熔化和凝固.熔化和凝固
- 格式:ppt
- 大小:225.00 KB
- 文档页数:16
熔化和凝固的定义熔化和凝固是物质在温度变化下的两种状态转变形式。
熔化指的是物质从固态转变为液态的过程,而凝固则是物质从液态转变为固态的过程。
这两种状态转变在我们的日常生活中随处可见,例如冰块融化成水、蜡烛燃烧后凝固成蜡等。
熔化是物质从固态转变为液态的过程。
当物质受到足够的热能作用时,分子的热运动增强,分子间的相互作用力逐渐减弱,最终克服固态结构的稳定性,使得物质的结构由有序的排列转变为无序的排列。
这个过程中,物质的温度逐渐升高,直到达到熔点,熔点是物质从固态转变为液态的临界温度。
在熔化过程中,物质的体积通常会增大,因为在液态状态下,分子之间的间隔变大,分子间的相互作用力减小。
凝固是物质从液态转变为固态的过程。
当物质的温度下降到一定程度时,分子的热运动减弱,分子间的相互作用力逐渐增强,最终克服液态结构的不稳定性,使得物质的结构由无序的排列转变为有序的排列。
这个过程中,物质的温度逐渐降低,直到达到凝固点,凝固点是物质从液态转变为固态的临界温度。
在凝固过程中,物质的体积通常会减小,因为在固态状态下,分子之间的间隔变小,分子间的相互作用力增大。
熔化和凝固是物质状态转变的基本过程,它们与物质的结构和性质密切相关。
在固态下,物质的分子排列有序,相互间的相互作用力较大,因此固态物质具有一定的形状和固定的体积。
而在液态下,物质的分子排列无序,相互间的相互作用力较弱,因此液态物质没有固定的形状和体积,而是会流动。
当物质的温度超过熔点时,固态物质变为液态,分子的热运动增强,相互作用力减弱,物质的结构变得无序,体积增大,从而呈现出液态的特性。
相反,当物质的温度低于凝固点时,液态物质变为固态,分子的热运动减弱,相互作用力增强,物质的结构变得有序,体积减小,从而呈现出固态的特性。
熔化和凝固是物质状态转变的重要现象,不仅在日常生活中普遍存在,也在工业生产和科学研究中发挥着重要作用。
例如,冶金工业中的熔炼和铸造过程就利用了物质的熔化和凝固特性,将金属矿石加热至熔点,使其熔化成液态金属,然后通过冷却使其凝固成固态金属,从而得到所需的金属制品。
《熔化和凝固》知识清单一、熔化和凝固的概念1、熔化熔化是指物质从固态变成液态的过程。
在这个过程中,物质需要吸收热量来打破固态分子或原子之间的紧密排列,使其变得更加自由和无序,从而形成液态。
例如,冰在温度升高时会熔化成水,铁在高温下会熔化成铁水。
2、凝固凝固则是与熔化相反的过程,即物质从液态变成固态。
在凝固过程中,物质会释放出热量,分子或原子重新排列形成规则的结构,变成固态。
像水在温度降低到 0℃时会凝固成冰,液态的金属溶液冷却后会凝固成金属固体。
二、熔化和凝固的特点1、熔化的特点(1)吸热过程:物质在熔化时需要吸收热量,但温度保持不变,这个不变的温度被称为熔点。
(2)状态变化:由固态逐渐变为液态,在完全熔化之前,物质处于固液共存状态。
2、凝固的特点(1)放热过程:物质在凝固时会放出热量,温度也保持不变,这个不变的温度称为凝固点。
(2)状态变化:由液态逐渐变为固态,在完全凝固之前,物质同样处于固液共存状态。
需要注意的是,同一种物质的熔点和凝固点是相同的。
三、晶体和非晶体1、晶体(1)定义:具有固定的熔点和凝固点,在熔化和凝固过程中温度保持不变的物质称为晶体。
(2)常见的晶体:冰、海波、各种金属、萘等。
(3)晶体熔化和凝固的图像特点:熔化图像:在达到熔点之前,温度逐渐升高;达到熔点时,开始熔化,温度保持不变;完全熔化后,温度继续升高。
凝固图像:在达到凝固点之前,温度逐渐降低;达到凝固点时,开始凝固,温度保持不变;完全凝固后,温度继续降低。
2、非晶体(1)定义:没有固定的熔点和凝固点,在熔化和凝固过程中温度会不断变化的物质称为非晶体。
(2)常见的非晶体:玻璃、松香、沥青、塑料等。
(3)非晶体熔化和凝固的图像特点:温度一直上升或下降,没有水平的线段。
四、熔化和凝固的条件1、熔化条件(1)达到熔点。
(2)持续吸热。
只有同时满足这两个条件,物质才能熔化。
2、凝固条件(1)达到凝固点。
(2)持续放热。
同样,只有同时满足这两个条件,物质才能凝固。
《熔化和凝固》知识清单一、熔化和凝固的概念1、熔化熔化是指物质从固态变成液态的过程。
在这个过程中,物质需要吸收热量来打破固态时粒子之间的规则排列,使其能够自由移动,形成液态。
例如,冰在温度升高时会熔化成水,铁块在高温下会熔化成铁水。
2、凝固凝固则是与熔化相反的过程,即物质从液态转变为固态。
在凝固过程中,物质会放出热量,粒子的运动逐渐减缓,重新形成规则的排列,从而变成固态。
比如,将液态的水放入低温环境中,水会凝固成冰;液态的金属溶液冷却后会凝固成固态的金属。
二、熔化和凝固的特点1、熔化特点(1)在熔化过程中,温度保持不变的物质被称为晶体,晶体有固定的熔点。
(2)对于非晶体来说,在熔化过程中温度会不断升高,没有固定的熔点。
2、凝固特点(1)晶体在凝固时,温度保持不变,有固定的凝固点。
(2)非晶体在凝固时,温度持续下降,没有固定的凝固点。
三、熔化和凝固的图像1、晶体的熔化和凝固图像晶体的熔化图像:横轴表示时间,纵轴表示温度。
在加热晶体的过程中,温度会逐渐上升,当达到熔点时,温度保持不变,此时固体不断吸热熔化,直至全部变为液体,继续加热,温度才会再次上升。
晶体的凝固图像:与熔化图像相反,在冷却液体的过程中,温度逐渐下降,当达到凝固点时,温度保持不变,此时液体不断放热凝固,直至全部变为固体,继续冷却,温度会继续下降。
2、非晶体的熔化和凝固图像非晶体的熔化和凝固图像没有水平的线段,温度会随着时间的推移一直上升或下降。
四、常见的熔化和凝固现象1、生活中的熔化现象(1)冰雪在春天消融,这是冰的熔化。
(2)蜡烛受热变软并逐渐变成液态蜡,这是蜡烛的熔化。
2、生活中的凝固现象(1)冬天,水结成冰。
(2)制作豆腐时,将豆浆变成豆腐的过程就是蛋白质的凝固。
五、影响熔化和凝固的因素1、温度温度的高低直接影响物质的熔化和凝固速度。
一般来说,温度越高,熔化速度越快;温度越低,凝固速度越快。
2、杂质杂质的存在会改变物质的熔点和凝固点。
物质的熔化与凝固说明:熔化是物质由固态转变为液态,凝固是物质由液态转变为固态。
一、熔化与凝固的定义及原理熔化是指物质由固态转变为液态的过程。
凝固则是物质由液态转变为固态的过程。
这两个过程是相互关联的,可以通过加热或降低温度来实现。
物质的熔化与凝固是由分子之间的相互作用力所决定的。
在固态中,分子间的作用力较强,使分子排列有序,具有固定的空间结构。
当温度升高时,分子的热运动加剧,这些作用力逐渐减弱,使得固态物质分子间的排列发生变化,固态逐渐转变为液态。
而当温度下降时,分子的热运动减弱,重新被束缚在一起,使物质变为固态。
二、物质的熔化过程熔化过程可以分为三个阶段:加热、熔融点、熔化。
1. 加热:当物体受热时,分子的热运动加剧,分子内部达到一定的能量使它们逃脱原子之间的吸引力,开始进行随机热运动。
2. 熔融点:当物体加热到足够高的温度时,分子的热运动足够剧烈,使得物体逐渐失去了固态的结构。
熔融点是指物质由固态转变为液态的温度点。
3. 熔化:当物体的温度达到熔融点时,物质开始熔化,固态的结构崩溃,分子变得无序,此时物质处于液态。
三、物质的凝固过程凝固过程也可以分为三个阶段:冷却、凝固点、凝固。
1. 冷却:当物体受冷时,分子的热运动减弱,分子内部的能量逐渐降低,使得它们重新被束缚在一起。
2. 凝固点:当物体冷却到足够低的温度时,分子的热运动减少到分子间的吸引力能够使它们重新聚集在一起。
凝固点是指物质由液态转变为固态的温度点。
3. 凝固:当物体的温度降低到凝固点时,分子重新排列,构成固态的结构,此时物质处于固态。
四、熔化与凝固的应用熔化与凝固是物质状态转变的基础,对生活和工业都有着重要的应用。
1. 熔化与凝固是物质加工的基础。
例如在金属冶炼中,通过加热金属矿石使其熔化,然后通过冷却使其凝固,可以得到纯净的金属产品。
2. 熔化与凝固在医药领域中也有重要应用。
在药物的制剂过程中,熔化与凝固是制造药物固态剂型的关键步骤,例如制片、制丸等。
《熔化和凝固》讲义一、引入同学们,在我们的日常生活中,经常会观察到物质状态的变化。
比如,冰在温度升高时会变成水,而水在温度降低时又会变成冰。
这种物质由固态变成液态,或者由液态变成固态的过程,就是我们今天要学习的熔化和凝固。
二、熔化(一)熔化的定义熔化是指物质从固态变成液态的过程。
在这个过程中,物质需要吸收热量。
(二)常见的熔化现象1、冰雪消融:冬天的积雪在春天温度升高时逐渐融化成水。
2、蜡烛受热变软并熔化:点燃蜡烛,蜡烛芯周围的蜡受热会逐渐熔化。
(三)熔化的条件1、温度达到熔点:每种物质都有一个固定的熔化温度,称为熔点。
只有当物质的温度达到其熔点时,才有可能开始熔化。
2、持续吸热:在达到熔点后,物质还需要继续吸收热量,才能完成熔化过程。
(四)晶体与非晶体的熔化1、晶体定义:具有固定熔点的固体称为晶体。
熔化特点:在熔化过程中,晶体的温度保持不变,直到完全熔化。
常见晶体:冰、海波、各种金属等。
2、非晶体定义:没有固定熔点的固体称为非晶体。
熔化特点:在熔化过程中,温度会不断升高。
常见非晶体:石蜡、玻璃、沥青等。
三、凝固(一)凝固的定义凝固是指物质从液态变成固态的过程。
在这个过程中,物质会放出热量。
(二)常见的凝固现象1、水结冰:当环境温度降低到 0℃以下时,水会凝固成冰。
2、钢水浇铸成钢锭:将高温的钢水倒入模具中,钢水会逐渐凝固成钢锭。
(三)凝固的条件1、温度达到凝固点:液体也有一个固定的凝固温度,称为凝固点。
当液体的温度降低到凝固点时,才有可能开始凝固。
2、持续放热:在达到凝固点后,液体还需要继续放出热量,才能完成凝固过程。
(四)晶体与非晶体的凝固1、晶体凝固特点:在凝固过程中,晶体的温度保持不变,直到完全凝固。
晶体的熔点和凝固点相同。
2、非晶体凝固特点:在凝固过程中,温度不断降低。
四、熔化和凝固的应用(一)在工业生产中的应用1、铸造:通过熔化金属,将其倒入模具中,冷却凝固后得到所需的零件。
2、焊接:利用高温使金属熔化,然后将两个部件连接在一起。
人教版八年级物理上册第3章《物态变化》第2节熔化和凝固讲义(知识点总结+例题讲解)序号知识点难易程度例题数变式题数合计一熔化★ 6 616二凝固★ 2 2一、熔化:1.定义:物体从固态变成液态叫熔化。
2.特点:吸收热量;(或者:遇到高温物体,从高温物体那里吸收热量)3.晶体与非晶体;(1)晶体:熔化时,温度不变的物质;例如:金属、海波、冰、石英水晶;(2)非晶体:熔化时,温度不断升高的物质;例如:松香、石蜡、玻璃、沥青、蜂蜡、食盐、明矾、奈;4.熔点:晶体熔化时的温度。
(非晶体是没有熔点的)5.晶体熔化的条件:①达到熔点;②继续吸热。
6.常见融化现象:冰融化成水、蜡烛燃烧时滴泪、铸造金属构件将金属熔化成液态;【例题1】谚语“雪水化成河,粮食千万箩”中,雪水化成河发生的物态变化是()A.液化 B.凝固 C.凝华 D.熔化【答案】D【解析】解:雪化水是由固态变成液态的过程,是熔化现象。
故选:D。
【变式1】下列物态变化现象中属于熔化的是()A.冰雪的消融 B.雾凇的形成 C.云海的形成 D.白雾的消散【答案】A【解析】解:A、冰雪的消融是物质从固态到液态的过程,属于熔化,故A符合题意;B、雾凇的形成是物质由气态直接变为固态的过程,属于凝华,故B不符合题意;C、云海的形成是物质从气态变为液态的过程,属于液化,故C不符合题意;D、白雾的消散是物质从液态变为气态的过程,属于汽化,故D不符合题意。
故选:A。
【例题2】如图所示,在1个标准大气压下,冰熔化成水的过程中,其温度保持在()A.100℃B.37℃C.20℃D.0℃【答案】D【解析】解:冰是晶体,在1标准大气压下冰的熔点是0℃,所以冰熔化成水的过程中吸热,温度保持熔点温度不变,此时的温度是0℃。
故选:D。
【变式2】雪天为了使积雪尽快熔化,环卫工人在路面上撒盐,这是因为()A.盐使积雪的熔点降低B.盐使积雪的温度升高到0℃而熔化C.盐使积雪的熔点升高D.撒盐后的雪不再属于晶体,不需要达到熔点就可以熔化【答案】A【解析】解:寒冷的冬季,空气温度低于雪的熔点,为了使雪尽快熔化,向积雪撒盐,是在其它条件相同时,在积雪上洒盐水相当于掺杂质,使雪的熔点降低,从而使积雪熔化,交通方便,故A正确。