萨克定律的推论:ΔV =V 1T 1ΔT ,利用这两个推论解决相关问题往往非常方便.例4 (2018·南通市、泰州市一模)如图6所示是某气压式柱形保温瓶的结构示意图,活塞只在受到压力时才向下移动.倒入热水后,活塞a 的下表面与液面相距h .两者间密闭有一定质量的气体,密闭气体的压强等于外界大气压强p 0,密闭气体温度为T 1.图6(1)经过一段时间温度降至T 2,此时瓶内气体的压强多大?(2)当温度降至T 2时,要把瓶中的水压出瓶外,活塞a 至少应下降多少距离?(设压活塞过程中气体温度不变) 答案 (1)T 2p 0T 1(2)⎝⎛⎭⎫1-T 2T 1h 解析 (1)由查理定律有p 0T 1=p 2T 2,解得p 2=T 2p 0T 1.(2)设活塞的横截面积为S ,下降的距离为x ,由玻意耳定律有p 2hS =p 0(h -x )S ,解得x =⎝⎛⎭⎫1-T 2T 1h . 变式4 (2018·扬州市一模)如图7所示,开口向上、内壁光滑的汽缸竖直放置,开始时质量不计的活塞停在卡口处,气体温度为27 ℃,压强为0.9×105 Pa ,体积为1×10-3 m 3,现缓慢加热缸内气体,试通过计算判断当气体温度为67 ℃时活塞是否离开卡口.(已知外界大气压强p 0=1×105 Pa)图7答案 见解析解析 活塞刚好离开卡口时,压强为:p 2=p 0, 气体发生等容变化,根据查理定律,得:p 1T 1=p 2T 2,代入数据得:T2≈333 K,因为67 ℃=340 K>333 K,故活塞已经离开卡口.变式5(2018·南师附中5月模拟)某柴油机的汽缸容积为0.83×10-3 m3,压缩前其中空气的温度为47 ℃、压强为0.8×105 Pa.在压缩过程中,活塞把空气压缩到原体积的117,压强增大到4×106 Pa.若把汽缸中的空气看做理想气体,试估算这时空气的温度.答案668 ℃解析空气初状态的状态参量为p1=0.8×105 Pa,V1=0.83×10-3 m3,T1=320 K;空气末状态的状态参量为:p2=4×106 Pa,V2=117V1,T2为未知量,据理想气体状态方程p1V1T1=p2V2T2有T2=p2V2T1p1V1≈941 K,故t2=T2-273 K=668 ℃.命题点五气体状态变化的图象问题1.三个实验定律的对比2.气体状态变化的图象问题分析(1)解气体状态变化的图象问题,应当明确图象上的点表示一定质量的理想气体的一个平衡状态,它对应着三个状态参量;图象上的某一条直线段或曲线段表示一定质量的理想气体状态变化的一个过程.(2)在应用气体图象分析问题时,一定要看清纵、横坐标所代表的物理量,同时要注意横坐标表示的是摄氏温度还是热力学温度.(3)在V-T图象(或p-T图象)中,比较两个状态的压强(或体积)大小,可以比较这两个状态到原点连线的斜率的大小,其规律是:斜率越大,压强(或体积)越小;斜率越小,压强(或体积)越大.例5 图8甲是一定质量的理想气体由状态A 经过状态B 变为状态C 的V -T 图象.已知气体在状态A 时的压强是1.5×105 Pa.图8(1)说出A →B 过程中压强变化的情形,并根据图象提供的信息,计算图甲中T A 的温度值;(2)请在图乙坐标系中,作出该气体由状态A 经过状态B 变为状态C 的p -T 图象,并在图线相应位置上标出字母A 、B 、C .如果需要计算才能确定的有关坐标值,请写出计算过程. 答案 见解析解析 (1)从题图甲可以看出,A 与B 连线的延长线过原点,所以A →B 是等压变化,即p A =p B . 根据盖—吕萨克定律可得V A T A =V B T B所以T A =V A V B T B =0.40.6×300 K =200 K.(2)由题图甲可知,由B →C 是等容变化,根据查理定律得p B T B =p C T C ,所以p C =T C T B p B =400300p B =43p B =43×1.5×105 Pa =2.0×105 Pa.则可画出气体由状态A →B →C 的p -T 图象如图所示.变式6 (2018·东台创新学校月考)为了将空气装入气瓶内,现将一定质量的空气等温压缩,空气可视为理想气体.下列图象能正确表示该过程中空气的压强p 和体积V 关系的是( )答案 B解析 根据理想气体状态方程,空气等温压缩,有pV =C ,知p 与1V 成正比,在p -1V 图象中为过原点的直线,所以该过程中空气的压强p 和体积V 的关系图是图B ,故B 正确.命题点六 气体热现象的微观解释温度一定时,某种气体分子的速率分布是确定的,速率的平均值也是确定的,温度升高,气体分子的平均速率增大,但不是每个分子的速率都增大.例6 (2018·江苏单科·12A(2))一定量的氧气贮存在密封容器中,在T 1和T 2温度下其分子速率分布的情况见下表.则T 1 (选填“大于”“小于”或“等于”)T 2.若约10%的氧气从容器中泄漏,泄漏前后容器内温度均为T 1,则在泄漏后的容器中,速率处于400~500 m/s 区间的氧气分子数占总分子数的百分比 (选填“大于”“小于”或“等于”)18.6%.答案 大于 等于解析 温度升高,速率大的分子比例较大,故T 1>T 2.温度一定,气体分子速率分布情况不变,故泄漏前后速率处于400~500 m/s 区间的氧气分子数占总分子数的百分比保持不变.变式7 (多选)(2018·盐城市三模)如图9所示为氧气在0 ℃和100 ℃两种不同情况下,各速率区间的分子数占总分子数的百分比与分子速率间的关系.下列说法正确的是( )图9A.甲为0 ℃时情形,速率大的分子比例比100 ℃时少B.乙为0 ℃时情形,速率大的分子比例比100 ℃时少C.甲为100 ℃时情形,速率大的分子比例比0 ℃时多D.乙为100 ℃时情形,速率大的分子比例比0 ℃时多 答案 AD1.(2018·苏锡常镇二模)关于图10中实验及现象的说法,正确的是( )图10A.图甲说明薄板是非晶体B.图乙说明气体速率分布随温度变化且T1>T2C.图丙说明气体压强的大小既与分子动能有关也与分子的密集程度有关D.图丁说明水黾受到了浮力作用答案 C2.(2018·苏州市期初调研)下列说法正确的是()A.高原地区水的沸点较低,这是因为高原地区的温度较低B.液面上部的蒸汽达到饱和时,就没有液体分子从液面飞出C.水的饱和汽压随温度的升高而增大D.空气的相对湿度定义为水的饱和汽压与相同温度时空气中所含水蒸气的压强之比答案 C解析高原地区水的沸点较低,这是高原地区气压较低的原因,故A错误;液面上部的蒸汽达到饱和时,液体分子从液面飞出,同时有蒸汽分子进入液体中;从宏观上看,液体不再蒸发,故B错误;水的饱和汽压随着温度的升高而增大,故C正确;空气的相对温度定义为空气中水蒸气的压强与同一温度时水的饱和汽压之比,故D错误.3.(2018·苏锡常镇一调)在温度不变的情况下,增大液面上饱和汽的体积并再次达到饱和时,饱和汽的质量,饱和汽的压强(两空都选填“增大”“减小”或“不变”).答案增大不变解析在温度不变的情况下,增大液面上饱和汽的体积并再次达到饱和时,饱和汽的质量增大;因温度不变,则饱和汽的压强不变.4.(2018·南通市等七市三模)如图11所示,一导热性能良好、内壁光滑的汽缸竖直静止放置,用横截面积为S的轻活塞在汽缸内封闭着体积为V0的气体,此时气体密度为ρ0.在活塞上加一竖直向下的推力,使活塞缓慢下降到某位置O,此时推力大小F=2p0S.已知封闭气体的摩尔质量为M,大气压强为p0,阿伏加德罗常数为N A,环境温度不变.求活塞下降到位置O时:图11(1)封闭气体的体积V ;(2)封闭气体单位体积内的分子数n . 答案 (1)13V 0 (2)3ρ0N AM解析 (1)由玻意耳定律有p 0V 0=(p 0+FS )V解得V =13V 0(2)封闭气体的物质的量n 0=ρ0V 0M单位体积内的分子数n =n 0N AV解得n =3ρ0N AM.1.(多选)(2018·南京市、盐城市二模)下列说法中正确的是( ) A.空气中PM2.5颗粒的无规则运动属于分子热运动 B.某物体温度升高,组成该物体的分子的平均动能一定增大C.云母片导热性能具有各向异性,是由于该物质的微粒在空间的排列不规则D.空气相对湿度越大,则空气中水蒸气压强越接近饱和汽压 答案 BD解析 PM2.5颗粒不是分子,其运动不是分子热运动,A 错误;温度是分子平均动能的标志,温度升高,则分子平均动能增大,B 正确;云母片导热性能具有各向异性,是由于该物质的微粒在空间的排列规则,C 错误;空气相对湿度等于空气中水蒸气压强与同温度水的饱和汽压的比值,所以空气相对湿度越大,则空气中水蒸气压强越接近饱和汽压,D 正确.2.(多选)(2018·南通市等七市三模)下列说法中正确的有( ) A.只有在温度较高时,香水瓶盖打开后才能闻到香水味 B.冷水中的某些分子的速率可能大于热水中的某些分子的速率C.将沸腾的高浓度明矾溶液倒入玻璃杯中冷却后形成的八面体结晶属于多晶体D.表面张力是由液体表面层分子间的作用力产生的,其方向与液面平行答案BD3.(多选)(2018·海安中学开学考)下列说法中正确的是()A.晶体一定具有各向异性,非晶体一定具有各向同性B.内能不同的物体,它们分子热运动的平均动能可能相同C.液晶既像液体一样具有流动性,又跟某些晶体一样具有光学性质的各向异性D.随着分子间距离的增大,分子间作用力减小,分子势能也减小答案BC4.(多选)(2018·东台创新学校月考)以下说法中正确的是()A.金刚石、食盐都有确定的熔点B.饱和汽的压强与温度无关C.一些小昆虫可以停在水面上是由于液体表面张力的作用D.多晶体的物理性质表现为各向异性答案AC解析金刚石、食盐是晶体,都有确定的熔点,选项A正确;饱和汽的压强与温度有关,选项B错误;一些小昆虫可以停在水面上是由于液体表面张力的作用,选项C正确;多晶体的物理性质表现为各向同性,单晶体的物理性质表现为各向异性,选项D错误.5.(多选)(2018·南师附中5月模拟)下列说法正确的是()A.随着分子间距增大,分子间引力和斥力均减小,分子势能不一定减小B.水在涂有油脂的玻璃板上能形成水珠,而在干净的玻璃板上却不能,是因为油脂使水的表面张力增大的缘故C.空气的相对湿度用空气中所含水蒸气的压强表示D.有些非晶体在一定条件下可以转化为晶体答案AD解析如果分子间的作用力表现为引力,随着距离的增大,分子力做负功,分子势能增大,A正确;水在涂有油脂的玻璃板上能形成水珠,而在干净的玻璃板上却不能,是因为油脂使水不浸润的缘故,B错误;空气的绝对湿度用空气中所含水蒸气的压强表示,C错误;晶体和非晶体在一定的条件下可以相互转化,例如,天然水晶是晶体,而熔化以后再凝结的水晶(即石英玻璃)就是非晶体,D正确.6.(多选)(2018·南京市三模)下列说法正确的是()A.当分子力表现为引力时,分子力和分子势能总是随分子间距离的减小而增大B.烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明云母片是晶体C.温度高的物体分子平均动能不一定大,但内能一定大D.洗头发时,当头发浸泡在水中时呈散开状,露出水面后头发聚拢到一起,这是由水的表面张力引起的答案BD7.(2018·如皋市模拟四)每年入夏时节,西南暖湿气流与来自北方的冷空气在江南、华南等地交汇,形成持续的降雨.冷空气较暖湿空气密度大,当冷、暖气流交汇时,冷气团下沉,暖湿气团在被抬升过程中膨胀.则暖湿气团温度会(选填“升高”“不变”或“降低”),同时气团内空气的相对湿度会(选填“变大”“不变”或“变小”).答案降低变大解析暖湿气团在被抬升过程中膨胀,膨胀的过程中对外做功,气团的内能减小,所以暖湿气团温度会降低;饱和汽压随温度的降低而变小,气团内空气的绝对湿度不变而饱和汽压减小,所以相对湿度会变大.8.(2018·南通市、泰州市一模)做汽车安全气囊的模拟实验时,密封的储气罐与气囊相连,撞击时储气罐阀门自动打开,大量气体进入气囊,气囊在极短时间内迅速展开,在人体前部形成弹性气垫,然后气囊泄漏、收缩,从而有效保护人体.气囊展开过程中,将气体视作理想气体,气体的内能(选填“增大”“减小”或“不变”);泄漏、收缩过程中气囊内壁单位面积上受到气体分子撞击的作用力(选填“增大”“减小”或“不变”).答案减小减小9.(2018·江苏百校12月大联考)某日中午,某市空气相对湿度为50%,将一瓶水倒去一部分,拧紧瓶盖后的一小段时间,瓶内水的上方形成饱和汽,单位时间内进入水中的水分子数(选填“多于”“少于”或“等于”)从水面飞出的分子数.此时空气中水蒸气的压强与瓶中水蒸气压强的比值(选填“大于”“小于”或“等于”)0.5.答案等于等于10.(2018·南京市学情调研)如图1所示,一定质量的理想气体,在状态A时的温度t A=27 ℃,则状态C时的温度T C =K;气体从状态A依次经过状态B、C后再回到状态A,此过程中气体将(选填“吸收”或“放出”)热量.图1答案900放出11.(2018·盐城市三模)使用气筒给足球打气时,每打一次都把压强1个标准大气压、温度为27 ℃、体积为448 mL 的空气打进足球.已知1 mol空气在1个标准大气压、0 ℃时的体积为22.4 L,阿伏加德罗常数为6×1023 mol-1.求该气筒每打一次气时,进入足球内空气分子的个数.(计算结果保留一位有效数字)答案1×1022个解析设1个标准大气压下、温度为27 ℃、体积为448 mL的空气在1个标准大气压下、0 ℃时的体积为V,则有448×10-6 m3300 K=V273 K 解得V≈408×10-6 m3故分子个数N=VV mol N A=408×10-622.4×10-3×6×1023个≈1×1022个.12.(2019·丹阳中学模拟)某型号汽车轮胎的容积为25 L,轮胎内气压安全范围为2.5~3.0 atm.轮胎内气体27 ℃时胎压显示为2.5 atm.(结果保留2位有效数字)(1)假设轮胎容积不变,若轮胎内气体的温度达到57 ℃,轮胎内气压是否在安全范围内?(2)已知阿伏加德罗常数为N A=6×1023 mol-1,1 atm、0 ℃状态下,1 mol任何气体的体积为22.4 L.求轮胎内气体的分子数为多少?答案(1)在安全范围内(2)1.5×1024个解析(1)已知轮胎的体积不变,当胎内气压p1=2.5 atm时,温度为T1=(273+27) K=300 K,当胎内的温度达到T2=(273+57) K=330 K时根据查理定律有p1T1=p2T2代入解得p2=2.75 atm<3.0 atm轮胎内气压在安全范围内(2)设胎内气体在1 atm、0 ℃状态下的体积为V0,根据气体状态方程有:p1V1 T1=p0V0T0,代入解得:V0≈57 L则胎内气体分子数为:N=V022.4N A≈1.5×1024个13.(2018·溧水中学期初模拟)如图2所示,用销钉固定的活塞把导热汽缸分隔成两部分,A部分气体压强p A=6.0×105 Pa,体积V A=1 L;B部分气体压强p B=2.0×105Pa,体积V B=3 L.现拔去销钉,外界温度保持不变,活塞与汽缸间摩擦可忽略不计,整个过程无漏气,A、B两部分气体均为理想气体.求活塞稳定后A部分气体的压强.图2答案 3.0×105 Pa解析拔去销钉,待活塞稳定后,p A′=p B′根据玻意耳定律,对A部分气体,p A V A=p A′(V A+ΔV)对B部分气体,p B V B=p B′(V B-ΔV)联立解得p A′=3.0×105 Pa。
第3讲热力学定律与能量守恒定律一、热力学第一定律1.改变物体内能的两种方式(1)做功;(2)热传递.2.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和.(2)表达式:ΔU=Q+W.(3)ΔU=Q+W中正、负号法则:自测1一定质量的理想气体在某一过程中,外界对气体做功7.0×104 J,气体内能减少1.3×105 J,则此过程()A.气体从外界吸收热量2.0×105 JB.气体向外界放出热量2.0×105 JC.气体从外界吸收热量6.0×104 JD.气体向外界放出热量6.0×104 J答案 B二、能量守恒定律1.能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的,第一类永动机是不可能制成的,它违背了能量守恒定律.自测2 在一个密闭隔热的房间里,有一电冰箱正在工作,如果打开电冰箱的门,过一段时间后房间的温度会( ) A.降低 B.不变 C.升高 D.无法判断答案C命题点一 理解热量与内能、温度的区别温度、内能、热量、功的比较是热传递过程中内能的改变量,热量用来量度热传递过程中内能转过例1 (多选)关于气体的内能,下列说法正确的是( ) A.质量和温度都相同的气体,内能一定相同 B.气体温度不变,整体运动速度越大,其内能越大 C.气体被压缩时,内能可能不变D.一定量的某种理想气体的内能只与温度有关 答案 CD解析 质量和温度都相同的气体,虽然分子平均动能相同,但是不同的气体,其摩尔质量不同,即分子个数不同,所以分子总动能不一定相同,A 错误;宏观运动和微观运动没有关系,所以宏观运动速度大,内能不一定大,B 错误;根据pVT =C 可知,如果等温压缩,则内能不变,C 正确;理想气体的分子势能为零,所以一定量的某种理想气体的内能只与分子平均动能有关,而分子平均动能和温度有关,D 正确. 变式1 关于热量、功、内能三个物理量,下列说法中正确的是( ) A.热量、功、内能的物理意义等同 B.热量、功都可以作为物体内能的量度C.热量、功、内能的单位不相同D.热量和功是由过程决定的,而内能是由物体状态决定的答案 D命题点二对热力学第一定律的理解1.改变内能的两种方式的比较运动发生变化,是内能的转移2.ΔU=Q+W的三种特殊情况3.应用热力学第一定律的三点注意(1)做功看体积:体积增大,气体对外做功,W为负;体积缩小,外界对气体做功,W为正.气体向真空中自由膨胀,对外界不做功,W=0.(2)与外界绝热,则不发生热传递,此时Q=0.(3)由于理想气体没有分子势能,所以当它的内能变化时,主要体现在分子动能的变化上,从宏观上看就是温度发生了变化.例2(2018·江苏单科·12A(3))如图1所示,一定质量的理想气体在状态A时压强为2.0×105 Pa,经历A→B→C→A的过程,整个过程中对外界放出61.4 J热量.求该气体在A→B过程中对外界所做的功.图1答案138.6 J解析整个过程中,外界对气体做功W=W AB+W CA,且W CA=p A(V C-V A)由热力学第一定律ΔU=Q+W,得W AB=-(Q+W CA)代入数据得W AB=-138.6 J即气体对外界做的功为138.6 J.变式2(2018·盐城市三模)如图2所示,在汽缸右侧封闭一定质量的理想气体,压强与大气压强相同.把汽缸和活塞固定,使汽缸内气体升高到一定的温度,气体吸收的热量为Q1,气体的内能为U1.如果让活塞可以自由滑动(活塞与汽缸间无摩擦、不漏气),也使汽缸内气体温度升高相同温度,其吸收的热量为Q2,气体的内能为U2,则Q1Q2,U1U2.(均选填“大于”“等于”或“小于”)图2答案小于等于变式3(2018·江苏百校12月大联考)空气能热水器采用“逆卡诺”原理,即使在南极也有良好表现,高效节能.如图3所示,一定质量的理想气体从状态A依次经过状态B、C和D后再回到状态A.其中A→B和C→D为等温过程,B→C和D→A为绝热过程(气体与外界无热量交换).在完成一次循环的过程中气体对外做功10 J.若已知气体在A→B 过程吸收热量12 J,则在C→D过程放出多少热量?图3答案 2 J解析 由热力学第一定律有:ΔU =Q +W 完成一次循环气体内能不变,即ΔU =0 又W =-10 J ,故吸收的热量Q =-W =10 JA →B 过程吸收热量12 J ,所以C →D 过程中放出热量2 J.命题点三 热力学定律与气体实验定律的综合应用基本思路例3 (2018·南京市、盐城市二模)如图4所示,一圆柱形绝热汽缸竖直固定放置,通过绝热活塞封闭着一定质量的理想气体,活塞的质量为m ,横截面积为S ,与汽缸底部相距h ,此时封闭气体的温度为T .现通过电热丝缓慢加热气体,当气体吸收热量Q 时,气体温度上升到1.5T .已知大气压强为p 0,重力加速度为g ,不计活塞与汽缸的摩擦.求:图4(1)加热后活塞到汽缸底部的距离; (2)加热过程中气体的内能增加量. 答案 (1)1.5h (2)Q -0.5h (p 0S +mg ) 解析 (1)等压过程由Sh T =Sh ′1.5T得h ′=1.5h(2)气体压强p =p 0+mgSW =-p (h ′-h )S由热力学第一定律ΔU =W +Q 联立解得:ΔU =Q -0.5h (p 0S +mg ).变式4 (2018·苏锡常镇一调)如图5所示,轻质活塞将体积为V 0、温度为3T 0的理想气体,密封在内壁光滑的圆柱形导热汽缸内.已知大气压强为p 0,大气的温度为T 0,气体内能U 与温度的关系为U =aT (a 为常量).在汽缸内气体温度缓慢降为T 0的过程中,求:图5(1)气体内能的减少量; (2)气体放出的热量.答案 (1)2aT 0 (2)23p 0V 0+2aT 0解析 (1)ΔU =U 1-U 2=a ×3T 0-aT 0=2aT 0(2)气体发生等压变化,由盖—吕萨克定律得V 03T 0=VT 0,解得V =V 03,该过程中外界对气体做功W =p 0ΔV =23p 0V 0由热力学第一定律ΔU =W +Q 得, 气体放出热量Q =23p 0V 0+2aT 0.命题点四 热力学定律与图象问题的综合1.分析图象得出气体三个状态参量(p ,V ,T )的变化.注意p -V 图象里的等温线,p -T 图象里的等容线,V -T 图象里的等压线.2.一定质量的理想气体内能取决于温度(T ),做功情况取决于气体体积的变化,然后再由ΔU =Q +W 确定热量Q 的正负,判断吸热或放热.例4 (2018·常州市一模)一定质量的理想气体,其状态变化的p -V 图象如图6所示.已知气体在状态A 时的温度为260 K ,则气体在状态B 时的温度为 K ,从状态A 到状态C 气体与外界交换的热量为 J.图6答案 780 600解析 由题可知,T A =260 K ,V A =1×10-3 m 3,V B =3×10-3 m 3,由题图可知,A →B 为等压变化,由盖—吕萨克定律得:V A T A =V B T B,代入数据解得:T B =780 K.气体状态参量:p A =3×105 Pa ,V A =1×10-3 m 3,p C =1×105 Pa ,V C =3×10-3m 3,由理想气体状态方程得:p A V A T A =p C V CT C,代入数据解得:T C =T A =260 K.A 、C 两个状态的温度相等,内能相等,内能变化量ΔU =0A 到B 过程气体体积增大,气体对外做功:W =-p ΔV =-3×105×(3-1)×10-3 J =-600 J ,由热力学第一定律ΔU=W +Q 得:Q =ΔU -W =0-(-600) J =600 J >0,气体从外界吸收600 J 的热量.变式5 (2018·苏锡常镇二模)如图7为一定质量的理想气体的体积V 随热力学温度T 的变化关系图象.由状态A 变化到状态B 的过程中气体吸收热量Q 1=220 J ,气体在状态A 的压强为p 0=1.0×105 Pa.求:图7(1)气体在状态B 时的温度T 2;(2)气体由状态B 变化到状态C 的过程中,气体向外放出的热量Q 2. 答案 (1)600 K (2)120 J解析 (1)根据V 1T 1=V 2T 2,代入数据解得T 2=600 K(2)A 到B 过程气体从外界吸热,对外界做功,内能增加:ΔU =W +Q 1,W =-p 0ΔV ,C 状态与A 状态内能相等,B 到C 为等容过程,对外界不做功:Q 2=ΔU ,代入数据解得Q 2=120 J.1.下列说法正确的是( ) A.物体放出热量,其内能一定减小 B.物体对外做功,其内能一定减小C.物体吸收热量,同时对外做功,其内能可能增加D.物体放出热量,同时对外做功,其内能可能不变答案 C解析 由热力学第一定律ΔU =W +Q 可知,改变物体内能的方式有两种:做功和热传递.若物体放热Q <0,但做功W 未知,所以内能不一定减小,A 选项错误;物体对外做功W <0,但Q 未知,所以内能不一定减小,B 选项错误;物体吸收热量Q >0,同时对外做功W <0,W +Q 可正、可负、还可为0,所以内能可能增加,故C 选项正确;物体放出热量Q <0,同时对外做功W <0,所以ΔU <0,即内能一定减小,D 选项错误. 2.(2018·阜宁中学调研)对于一定质量的理想气体,下列说法正确的是( ) A.保持气体的压强不变,改变其体积,可以实现其内能不变 B.保持气体的压强不变,改变其温度,可以实现其内能不变 C.若气体的温度逐渐升高,则其压强可以保持不变 D.当气体体积逐渐增大时,气体的内能一定减小 答案 C解析 一定质量的某种理想气体的内能只与温度有关系,温度变化则其内能一定变化,B 项错误;保持气体的压强不变,改变其体积,则其温度一定改变,故内能变化,A 项错误;气体温度升高的同时,若其体积也逐渐变大,由理想气体状态方程pVT =C 可知,其压强可以不变,C 项正确;当气体做等温膨胀时,其内能不变,D 项错误.3.(2018·江苏省高考压轴冲刺卷)如图8所示,导热性能良好、内壁光滑的汽缸内部存有一定质量的理想气体,缸外环境保持恒温.现用外力F 拉杆,使活塞缓慢向右移动,此过程中缸内气体质量保持不变,下列说法正确的是( )图8A.缸内气体的体积增大,内能增加B.缸内气体等温膨胀,对外做功C.单位时间内缸内气体分子对活塞的碰撞次数增多D.缸内气体的体积增大,内能减小 答案 B解析 汽缸导热性能良好,缸内气体温度不变,活塞向右运动,体积增大,对外做功,B 正确;一定质量的理想气体,温度不变,则内能不变,A 、D 错误;由理想气体状态方程可知,体积增大,则压强减小,所以单位时间内缸内气体分子对活塞碰撞的次数减小,选项C 错误.4.(2018·南师附中5月模拟)一定质量的理想气体从状态a 开始,经历三个过程ab 、bc 、ca 回到原状态,其p -T 图象如图9所示.a 、b 和c 三个状态中分子平均动能最小的是 (选填“a ”“b ”或“c ”),气体在过程ab 中吸收的热量(选填“大于”“等于”或“小于”)过程ca中放出的热量.图9答案a小于解析由题图可知,a状态温度最低,分子平均动能最小,一定质量理想气体的内能取决于温度,气体在状态a时的内能小于它在状态c时的内能;a→b为等容过程,温度升高,压强增大,内能增加ΔU1>0,气体不做功W=0,据W +Q=ΔU,气体从外界吸收的热量等于内能的增加量,即Q1=ΔU1;c→a为等压过程,温度下降,体积减小,内能减少ΔU2<0,外界对气体做功,W>0,据W+Q=ΔU,得Q2=|ΔU2|+W,由于a→b过程中温度变化量和c→a过程中温度变化量相等,所以内能变化量的绝对值相等,即ΔU1=|ΔU2|,故Q1<Q2.5.(2018·南京市三模)一定质量的理想气体变化情况如图10所示.已知在状态B时,气体温度T B=300 K.图10(1)求气体在状态A时的温度;(2)气体由状态D→B的过程中放出热量为4.5×102 J,则此过程中气体内能增量为多少?答案(1)600 K(2)-150 J解析(1)由题图可知p A=2×105 Pa,p B=1×105 PaA到B气体做等容变化,有p AT A=p BT B代入数据解得T A=600 K(2)由D到B过程中外界对气体做功为W=p BΔV=1×105×3×10-3 J=300 J由热力学第一定律得,气体内能增量为ΔU=W+Q=300 J-4.5×102 J=-150 J1.(多选)关于热力学定律,下列说法正确的是()A.气体吸热后温度一定升高B.对气体做功可以改变其内能C.理想气体等压膨胀过程一定放热D.如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡答案BD2.某驾驶员发现中午时车胎内的气压高于清晨时的,且车胎体积增大.若这段时间胎内气体质量不变且可视为理想气体,那么()A.外界对胎内气体做功,气体内能减小B.外界对胎内气体做功,气体内能增大C.胎内气体对外界做功,内能减小D.胎内气体对外界做功,内能增大答案 D解析车胎体积增大,故胎内气体对外界做功,胎内气体温度升高,故胎内气体内能增大,D项正确.3.(多选)下列说法中正确的是()A.物体速度增大,则分子动能增大,内能也增大B.一定质量气体的体积增大,但既不吸热也不放热,内能减小C.相同质量的两种物体,升高相同的温度,内能的增量一定相同D.物体的内能与物体的温度和体积都有关系答案BD解析物体速度增大,不会改变物体分子的动能,故A错误;体积增大时,气体对外做功,不吸热也不放热时,内能减小,故B正确;质量相同,但物体的物质的量不同,故升高相同的温度时,内能的增量不一定相同,故C错误;物体的内能与物体的温度和体积都有关系,故D正确.4.(多选)(2018·东台创新学校月考)一定质量的理想气体由状态A变化到状态B,气体的压强随热力学温度的变化如图1所示,则此过程()图1A.气体的密度增大B.外界对气体做功C.气体从外界吸收了热量D.气体分子的平均动能增大答案AB解析由题图可知,在从A到B的过程中,气体温度不变,压强变大,由玻意耳定律可知,气体体积变小,V B<V A.气体质量不变,体积变小,由密度公式可知气体密度变大,故A正确;气体体积变小,外界对气体做功,故B正确;气体温度不变,内能不变,ΔU=0,外界对气体做功,W>0,由热力学第一定律ΔU=Q+W可知:Q<0,气体要放出热量,故C错误;气体温度不变,分子平均动能不变,故D错误.5.(2018·金陵中学等三校四模)一定质量的理想气体的状态变化过程如图2所示,MN为一条直线,则气体从状态M到状态N的过程中,气体内能(选填“先增大后减小”“先减小后增大”或“始终保持不变”),气体吸收的热量气体对外所做功(选填“大于”“等于”或“小于”).图2答案先增大后减小等于解析pV=CT,C不变,pV越大,T越高.状态在(2,2)处温度最高.在M和N状态,pV乘积相等,所以温度先升高,后又减小到初始温度;气体的内能先增加某一值,再减少同样的值,故气体内能先增大后减小.气体膨胀就会推动活塞对外界做功,整个过程中气体初、末温度相等,所以整个过程内能变化为0.根据热力学第一定律ΔU=W+Q,由于ΔU=0,故气体吸收的热量等于气体对外所做的功.6.(2018·泰州中学四模)一定质量的理想气体压强p与摄氏温度t的关系如图3所示,气体从状态A变到状态B,则气体在状态A的体积(选填“>”“=”或“<”)在状态B的体积;此过程中,气体做功的绝对值为W,内能变化量的绝对值为ΔU,则气体与外界之间传递的热量为.图3答案<W-ΔU解析将A、B两点与绝对零度连线,分析其斜率变化,判断体积变化,斜率越大,体积越小.B与绝对零度-273 ℃连线的斜率小于A与绝对零度-273 ℃连线的斜率,则B状态气体的体积大于A状态气体的体积,根据热力学第一定律可得Q=W-ΔU.7.(2018·南京市、盐城市一模)如图4所示,一定质量的理想气体由状态A经等压变化到状态B,气体吸收热量为Q1;再由B状态经等容变化到状态C,气体放出热量为Q2.状态A:V A=0.2 m3,T A=200 K;状态B:V B=m3,T B=400 K;状态C:T C=200 K,则Q1Q2 (选填“>”、“=”或“<”).图4答案 0.4 >解析 设气体在B 状态时的体积为V B ,由盖—吕萨克定律得V A T A =V BT B ,代入数据解得V B =0.4 m 3;因为T A =T C ,故A →B增加的内能与B →C 减小的内能相同,而A →B 过程气体对外做正功,B →C 过程气体不做功,由热力学第一定律可知Q 1大于Q 2.8.(2019·新海中学月考)一定质量的理想气体从状态M 可以经历过程1或者过程2到达状态N ,其p -V 图象如图5所示.在过程1中,气体始终与外界无热量交换;在过程2中,气体先经历等容变化再经历等压变化.则在过程1中气体的温度 (填“升高”“降低”或“不变”);气体经历过程1对外做的功 (填“大于”“小于”或“等于”)气体经历过程2对外做功.图5答案 降低 大于解析 气体经过过程1,压强减小,体积变大,对外做功,内能减少,温度降低, 根据p -V 图象与V 轴所围面积表示气体做功可知:气体经过过程1对外做功为S 1 在过程2中气体经过过程2对外做功为S 2从图象上可以看出气体经历过程1对外做功大于气体经历过程2对外做功.9.(2018·南通市等六市一调)如图6所示,某同学制作了一个简易的气温计,一导热容器连接横截面积为S 的长直管,用一滴水银封闭了一定质量的气体,当温度为T 0时水银滴停在O 点,封闭气体的体积为V 0.大气压强不变,不计水银与管壁间的摩擦.图6(1)若封闭气体某过程从外界吸收0.50 J 的热量,内能增加0.35 J ,求气体对外界做的功.(2)若环境温度缓慢升高,求水银滴在直管内相对O 点移动的距离x 随封闭气体热力学温度T 的变化关系. 答案 (1)0.15 J (2)x =V 0T ST 0-V 0S解析 (1)由热力学第一定律有ΔU =Q +W 代入数据得:W =-0.15 J 所以气体对外界做的功为0.15 J(2)气体做等压变化,由盖—吕萨克定律有:V 0T 0=V 0+xST解得:x =V 0T ST 0-V 0S10.(2018·盐城中学最后一卷)某同学估测室温的装置如图7所示,汽缸导热性能良好,用绝热的活塞封闭一定质量的理想气体,室温时气体的体积为V 1=66 mL ,将汽缸竖直放置于冰水混合物中,稳定后封闭气体的体积V 2=60 mL ,不计活塞重力及活塞与缸壁间的摩擦,室内大气压强p 0=1.0×105 Pa.求:图7(1)室温;(2)上述过程中,外界对气体做的功. 答案 (1)27.3 ℃ (2)0.60 J解析 (1)对活塞研究,因不计活塞重力、活塞与缸壁间的摩擦,活塞只受外部气体对其向下的压力和内部气体对其向上的托力,两力平衡,所以汽缸内的气体为等压变化,设室温为T 1,则V 1T 1=V 2T 2,代入数据解得:T 1=300.3 K =27.3 ℃.(2)因压强恒定,所以外界对气体做功为W =p 0·ΔV =p 0·(V 1-V 2),代入数据解得:W =0.60 J.11.(2018·如皋市模拟四)一定质量的理想气体经历了如图8所示的ABCDA 循环,p 1、p 2、V 1、V 2均为已知量.已知A 状态的温度为T 0,求:图8(1)C 状态的温度T ;(2)完成一个循环,气体与外界热交换的热量Q . 答案 (1)p 2V 2p 1V 1T 0 (2)(p 2-p 1)(V 2-V 1)解析 (1)设状态D 的温度为T D C 到D 等容变化,由查理定律知p 2T =p 1T DD 到A 等压变化,由盖—吕萨克定律知V 2T D =V 1T 0解得T =p 2V 2p 1V 1T 0(2)W BC =-p 2(V 2-V 1) W DA =p 1(V 2-V 1)全过程有W =W BC +W DA =(p 1-p 2)(V 2-V 1) 由热力学第一定律ΔU =Q +W =0 解得Q =(p 2-p 1)(V 2-V 1)>0,气体吸热.。
第3讲热力学定律与能量守恒定律一、热力学第一定律1.改变物体内能的两种方式(1)做功;(2)热传递.2.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和.(2)表达式:ΔU=Q+W.(3)ΔU=Q+W中正、负号法则:自测1一定质量的理想气体在某一过程中,外界对气体做功7.0×104J,气体内能减少1.3×105J,则此过程( )A.气体从外界吸收热量2.0×105JB.气体向外界放出热量2.0×105JC.气体从外界吸收热量6.0×104JD.气体向外界放出热量6.0×104J答案 B二、能量守恒定律1.能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的,第一类永动机是不可能制成的,它违背了能量守恒定律.自测2 在一个密闭隔热的房间里,有一电冰箱正在工作,如果打开电冰箱的门,过一段时间后房间的温度会( ) A.降低 B.不变 C.升高 D.无法判断答案C命题点一 理解热量与内能、温度的区别温度、内能、热量、功的比较例1 (多选)关于气体的内能,下列说法正确的是( ) A.质量和温度都相同的气体,内能一定相同 B.气体温度不变,整体运动速度越大,其内能越大 C.气体被压缩时,内能可能不变D.一定量的某种理想气体的内能只与温度有关 答案 CD解析 质量和温度都相同的气体,虽然分子平均动能相同,但是不同的气体,其摩尔质量不同,即分子个数不同,所以分子总动能不一定相同,A 错误;宏观运动和微观运动没有关系,所以宏观运动速度大,内能不一定大,B 错误;根据pVT=C 可知,如果等温压缩,则内能不变,C 正确;理想气体的分子势能为零,所以一定量的某种理想气体的内能只与分子平均动能有关,而分子平均动能和温度有关,D 正确.变式1关于热量、功、内能三个物理量,下列说法中正确的是( )A.热量、功、内能的物理意义等同B.热量、功都可以作为物体内能的量度C.热量、功、内能的单位不相同D.热量和功是由过程决定的,而内能是由物体状态决定的答案 D命题点二对热力学第一定律的理解1.改变内能的两种方式的比较2.ΔU=Q+W的三种特殊情况3.应用热力学第一定律的三点注意(1)做功看体积:体积增大,气体对外做功,W为负;体积缩小,外界对气体做功,W为正.气体向真空中自由膨胀,对外界不做功,W=0.(2)与外界绝热,则不发生热传递,此时Q=0.(3)由于理想气体没有分子势能,所以当它的内能变化时,主要体现在分子动能的变化上,从宏观上看就是温度发生了变化.例2(2018·江苏单科·12A(3))如图1所示,一定质量的理想气体在状态A时压强为2.0×105Pa,经历A→B→C→A的过程,整个过程中对外界放出61.4J热量.求该气体在A→B 过程中对外界所做的功.图1答案138.6J解析整个过程中,外界对气体做功W=W AB+W CA,且W CA=p A(V C-V A)由热力学第一定律ΔU=Q+W,得W AB=-(Q+W CA)代入数据得W AB=-138.6J即气体对外界做的功为138.6J.变式2(2018·盐城市三模)如图2所示,在汽缸右侧封闭一定质量的理想气体,压强与大气压强相同.把汽缸和活塞固定,使汽缸内气体升高到一定的温度,气体吸收的热量为Q1,气体的内能为U1.如果让活塞可以自由滑动(活塞与汽缸间无摩擦、不漏气),也使汽缸内气体温度升高相同温度,其吸收的热量为Q2,气体的内能为U2,则Q1Q2,U1U2.(均选填“大于”“等于”或“小于”)图2答案小于等于变式3(2018·江苏百校12月大联考)空气能热水器采用“逆卡诺”原理,即使在南极也有良好表现,高效节能.如图3所示,一定质量的理想气体从状态A依次经过状态B、C和D 后再回到状态A.其中A→B和C→D为等温过程,B→C和D→A为绝热过程(气体与外界无热量交换).在完成一次循环的过程中气体对外做功10J.若已知气体在A→B过程吸收热量12J,则在C→D过程放出多少热量?图3答案2J解析由热力学第一定律有:ΔU=Q+W完成一次循环气体内能不变,即ΔU=0又W=-10J,故吸收的热量Q=-W=10JA→B过程吸收热量12J,所以C→D过程中放出热量2J.命题点三热力学定律与气体实验定律的综合应用基本思路例3(2018·南京市、盐城市二模)如图4所示,一圆柱形绝热汽缸竖直固定放置,通过绝热活塞封闭着一定质量的理想气体,活塞的质量为m,横截面积为S,与汽缸底部相距h,此时封闭气体的温度为T.现通过电热丝缓慢加热气体,当气体吸收热量Q时,气体温度上升到1.5T.已知大气压强为p0,重力加速度为g,不计活塞与汽缸的摩擦.求:图4(1)加热后活塞到汽缸底部的距离; (2)加热过程中气体的内能增加量. 答案 (1)1.5h (2)Q -0.5h (p 0S +mg ) 解析 (1)等压过程由Sh T =Sh ′1.5T得h ′=1.5h(2)气体压强p =p 0+mg SW =-p (h ′-h )S由热力学第一定律ΔU =W +Q 联立解得:ΔU =Q -0.5h (p 0S +mg ).变式4 (2018·苏锡常镇一调)如图5所示,轻质活塞将体积为V 0、温度为3T 0的理想气体,密封在内壁光滑的圆柱形导热汽缸内.已知大气压强为p 0,大气的温度为T 0,气体内能U 与温度的关系为U =aT (a 为常量).在汽缸内气体温度缓慢降为T 0的过程中,求:图5(1)气体内能的减少量; (2)气体放出的热量.答案 (1)2aT 0 (2)23p 0V 0+2aT 0解析 (1)ΔU =U 1-U 2=a ×3T 0-aT 0=2aT 0(2)气体发生等压变化,由盖—吕萨克定律得V 03T 0=VT 0,解得V =V 03,该过程中外界对气体做功W =p 0ΔV =23p 0V 0由热力学第一定律ΔU =W +Q 得,气体放出热量Q =23p 0V 0+2aT 0.命题点四 热力学定律与图象问题的综合1.分析图象得出气体三个状态参量(p ,V ,T )的变化.注意p -V 图象里的等温线,p -T 图象里的等容线,V -T 图象里的等压线.2.一定质量的理想气体内能取决于温度(T ),做功情况取决于气体体积的变化,然后再由ΔU =Q +W 确定热量Q 的正负,判断吸热或放热.例4 (2018·常州市一模)一定质量的理想气体,其状态变化的p -V 图象如图6所示.已知气体在状态A 时的温度为260K ,则气体在状态B 时的温度为K ,从状态A 到状态C 气体与外界交换的热量为J.图6答案 780 600解析 由题可知,T A =260K ,V A =1×10-3m 3,V B =3×10-3m 3,由题图可知,A →B 为等压变化,由盖—吕萨克定律得:V A T A =V BT B,代入数据解得:T B =780K.气体状态参量:p A =3×105Pa ,V A =1×10-3m 3,p C =1×105Pa ,V C =3×10-3m 3,由理想气体状态方程得:p A V A T A =p C V CT C,代入数据解得:T C =T A =260K.A 、C 两个状态的温度相等,内能相等,内能变化量ΔU =0A 到B 过程气体体积增大,气体对外做功:W =-p ΔV =-3×105×(3-1)×10-3J =-600J ,由热力学第一定律ΔU =W +Q 得:Q =ΔU -W =0-(-600) J =600J >0,气体从外界吸收600J 的热量.变式5 (2018·苏锡常镇二模)如图7为一定质量的理想气体的体积V 随热力学温度T 的变化关系图象.由状态A 变化到状态B 的过程中气体吸收热量Q 1=220J ,气体在状态A 的压强为p 0=1.0×105Pa.求:图7(1)气体在状态B 时的温度T 2;(2)气体由状态B 变化到状态C 的过程中,气体向外放出的热量Q 2. 答案 (1)600K (2)120J解析 (1)根据V 1T 1=V 2T 2,代入数据解得T 2=600K(2)A 到B 过程气体从外界吸热,对外界做功,内能增加:ΔU =W +Q 1,W =-p 0ΔV ,C 状态与A 状态内能相等,B 到C 为等容过程,对外界不做功:Q 2=ΔU ,代入数据解得Q 2=120J.1.下列说法正确的是( ) A.物体放出热量,其内能一定减小 B.物体对外做功,其内能一定减小C.物体吸收热量,同时对外做功,其内能可能增加D.物体放出热量,同时对外做功,其内能可能不变 答案 C解析 由热力学第一定律ΔU =W +Q 可知,改变物体内能的方式有两种:做功和热传递.若物体放热Q <0,但做功W 未知,所以内能不一定减小,A 选项错误;物体对外做功W <0,但Q 未知,所以内能不一定减小,B 选项错误;物体吸收热量Q >0,同时对外做功W <0,W +Q 可正、可负、还可为0,所以内能可能增加,故C 选项正确;物体放出热量Q <0,同时对外做功W <0,所以ΔU <0,即内能一定减小,D 选项错误.2.(2018·阜宁中学调研)对于一定质量的理想气体,下列说法正确的是( ) A.保持气体的压强不变,改变其体积,可以实现其内能不变 B.保持气体的压强不变,改变其温度,可以实现其内能不变 C.若气体的温度逐渐升高,则其压强可以保持不变 D.当气体体积逐渐增大时,气体的内能一定减小 答案 C解析 一定质量的某种理想气体的内能只与温度有关系,温度变化则其内能一定变化,B 项错误;保持气体的压强不变,改变其体积,则其温度一定改变,故内能变化,A 项错误;气体温度升高的同时,若其体积也逐渐变大,由理想气体状态方程pVT=C 可知,其压强可以不变,C 项正确;当气体做等温膨胀时,其内能不变,D 项错误.3.(2018·江苏省高考压轴冲刺卷)如图8所示,导热性能良好、内壁光滑的汽缸内部存有一定质量的理想气体,缸外环境保持恒温.现用外力F 拉杆,使活塞缓慢向右移动,此过程中缸内气体质量保持不变,下列说法正确的是( )图8A.缸内气体的体积增大,内能增加B.缸内气体等温膨胀,对外做功C.单位时间内缸内气体分子对活塞的碰撞次数增多D.缸内气体的体积增大,内能减小答案 B解析汽缸导热性能良好,缸内气体温度不变,活塞向右运动,体积增大,对外做功,B正确;一定质量的理想气体,温度不变,则内能不变,A、D错误;由理想气体状态方程可知,体积增大,则压强减小,所以单位时间内缸内气体分子对活塞碰撞的次数减小,选项C错误.4.(2018·南师附中5月模拟)一定质量的理想气体从状态a开始,经历三个过程ab、bc、ca 回到原状态,其p-T图象如图9所示.a、b和c三个状态中分子平均动能最小的是(选填“a”“b”或“c”),气体在过程ab中吸收的热量(选填“大于”“等于”或“小于”)过程ca中放出的热量.图9答案a小于解析由题图可知,a状态温度最低,分子平均动能最小,一定质量理想气体的内能取决于温度,气体在状态a时的内能小于它在状态c时的内能;a→b为等容过程,温度升高,压强增大,内能增加ΔU1>0,气体不做功W=0,据W+Q=ΔU,气体从外界吸收的热量等于内能的增加量,即Q1=ΔU1;c→a为等压过程,温度下降,体积减小,内能减少ΔU2<0,外界对气体做功,W>0,据W+Q=ΔU,得Q2=|ΔU2|+W,由于a→b过程中温度变化量和c→a过程中温度变化量相等,所以内能变化量的绝对值相等,即ΔU1=|ΔU2|,故Q1<Q2.5.(2018·南京市三模)一定质量的理想气体变化情况如图10所示.已知在状态B时,气体温度T B=300K.图10(1)求气体在状态A时的温度;(2)气体由状态D→B的过程中放出热量为4.5×102J,则此过程中气体内能增量为多少?答案(1)600K (2)-150J解析(1)由题图可知p A=2×105Pa,p B=1×105PaA到B气体做等容变化,有p AT A=p BT B代入数据解得T A=600K(2)由D到B过程中外界对气体做功为W=p BΔV=1×105×3×10-3J=300J由热力学第一定律得,气体内能增量为ΔU=W+Q=300J-4.5×102J=-150J1.(多选)关于热力学定律,下列说法正确的是( )A.气体吸热后温度一定升高B.对气体做功可以改变其内能C.理想气体等压膨胀过程一定放热D.如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡答案BD2.某驾驶员发现中午时车胎内的气压高于清晨时的,且车胎体积增大.若这段时间胎内气体质量不变且可视为理想气体,那么( )A.外界对胎内气体做功,气体内能减小B.外界对胎内气体做功,气体内能增大C.胎内气体对外界做功,内能减小D.胎内气体对外界做功,内能增大答案 D解析车胎体积增大,故胎内气体对外界做功,胎内气体温度升高,故胎内气体内能增大,D 项正确.3.(多选)下列说法中正确的是( )A.物体速度增大,则分子动能增大,内能也增大B.一定质量气体的体积增大,但既不吸热也不放热,内能减小C.相同质量的两种物体,升高相同的温度,内能的增量一定相同D.物体的内能与物体的温度和体积都有关系答案BD解析物体速度增大,不会改变物体分子的动能,故A错误;体积增大时,气体对外做功,不吸热也不放热时,内能减小,故B正确;质量相同,但物体的物质的量不同,故升高相同的温度时,内能的增量不一定相同,故C错误;物体的内能与物体的温度和体积都有关系,故D正确.4.(多选)(2018·东台创新学校月考)一定质量的理想气体由状态A变化到状态B,气体的压强随热力学温度的变化如图1所示,则此过程( )图1A.气体的密度增大B.外界对气体做功C.气体从外界吸收了热量D.气体分子的平均动能增大答案AB解析由题图可知,在从A到B的过程中,气体温度不变,压强变大,由玻意耳定律可知,气体体积变小,V B<V A.气体质量不变,体积变小,由密度公式可知气体密度变大,故A正确;气体体积变小,外界对气体做功,故B正确;气体温度不变,内能不变,ΔU=0,外界对气体做功,W>0,由热力学第一定律ΔU=Q+W可知:Q<0,气体要放出热量,故C错误;气体温度不变,分子平均动能不变,故D错误.5.(2018·金陵中学等三校四模)一定质量的理想气体的状态变化过程如图2所示,MN为一条直线,则气体从状态M到状态N的过程中,气体内能(选填“先增大后减小”“先减小后增大”或“始终保持不变”),气体吸收的热量气体对外所做功(选填“大于”“等于”或“小于”).图2答案先增大后减小等于解析pV=CT,C不变,pV越大,T越高.状态在(2,2)处温度最高.在M和N状态,pV乘积相等,所以温度先升高,后又减小到初始温度;气体的内能先增加某一值,再减少同样的值,故气体内能先增大后减小.气体膨胀就会推动活塞对外界做功,整个过程中气体初、末温度相等,所以整个过程内能变化为0.根据热力学第一定律ΔU=W+Q,由于ΔU=0,故气体吸收的热量等于气体对外所做的功.6.(2018·泰州中学四模)一定质量的理想气体压强p与摄氏温度t的关系如图3所示,气体从状态A变到状态B,则气体在状态A的体积(选填“>”“=”或“<”)在状态B的体积;此过程中,气体做功的绝对值为W,内能变化量的绝对值为ΔU,则气体与外界之间传递的热量为.图3答案< W-ΔU解析将A、B两点与绝对零度连线,分析其斜率变化,判断体积变化,斜率越大,体积越小.B 与绝对零度-273℃连线的斜率小于A与绝对零度-273℃连线的斜率,则B状态气体的体积大于A状态气体的体积,根据热力学第一定律可得Q=W-ΔU.7.(2018·南京市、盐城市一模)如图4所示,一定质量的理想气体由状态A经等压变化到状态B,气体吸收热量为Q1;再由B状态经等容变化到状态C,气体放出热量为Q2.状态A:V A =0.2m3,T A=200K;状态B:V B=m3,T B=400K;状态C:T C=200K,则Q1Q2(选填“>”、“=”或“<”).图4答案 0.4 >解析 设气体在B 状态时的体积为V B ,由盖—吕萨克定律得V A T A =V BT B,代入数据解得V B =0.4m 3;因为T A =T C ,故A →B 增加的内能与B →C 减小的内能相同,而A →B 过程气体对外做正功,B →C 过程气体不做功,由热力学第一定律可知Q 1大于Q 2.8.(2019·新海中学月考)一定质量的理想气体从状态M 可以经历过程1或者过程2到达状态N ,其p -V 图象如图5所示.在过程1中,气体始终与外界无热量交换;在过程2中,气体先经历等容变化再经历等压变化.则在过程1中气体的温度(填“升高”“降低”或“不变”);气体经历过程1对外做的功(填“大于”“小于”或“等于”)气体经历过程2对外做功.图5答案 降低 大于解析 气体经过过程1,压强减小,体积变大,对外做功,内能减少,温度降低, 根据p -V 图象与V 轴所围面积表示气体做功可知:气体经过过程1对外做功为S 1 在过程2中气体经过过程2对外做功为S 2从图象上可以看出气体经历过程1对外做功大于气体经历过程2对外做功.9.(2018·南通市等六市一调)如图6所示,某同学制作了一个简易的气温计,一导热容器连接横截面积为S 的长直管,用一滴水银封闭了一定质量的气体,当温度为T 0时水银滴停在O 点,封闭气体的体积为V 0.大气压强不变,不计水银与管壁间的摩擦.图6(1)若封闭气体某过程从外界吸收0.50J 的热量,内能增加0.35J ,求气体对外界做的功. (2)若环境温度缓慢升高,求水银滴在直管内相对O 点移动的距离x 随封闭气体热力学温度T 的变化关系.答案 (1)0.15J (2)x =V 0T ST 0-V 0S解析 (1)由热力学第一定律有ΔU =Q +W 代入数据得:W =-0.15 J 所以气体对外界做的功为0.15 J(2)气体做等压变化,由盖—吕萨克定律有:V 0T 0=V 0+xST解得:x =V 0T ST 0-V 0S10.(2018·盐城中学最后一卷)某同学估测室温的装置如图7所示,汽缸导热性能良好,用绝热的活塞封闭一定质量的理想气体,室温时气体的体积为V 1=66mL ,将汽缸竖直放置于冰水混合物中,稳定后封闭气体的体积V 2=60mL ,不计活塞重力及活塞与缸壁间的摩擦,室内大气压强p 0=1.0×105Pa.求:图7(1)室温;(2)上述过程中,外界对气体做的功. 答案 (1)27.3℃ (2)0.60J解析 (1)对活塞研究,因不计活塞重力、活塞与缸壁间的摩擦,活塞只受外部气体对其向下的压力和内部气体对其向上的托力,两力平衡,所以汽缸内的气体为等压变化,设室温为T 1,则V 1T 1=V 2T 2,代入数据解得:T 1=300.3K =27.3℃.(2)因压强恒定,所以外界对气体做功为W =p 0·ΔV =p 0·(V 1-V 2),代入数据解得:W =0.60J. 11.(2018·如皋市模拟四)一定质量的理想气体经历了如图8所示的ABCDA 循环,p 1、p 2、V 1、V 2均为已知量.已知A 状态的温度为T 0,求:图8(1)C 状态的温度T ;(2)完成一个循环,气体与外界热交换的热量Q . 答案 (1)p 2V 2p 1V 1T 0 (2)(p 2-p 1)(V 2-V 1) 解析 (1)设状态D 的温度为T DC 到D 等容变化,由查理定律知p 2T =p 1T DD 到A 等压变化,由盖—吕萨克定律知V 2T D =V 1T 0解得T =p 2V 2p 1V 1T 0 (2)W BC =-p 2(V 2-V 1)W DA =p 1(V 2-V 1)全过程有W =W BC +W DA =(p 1-p 2)(V 2-V 1) 由热力学第一定律ΔU =Q +W =0 解得Q =(p 2-p 1)(V 2-V 1)>0,气体吸热.。
第2讲固体、液体和气体一、固体晶体与非晶体的比较二、液体和液晶1.液体的表面张力(1)作用:液体的表面张力使液面具有收缩的趋势.(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直.2.液晶的物理性质(1)具有液体的流动性.(2)具有晶体的光学各向异性.(3)从某个方向看其分子排列比较整齐,但从另一方向看,分子的排列是杂乱无章的.自测1(多选)下列说法正确的是()A.单晶体有固定的熔点,多晶体没有固定的熔点B.单晶体中原子(或分子、离子)的排列具有空间周期性C.通常金属在各个方向的物理性质都相同,所以金属是非晶体D.液晶具有液体的流动性,同时具有晶体的各向异性特征答案BD解析单晶体和多晶体都有固定的熔点,非晶体熔点不固定,A错误.单晶体中原子(或分子、离子)的排列是规则的,具有空间周期性,表现为各向异性,B正确.通常金属显示各向同性,是多晶体,C错误.液晶的名称由来就是由于它具有液体的流动性和晶体的各向异性,D正确.三、饱和汽、饱和汽压和相对湿度1.饱和汽与未饱和汽(1)饱和汽:与液体处于动态平衡的蒸汽.(2)未饱和汽:没有达到饱和状态的蒸汽.2.饱和汽压(1)定义:饱和汽所具有的压强.(2)特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关.3.相对湿度空气中水蒸气的压强与同一温度时水的饱和汽压之比.即:相对湿度=水蒸气的实际压强同温度水的饱和汽压.自测2(多选)(2017·南京市、盐城市一模)在潮湿天气里,若空气的相对湿度为98%,洗过的衣服不容易晾干,这时()A.没有水分子从湿衣服中飞出B.有水分子从湿衣服中飞出,也有水分子回到湿衣服中C.空气中水蒸气的实际压强略小于同温度水的饱和汽压D.空气中水蒸气的实际压强比同温度水的饱和汽压小很多答案BC四、气体1.气体分子运动的特点(1)气体分子间距很大,分子力可以忽略,因此分子间除碰撞外不受其他力的作用,故气体能充满它能达到的整个空间.(2)分子做无规则的运动,速率有大有小,且时刻变化,大量分子的速率按“中间多,两头少”的规律分布.(3)温度升高时,速率小的分子数减少,速率大的分子数增多,分子的平均速率将增大,但速率分布规律不变.2.气体压强(1)产生的原因由于大量分子无规则运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强.(2)决定因素①宏观上:决定于气体的温度和体积.②微观上:决定于分子的平均动能和分子的密集程度.3.气体实验定律4.理想气体的状态方程 (1)理想气体①宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体.②微观上讲,理想气体的分子间除碰撞外无其他作用力,即分子间无分子势能. (2)理想气体的状态方程一定质量的理想气体的状态方程:p 1V 1T 1=p 2V 2T 2或pV T =C .气体实验定律可看做一定质量理想气体状态方程的特例. 5.气体实验定律的微观解释 (1)等温变化一定质量的某种理想气体,温度保持不变时,分子的平均动能不变.在这种情况下,体积减小时,分子的密集程度增大,气体的压强增大. (2)等容变化一定质量的某种理想气体,体积保持不变时,分子的密集程度保持不变.在这种情况下,温度升高时,分子的平均动能增大,气体的压强增大. (3)等压变化一定质量的某种理想气体,温度升高时,分子的平均动能增大.只有气体的体积同时增大,使分子的密集程度减小,才能保持压强不变.自测3 某同学利用DIS 实验系统研究一定量理想气体的状态变化,实验后计算机屏幕显示如图1所示的p -t 图象.已知在状态B 时气体的体积为V B =3 L ,问:图1(1)气体由A→B,B→C各做什么变化?(2)气体在状态C的体积是多少?答案(1)A→B做等容变化B→C做等温变化(2)2 L解析(1)A→B做等容变化,B→C做等温变化(2)p B=1.0 atm,V B=3 L,p C=1.5 atm根据玻意耳定律,有p B V B=p C V C解得V C=2 L命题点一晶体与非晶体对晶体与非晶体的认识(1)不能仅凭有无规则的外形判定某些物质是晶体还是非晶体.(2)晶体中的单晶体具有各向异性,但并不是在各种物理性质上都表现出各向异性.例如,铜的机械强度在各方向上存在差异,而其导热性和导电性则表现为各向同性.(3)非晶体不稳定,经过适当时间后,会向晶体转变;而有些晶体在一定条件下也可以转化为非晶体.(4)同种物质也可能以晶体和非晶体两种不同的形态出现,也就是说,物质是晶体还是非晶体,并不是绝对的.例1(多选)下列说法正确的是()A.将一块晶体敲碎后,得到的小颗粒是非晶体B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变答案BCD变式1(多选)(2018·江苏一模)2017年5月,中国首次海域天然气水合物(可燃冰)试采成功.可燃冰是一种晶体,它是天然气的固体状态(因海底高压),学名天然气水化合物,其化学式为CH4·8H2O.研究表明1 m3的可燃冰可转化为164 m3的天然气(CH4)和0.8 m3的水(已转化为标准状态),下列关于晶体和非晶体的说法中正确的是()A.晶体有确定的熔点,非晶体没有确定的熔点B.晶体都有确定的几何形状,非晶体没有确定的几何形状C.制作晶体管、集成电路多用多晶体D.云母片导热性能各向异性,说明云母片是晶体答案AD解析晶体有确定的熔点,非晶体没有确定的熔点,故A正确;单晶体具有规则的几何形状,而多晶体和非晶体没有规则的几何形状,故B错误;制作晶体管、集成电路多用单晶体,故C错误;多晶体与非晶体具有各向同性,单晶体具有各向异性,云母片导热性能各向异性,说明云母片是晶体,故D正确.命题点二液体表面张力液体表面张力(1)形成原因:表面层中分子间的距离比液体内部分子间的距离大,分子间的相互作用力表现为引力.(2)表现特性:表面层分子间的引力使液面产生了表面张力,使液体表面好像一层绷紧的弹性薄膜.(3)表面张力的方向:和液面相切,垂直于液面上的各条分界线.(4)表面张力的效果:表面张力使液体表面具有收缩趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小.例2(多选)把一条细棉线的两端系在铁丝环上,棉线处于松驰状态.将铁丝环浸入肥皂液里,拿出来时环上留下一层肥皂液的薄膜,这时薄膜上的棉线仍是松驰的,如图2所示,用烧热的针刺破某侧的薄膜,观察到棉线的形状,图中所标的箭头方向合理的是()图2答案AD变式2(2018·南通市、泰州市一模)下列现象与液体表面张力无关的是()A.透过布制的伞面可以看见纱线缝隙,而伞面不漏雨水B.在绕地球飞行的宇宙飞船中,自由飘浮的水滴呈球形C.把玻璃管的裂口放在火焰上烧熔,它的尖端会变钝D.把两块纯净的铅压紧,它们会“粘”在一起难以分开答案 D命题点三饱和汽压与湿度与液体处于动态平衡的蒸汽叫饱和汽,在一定温度下饱和汽的分子数密度是一定的,所以饱和汽的压强也是一定的,这个压强叫做这种液体的饱和汽压.由此可见饱和汽压与温度有关,随温度升高蒸汽分子数密度增加,如图3所示,饱和汽压与饱和汽的体积无关.图3例3(2018·江苏单科·12A(1))如图4所示,一支温度计的玻璃泡外包着纱布,纱布的下端浸在水中.纱布中的水在蒸发时带走热量,使温度计示数低于周围空气温度.空气温度不变,若一段时间后发现该温度计示数减小,则()图4A.空气的相对湿度减小B.空气中水蒸气的压强增大C.空气中水的饱和汽压减小D.空气中水的饱和汽压增大答案 A解析温度计示数减小说明水在蒸发,是因为空气中的相对湿度减小了,故A正确;水的饱和汽压与温度有关,温度不变,水的饱和汽压不变,空气的相对湿度减小,所以空气中水蒸气的压强减小,故B、C、D错误.变式3(2018·南通市等七市三模)1912年,英国物理学家威尔逊发明了观察带电粒子运动径迹的云室,结构如图5所示,在一个圆筒状容器中加入少量酒精,使云室内充满酒精的饱和蒸汽.迅速向下拉动活塞,室内气体温度(选填“升高”“不变”或“降低”),酒精的饱和汽压(选填“升高”“不变”或“降低”).答案降低降低命题点四 气体实验定律1.应用状态方程解题的一般步骤(1)明确研究对象,即某一定质量的理想气体;(2)确定气体在始、末状态的参量p 1、V 1、T 1及p 2、V 2、T 2; (3)由状态方程列式求解; (4)讨论结果的合理性. 2.两个推论查理定律的推论:Δp =p 1T 1ΔT ;盖—吕萨克定律的推论:ΔV =V 1T 1ΔT ,利用这两个推论解决相关问题往往非常方便.例4 (2018·南通市、泰州市一模)如图6所示是某气压式柱形保温瓶的结构示意图,活塞只在受到压力时才向下移动.倒入热水后,活塞a 的下表面与液面相距h .两者间密闭有一定质量的气体,密闭气体的压强等于外界大气压强p 0,密闭气体温度为T 1.图6(1)经过一段时间温度降至T 2,此时瓶内气体的压强多大?(2)当温度降至T 2时,要把瓶中的水压出瓶外,活塞a 至少应下降多少距离?(设压活塞过程中气体温度不变)答案 (1)T 2p 0T 1(2)⎝⎛⎭⎫1-T 2T 1h 解析 (1)由查理定律有p 0T 1=p 2T 2,解得p 2=T 2p 0T 1.(2)设活塞的横截面积为S ,下降的距离为x ,由玻意耳定律有p 2hS =p 0(h -x )S ,解得x =⎝⎛⎭⎫1-T 2T 1h .变式4 (2018·扬州市一模)如图7所示,开口向上、内壁光滑的汽缸竖直放置,开始时质量不计的活塞停在卡口处,气体温度为27 ℃,压强为0.9×105 Pa ,体积为1×10-3 m 3,现缓慢加热缸内气体,试通过计算判断当气体温度为67 ℃时活塞是否离开卡口.(已知外界大气压强p 0=1×105 Pa)图7答案 见解析解析 活塞刚好离开卡口时,压强为:p 2=p 0, 气体发生等容变化,根据查理定律,得:p 1T 1=p 2T 2,代入数据得:T 2≈333 K ,因为67 ℃=340 K >333 K ,故活塞已经离开卡口.变式5 (2018·南师附中5月模拟)某柴油机的汽缸容积为0.83×10-3 m 3,压缩前其中空气的温度为47 ℃、压强为0.8×105 Pa.在压缩过程中,活塞把空气压缩到原体积的117,压强增大到4×106 Pa.若把汽缸中的空气看做理想气体,试估算这时空气的温度. 答案 668 ℃解析 空气初状态的状态参量为p 1=0.8×105 Pa ,V 1=0.83×10-3 m 3,T 1=320 K ;空气末状态的状态参量为:p 2=4×106 Pa ,V 2=117V 1,T 2为未知量,据理想气体状态方程p 1V 1T 1=p 2V 2T 2有T 2=p 2V 2T 1p 1V 1≈941 K ,故t 2=T 2-273 K =668 ℃.命题点五 气体状态变化的图象问题1.三个实验定律的对比2.气体状态变化的图象问题分析(1)解气体状态变化的图象问题,应当明确图象上的点表示一定质量的理想气体的一个平衡状态,它对应着三个状态参量;图象上的某一条直线段或曲线段表示一定质量的理想气体状态变化的一个过程.(2)在应用气体图象分析问题时,一定要看清纵、横坐标所代表的物理量,同时要注意横坐标表示的是摄氏温度还是热力学温度.(3)在V -T 图象(或p -T 图象)中,比较两个状态的压强(或体积)大小,可以比较这两个状态到原点连线的斜率的大小,其规律是:斜率越大,压强(或体积)越小;斜率越小,压强(或体积)越大.例5 图8甲是一定质量的理想气体由状态A 经过状态B 变为状态C 的V -T 图象.已知气体在状态A 时的压强是1.5×105 Pa.图8(1)说出A →B 过程中压强变化的情形,并根据图象提供的信息,计算图甲中T A 的温度值; (2)请在图乙坐标系中,作出该气体由状态A 经过状态B 变为状态C 的p -T 图象,并在图线相应位置上标出字母A 、B 、C .如果需要计算才能确定的有关坐标值,请写出计算过程. 答案 见解析解析 (1)从题图甲可以看出,A 与B 连线的延长线过原点,所以A →B 是等压变化,即p A =p B .根据盖—吕萨克定律可得V A T A =V BT B所以T A =V A V B T B =0.40.6×300 K =200 K.(2)由题图甲可知,由B →C 是等容变化,根据查理定律得p B T B =p C T C ,所以p C =T C T B p B =400300p B =43p B =43×1.5×105 Pa =2.0×105 Pa.则可画出气体由状态A →B →C 的p -T 图象如图所示. 变式6 (2018·东台创新学校月考)为了将空气装入气瓶内,现将一定质量的空气等温压缩,空气可视为理想气体.下列图象能正确表示该过程中空气的压强p 和体积V 关系的是()答案 B解析 根据理想气体状态方程,空气等温压缩,有pV =C ,知p 与1V 成正比,在p -1V图象中为过原点的直线,所以该过程中空气的压强p 和体积V 的关系图是图B ,故B 正确.命题点六 气体热现象的微观解释温度一定时,某种气体分子的速率分布是确定的,速率的平均值也是确定的,温度升高,气体分子的平均速率增大,但不是每个分子的速率都增大.例6 (2018·江苏单科·12A(2))一定量的氧气贮存在密封容器中,在T 1和T 2温度下其分子速率分布的情况见下表.则T 1 (选填“大于”“小于”或“等于”)T 2.若约10%的氧气从容器中泄漏,泄漏前后容器内温度均为T 1,则在泄漏后的容器中,速率处于400~500 m/s 区间的氧气分子数占总分子数的百分比 (选填“大于”“小于”或“等于”)18.6%.答案 大于 等于解析 温度升高,速率大的分子比例较大,故T 1>T 2.温度一定,气体分子速率分布情况不变,故泄漏前后速率处于400~500 m/s区间的氧气分子数占总分子数的百分比保持不变.变式7(多选)(2018·盐城市三模)如图9所示为氧气在0 ℃和100 ℃两种不同情况下,各速率区间的分子数占总分子数的百分比与分子速率间的关系.下列说法正确的是()图9A.甲为0 ℃时情形,速率大的分子比例比100 ℃时少B.乙为0 ℃时情形,速率大的分子比例比100 ℃时少C.甲为100 ℃时情形,速率大的分子比例比0 ℃时多D.乙为100 ℃时情形,速率大的分子比例比0 ℃时多答案AD1.(2018·苏锡常镇二模)关于图10中实验及现象的说法,正确的是()图10A.图甲说明薄板是非晶体B.图乙说明气体速率分布随温度变化且T1>T2C.图丙说明气体压强的大小既与分子动能有关也与分子的密集程度有关D.图丁说明水黾受到了浮力作用答案 C2.(2018·苏州市期初调研)下列说法正确的是()A.高原地区水的沸点较低,这是因为高原地区的温度较低B.液面上部的蒸汽达到饱和时,就没有液体分子从液面飞出C.水的饱和汽压随温度的升高而增大D.空气的相对湿度定义为水的饱和汽压与相同温度时空气中所含水蒸气的压强之比答案 C解析 高原地区水的沸点较低,这是高原地区气压较低的原因,故A 错误;液面上部的蒸汽达到饱和时,液体分子从液面飞出,同时有蒸汽分子进入液体中;从宏观上看,液体不再蒸发,故B 错误;水的饱和汽压随着温度的升高而增大,故C 正确;空气的相对温度定义为空气中水蒸气的压强与同一温度时水的饱和汽压之比,故D 错误.3.(2018·苏锡常镇一调)在温度不变的情况下,增大液面上饱和汽的体积并再次达到饱和时,饱和汽的质量 ,饱和汽的压强 (两空都选填“增大”“减小”或“不变”). 答案 增大 不变解析 在温度不变的情况下,增大液面上饱和汽的体积并再次达到饱和时,饱和汽的质量增大;因温度不变,则饱和汽的压强不变.4.(2018·南通市等七市三模)如图11所示,一导热性能良好、内壁光滑的汽缸竖直静止放置,用横截面积为S 的轻活塞在汽缸内封闭着体积为V 0的气体,此时气体密度为ρ0.在活塞上加一竖直向下的推力,使活塞缓慢下降到某位置O ,此时推力大小F =2p 0S .已知封闭气体的摩尔质量为M ,大气压强为p 0,阿伏加德罗常数为N A ,环境温度不变.求活塞下降到位置O 时:图11(1)封闭气体的体积V ;(2)封闭气体单位体积内的分子数n .答案 (1)13V 0 (2)3ρ0N A M解析 (1)由玻意耳定律有p 0V 0=(p 0+F S)V 解得V =13V 0 (2)封闭气体的物质的量n 0=ρ0V 0M单位体积内的分子数n =n 0N A V解得n =3ρ0N A M.1.(多选)(2018·南京市、盐城市二模)下列说法中正确的是()A.空气中PM2.5颗粒的无规则运动属于分子热运动B.某物体温度升高,组成该物体的分子的平均动能一定增大C.云母片导热性能具有各向异性,是由于该物质的微粒在空间的排列不规则D.空气相对湿度越大,则空气中水蒸气压强越接近饱和汽压答案BD解析PM2.5颗粒不是分子,其运动不是分子热运动,A错误;温度是分子平均动能的标志,温度升高,则分子平均动能增大,B正确;云母片导热性能具有各向异性,是由于该物质的微粒在空间的排列规则,C错误;空气相对湿度等于空气中水蒸气压强与同温度水的饱和汽压的比值,所以空气相对湿度越大,则空气中水蒸气压强越接近饱和汽压,D正确.2.(多选)(2018·南通市等七市三模)下列说法中正确的有()A.只有在温度较高时,香水瓶盖打开后才能闻到香水味B.冷水中的某些分子的速率可能大于热水中的某些分子的速率C.将沸腾的高浓度明矾溶液倒入玻璃杯中冷却后形成的八面体结晶属于多晶体D.表面张力是由液体表面层分子间的作用力产生的,其方向与液面平行答案BD3.(多选)(2018·海安中学开学考)下列说法中正确的是()A.晶体一定具有各向异性,非晶体一定具有各向同性B.内能不同的物体,它们分子热运动的平均动能可能相同C.液晶既像液体一样具有流动性,又跟某些晶体一样具有光学性质的各向异性D.随着分子间距离的增大,分子间作用力减小,分子势能也减小答案BC4.(多选)(2018·东台创新学校月考)以下说法中正确的是()A.金刚石、食盐都有确定的熔点B.饱和汽的压强与温度无关C.一些小昆虫可以停在水面上是由于液体表面张力的作用D.多晶体的物理性质表现为各向异性答案AC解析金刚石、食盐是晶体,都有确定的熔点,选项A正确;饱和汽的压强与温度有关,选项B错误;一些小昆虫可以停在水面上是由于液体表面张力的作用,选项C正确;多晶体的物理性质表现为各向同性,单晶体的物理性质表现为各向异性,选项D错误.5.(多选)(2018·南师附中5月模拟)下列说法正确的是()A.随着分子间距增大,分子间引力和斥力均减小,分子势能不一定减小B.水在涂有油脂的玻璃板上能形成水珠,而在干净的玻璃板上却不能,是因为油脂使水的表面张力增大的缘故C.空气的相对湿度用空气中所含水蒸气的压强表示D.有些非晶体在一定条件下可以转化为晶体答案AD解析如果分子间的作用力表现为引力,随着距离的增大,分子力做负功,分子势能增大,A正确;水在涂有油脂的玻璃板上能形成水珠,而在干净的玻璃板上却不能,是因为油脂使水不浸润的缘故,B错误;空气的绝对湿度用空气中所含水蒸气的压强表示,C错误;晶体和非晶体在一定的条件下可以相互转化,例如,天然水晶是晶体,而熔化以后再凝结的水晶(即石英玻璃)就是非晶体,D正确.6.(多选)(2018·南京市三模)下列说法正确的是()A.当分子力表现为引力时,分子力和分子势能总是随分子间距离的减小而增大B.烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明云母片是晶体C.温度高的物体分子平均动能不一定大,但内能一定大D.洗头发时,当头发浸泡在水中时呈散开状,露出水面后头发聚拢到一起,这是由水的表面张力引起的答案BD7.(2018·如皋市模拟四)每年入夏时节,西南暖湿气流与来自北方的冷空气在江南、华南等地交汇,形成持续的降雨.冷空气较暖湿空气密度大,当冷、暖气流交汇时,冷气团下沉,暖湿气团在被抬升过程中膨胀.则暖湿气团温度会(选填“升高”“不变”或“降低”),同时气团内空气的相对湿度会(选填“变大”“不变”或“变小”).答案降低变大解析暖湿气团在被抬升过程中膨胀,膨胀的过程中对外做功,气团的内能减小,所以暖湿气团温度会降低;饱和汽压随温度的降低而变小,气团内空气的绝对湿度不变而饱和汽压减小,所以相对湿度会变大.8.(2018·南通市、泰州市一模)做汽车安全气囊的模拟实验时,密封的储气罐与气囊相连,撞击时储气罐阀门自动打开,大量气体进入气囊,气囊在极短时间内迅速展开,在人体前部形成弹性气垫,然后气囊泄漏、收缩,从而有效保护人体.气囊展开过程中,将气体视作理想气体,气体的内能(选填“增大”“减小”或“不变”);泄漏、收缩过程中气囊内壁单位面积上受到气体分子撞击的作用力(选填“增大”“减小”或“不变”).答案减小减小9.(2018·江苏百校12月大联考)某日中午,某市空气相对湿度为50%,将一瓶水倒去一部分,拧紧瓶盖后的一小段时间,瓶内水的上方形成饱和汽,单位时间内进入水中的水分子数 (选填“多于”“少于”或“等于”)从水面飞出的分子数.此时空气中水蒸气的压强与瓶中水蒸气压强的比值 (选填“大于”“小于”或“等于”)0.5.答案 等于 等于10.(2018·南京市学情调研)如图1所示,一定质量的理想气体,在状态A 时的温度t A =27 ℃,则状态C 时的温度T C = K ;气体从状态A 依次经过状态B 、C 后再回到状态A ,此过程中气体将 (选填“吸收”或“放出”)热量.图1答案 900 放出11.(2018·盐城市三模)使用气筒给足球打气时,每打一次都把压强1个标准大气压、温度为27 ℃、体积为448 mL 的空气打进足球.已知1 mol 空气在1个标准大气压、0 ℃时的体积为22.4 L ,阿伏加德罗常数为6×1023 mol -1.求该气筒每打一次气时,进入足球内空气分子的个数.(计算结果保留一位有效数字)答案 1×1022个解析 设1个标准大气压下、温度为27 ℃、体积为448 mL 的空气在1个标准大气压下、0 ℃时的体积为V ,则有448×10-6 m 3300 K =V 273 K 解得V ≈408×10-6 m 3 故分子个数N =V V mol N A =408×10-622.4×10-3×6×1023个≈1×1022个. 12.(2019·丹阳中学模拟)某型号汽车轮胎的容积为25 L ,轮胎内气压安全范围为2.5~3.0 atm.轮胎内气体27 ℃时胎压显示为2.5 atm.(结果保留2位有效数字)(1)假设轮胎容积不变,若轮胎内气体的温度达到57 ℃,轮胎内气压是否在安全范围内?(2)已知阿伏加德罗常数为N A =6×1023 mol -1,1 atm 、0 ℃状态下,1 mol 任何气体的体积为22.4 L.求轮胎内气体的分子数为多少?答案 (1)在安全范围内 (2)1.5×1024个解析 (1)已知轮胎的体积不变,当胎内气压p 1=2.5 atm 时,温度为T 1=(273+27) K =300 K ,当胎内的温度达到T 2=(273+57) K =330 K 时根据查理定律有p 1T 1=p 2T 2代入解得p 2=2.75 atm <3.0 atm轮胎内气压在安全范围内(2)设胎内气体在1 atm 、0 ℃状态下的体积为V 0,根据气体状态方程有:p 1V 1T 1=p 0V 0T 0,代入解得:V 0≈57 L 则胎内气体分子数为:N =V 022.4N A ≈1.5×1024个 13.(2018·溧水中学期初模拟)如图2所示,用销钉固定的活塞把导热汽缸分隔成两部分,A 部分气体压强p A =6.0×105 Pa ,体积V A =1 L ;B 部分气体压强p B =2.0×105 Pa ,体积V B =3 L.现拔去销钉,外界温度保持不变,活塞与汽缸间摩擦可忽略不计,整个过程无漏气,A 、B 两部分气体均为理想气体.求活塞稳定后A 部分气体的压强.图2答案 3.0×105 Pa解析 拔去销钉,待活塞稳定后,p A ′=p B ′根据玻意耳定律,对A 部分气体,p A V A =p A ′(V A +ΔV )对B 部分气体,p B V B =p B ′(V B -ΔV )联立解得p A ′=3.0×105 Pa。