最新高二上学期数学期中考试卷含答案
- 格式:doc
- 大小:648.50 KB
- 文档页数:10
2023-2024学年河北省部分高中高二(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线l :2x +√3y −1=0的斜率为( ) A .−2√33B .−√32C .2√33D .√322.若方程x 2+y 2+4x +2y ﹣m =0表示一个圆,则m 的取值范围是( ) A .(﹣∞,﹣5)B .(﹣5,+∞)C .(﹣∞,5)D .(5,+∞)3.已知F 1,F 2分别是椭圆E :x 29+y 25=1的左、右焦点,P 是椭圆E 上一点,若|PF 1|=2,则|PF 2|=( )A .1B .2C .3D .44.如图,在三棱锥P ﹣ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且PD →=3DC →,则BD →在AC →方向上的投影向量为( )A .34AC →B .−23AC →C .−34AC →D .23AC →5.若圆O 1:x 2+y 2=25与圆O 2:(x ﹣7)2+y 2=r 2(r >0)相交,则r 的取值范围为( ) A .[2,10]B .(2,10)C .[2,12]D .(2,12)6.若A (2,2,1),B (0,0,1),C (2,0,0),则点A 到直线BC 的距离为( ) A .2√305B .√305C .2√55D .√557.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点为F ,过F 作双曲线C 的其中一条渐近线l 的垂线,垂足为A (第一象限),并与双曲线C 交于点B ,若FB →=BA →,则l 的斜率为( ) A .2B .1C .12D .−748.已知实数x ,y 满足2x ﹣y +2=0,则√(x −9)2+y 2+√x 2+y 2−4x −4y +8的最小值为( ) A .3√13B .10+√13C .108D .117二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AB ,BC 的中点,则( )A .BC →−A 1A →=AD 1→B .BC →−A 1A →=2AD 1→C .EF →=12A 1C 1→D .EF →=A 1C 1→10.在同一直角坐标系中,直线l :y =mx +1与曲线C :x 2+my 2=1的位置可能是( )A .B .C .D .11.已知F 1,F 2分别是椭圆E :x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆E 上一点,且|PF 1|=43|PF 2|,cos ∠PF 2F 1=35,则下列结论正确的有( ) A .椭圆E 的离心率为57B .椭圆E 的离心率为45C .PF 1⊥PF 2D .若△PF 1F 2内切圆的半径为2,则椭圆E 的焦距为1012.苏州博物馆(图一)是地方历史艺术性博物馆,建筑物的顶端可抽象为如图二所示的上、下两层等高的几何体,其中上层EFGH ﹣NPQM 是正四棱柱,下层底面ABCD 是边长为4的正方形,E ,F ,G ,H 在底面ABCD 的投影分别为AD ,AB ,BC ,CD 的中点,若AF =√5,则下列结论正确的有( )A .该几何体的表面积为32+8√2+4√6B .将该几何体放置在一个球体内,则该球体体积的最小值为36πC .直线CP 与平面ABF 所成角的正弦值为√63D .点M 到平面BFG 的距离为√63三、填空题:本题共4小题,每小题5分,共20分.13.已知点N 是点M (3,3,4)在坐标平面Oxz 内的射影,则|ON →|= . 14.若双曲线C :x 2m+1+y 2m 2−m−2=1的实轴长与虚轴长相等,则m = .15.过点M(√3,0)作圆C :x 2+(y ﹣1)2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 .16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AM =2MB ,N 为DD 1的中点,记平面CMN 与平面ADD 1A 1的交线为l ,则直线l 与直线AC 1所成角的余弦值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 1:x +ay ﹣a +2=0与l 2:2ax +(a +3)y +a ﹣5=0. (1)当a =1时,求直线l 1与l 2的交点坐标; (2)若l 1∥l 2,求a 的值.18.(12分)如图,在正四棱锥P ﹣ABCD 中,E ,F 分别为P A ,PC 的中点,DG →=2GP →. (1)证明:B ,E ,G ,F 四点共面.(2)记四棱锥P ﹣BEGF 的体积为V 1,四棱锥P ﹣ABCD 的体积为V 2,求V 1V 2的值.19.(12分)已知P 是圆C :x 2+y 2=12上一动点,过P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2PM →,记点M 的轨迹为E . (1)求E 的方程;(2)若A ,B 是E 上两点,且线段AB 的中点坐标为(−85,25),求|AB |的值.20.(12分)如图,这是某圆弧形山体隧道的示意图,其中底面AB 的长为16米,最大高度CD 的长为4米,以C 为坐标原点,AB 所在的直线为x 轴建立直角坐标系. (1)求该圆弧所在圆的方程;(2)若某种汽车的宽约为2.5米,高约为1.6米,车辆行驶时两车的间距要求不小于0.5米以保证安全,同时车顶不能与隧道有剐蹭,则该隧道最多可以并排通过多少辆该种汽车?(将汽车看作长方体)21.(12分)如图,在斜三棱柱ABC ﹣A 1B 1C 1中,△ABC 是边长为2的等边三角形,M ,Q 分别为AC ,A 1B 1的中点,且MQ ⊥AB . (1)证明:MC 1⊥AB .(2)若BB 1=4,MQ =√15,求平面MB 1C 1与平面MC 1Q 夹角的余弦值.22.(12分)如图,已知F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点. (1)求E 的方程.(2)过直线l :x =1上任意一点T 作直线l 1,l 1与E 的左、右两支相交于A ,B 两点.直线l 1关于直线l 对称的直线为l 2(与l 1不重合),l 2与E 的左、右两支相交于C ,D 两点.证明:∠ABD =∠ACD .2023-2024学年河北省部分高中高二(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线l :2x +√3y −1=0的斜率为( ) A .−2√33B .−√32C .2√33D .√32解:将l 的方程转化为y =−2√33x +√33,则l 的斜率为−2√33. 故选:A .2.若方程x 2+y 2+4x +2y ﹣m =0表示一个圆,则m 的取值范围是( ) A .(﹣∞,﹣5)B .(﹣5,+∞)C .(﹣∞,5)D .(5,+∞)解:因为方程x 2+y 2+4x +2y ﹣m =0表示一个圆,所以42+22+4m >0,解得m >﹣5. 故选:B .3.已知F 1,F 2分别是椭圆E :x 29+y 25=1的左、右焦点,P 是椭圆E 上一点,若|PF 1|=2,则|PF 2|=( )A .1B .2C .3D .4解:椭圆E :x 29+y 25=1,可知a =3,因为P 是椭圆E 上一点,所以|PF 1|+|PF 2|=2a =6,所以|PF 2|=6﹣|PF 1|=4. 故选:D .4.如图,在三棱锥P ﹣ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且PD →=3DC →,则BD →在AC →方向上的投影向量为( )A .34AC →B .−23AC →C .−34AC →D .23AC →解:因为P A ⊥平面ABC ,AB ⊥AC ,所以P A ⊥AB ,P A ⊥AC ,故以A 为坐标原点,AB ,AC ,P A 所在直线分别为x ,y ,z 轴建立空间直角坐标系,令AB =a ,AC =b ,P A =c ,则A (0,0,0),B (a ,0,0),C (0,b ,0),D(0,34b ,14c), 则AC →=(0,b ,0),BD →=(−a ,34b ,14c),所以BD →在AC →方向上的投影向量为AC →⋅BD →|AC →|⋅AC →|AC →|=34b 2|b|⋅AC →|b|=34AC →.故选:A .5.若圆O 1:x 2+y 2=25与圆O 2:(x ﹣7)2+y 2=r 2(r >0)相交,则r 的取值范围为( ) A .[2,10]B .(2,10)C .[2,12]D .(2,12)解:∵O 1与O 2相交, ∴|r ﹣5|<|O 1O 2|<|r +5|, 又|O 1O 2|=7,∴|r ﹣5|<7<|r +5|,解得2<r <12. 故选:D .6.若A (2,2,1),B (0,0,1),C (2,0,0),则点A 到直线BC 的距离为( ) A .2√305B .√305C .2√55D .√55解:由题意得,BA →=(2,2,0),BC →=(2,0,−1),则BA →在BC →上的投影向量的模为|BA →⋅BC →||BC →|=√5,则点A 到直线BC 的距离为√|BA →|2−(|BA →⋅BC →||BC →|)2=√(√8)2−(4√5)2=2√305. 故选:A .7.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点为F ,过F 作双曲线C 的其中一条渐近线l 的垂线,垂足为A (第一象限),并与双曲线C 交于点B ,若FB →=BA →,则l 的斜率为( )A .2B .1C .12D .−74解:由已知直线l 的方程为y =b ax ,即bx ﹣ay =0,点F (c ,0),则|FA|=|bc|√b +(−a)2=b ,因为FB →=BA →,所以B 为线段AF 的中点,则|BF|=b2, 设双曲线C 的左焦点为F 1,则|BF 1|=2a +b2, 在△BFF 1中,由余弦定理可得:cos ∠BFF 1=|BF|2+|FF 1|2−|BF 1|22|BF||FF 1|=b 24+4c 2−(2a+b 2)22×b2×2c=2b−ac, 又cos ∠BFF 1=bc ,所以a =b ,故l 的斜率为1, 故选:B .8.已知实数x ,y 满足2x ﹣y +2=0,则√(x −9)2+y 2+√x 2+y 2−4x −4y +8的最小值为( ) A .3√13B .10+√13C .108D .117解:√(x −9)2+y 2+√x 2+y 2−4x −4y +8=√(x −9)2+y 2+√(x −2)2+(y −2)2, 该式表示直线l :2x ﹣y +2=0上一点到P (9,0),Q (2,2)两点距离之和的最小值. 而P ,Q 两点在l 的同一侧,设点P 关于l 对称的点P ′(x 0,y 0),则{y 0−0x 0−9=−122×x 0+92−y 0+02+2=0,解得{x 0=−7y 0=8,∴P ′(﹣7,8),故√(x −9)2+y 2+√x 2+y 2−4x −4y +8≥|P′Q|=√(−7−2)+(8−2)2=3√13. 故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AB ,BC 的中点,则( )A .BC →−A 1A →=AD 1→B .BC →−A 1A →=2AD 1→C .EF →=12A 1C 1→D .EF →=A 1C 1→解:BC →−A 1A →=AD →+AA 1→=AD 1→,A 正确,B 不正确,又因为EF →=12A 1C 1→,故C 正确,D 不正确. 故选:AC .10.在同一直角坐标系中,直线l :y =mx +1与曲线C :x 2+my 2=1的位置可能是( )A .B .C .D .解:A .取m =1,则直线l :y =x +1与曲线C :x 2+y 2=1满足图中的位置关系,因此A 正确; B .联立{y =mx +1x 2+my 2=1,化为(1+m 3)x 2+2m 2x +m ﹣1=0,若直线l :y =mx +1与曲线C :x 2+my 2=1有交点,则Δ=4m 4﹣4(1+m 3)(m ﹣1)=m 3﹣m +1>0. 由曲线C :x 2+my 2=1结合图形,则0<1m <1,∴m >1,满足Δ>0,因此B 正确;C .由曲线C :x 2+my 2=1结合图形,则0<1m <1,∴m >1,直线l 与椭圆应该有交点,因此C 不正确;D .由图可知:直线l 经过点(1,0),则m =﹣1,联立{y =−x +1x 2−y 2=1,化为x =1,y =0,即直线l 与双曲线的交点为(1,0),因此D 正确. 故选:ABD .11.已知F 1,F 2分别是椭圆E :x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆E 上一点,且|PF 1|=43|PF 2|,cos ∠PF 2F 1=35,则下列结论正确的有( ) A .椭圆E 的离心率为57B .椭圆E 的离心率为45C .PF 1⊥PF 2D .若△PF 1F 2内切圆的半径为2,则椭圆E 的焦距为10解:A 、B 选项,由椭圆的定义得,|PF 1|+|PF 2|=2a ,已知|PF 1|=43|PF 2|,解得|PF 1|=87a ,|PF 2|=67a ,由cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2−|PF 1|22|PF 2||F 1F 2|=4c 2−47a 2247ac=35, 整理得5a 2+18ac ﹣35c 2=0,即(a +5c )(5a ﹣7c )=0,则a =﹣5c (舍去)或a =75c ,即c a=57,故椭圆E 的离心率为57,故A 正确,B 不正确;C 选项,由a =75c ,得|F 1F 2|=2c =107a ,则|PF 1|2+|PF 2|2=|F 1F 2|2,故PF 1⊥PF 2,故C 正确; D 选项,由PF 1⊥PF 2,△PF 1F 2内切圆的半径为2,得2c =2a ﹣4,因为a =75c ,所以c =5,即椭圆E 的焦距为10,故D 正确. 故选:ACD .12.苏州博物馆(图一)是地方历史艺术性博物馆,建筑物的顶端可抽象为如图二所示的上、下两层等高的几何体,其中上层EFGH ﹣NPQM 是正四棱柱,下层底面ABCD 是边长为4的正方形,E ,F ,G ,H 在底面ABCD 的投影分别为AD ,AB ,BC ,CD 的中点,若AF =√5,则下列结论正确的有( )A .该几何体的表面积为32+8√2+4√6B .将该几何体放置在一个球体内,则该球体体积的最小值为36πC .直线CP 与平面ABF 所成角的正弦值为√63D .点M 到平面BFG 的距离为√63解:设F ,G 在平面ABCD 的投影分别为AB ,BC 的中点R ,S ,由于AF =√5,AB =4,所以F 到平面ABCD 的距离为FR =√AF 2−(12AB)2=1, 由于上、下两层等高,所以P 到平面ABCD 的距离为2,又FG =RS =12AC =2√2,由于GS =FR =1,BS =RB =12×4=2 所以BG =GC =√GS 2+BS 2=√5=BF =AF ,所以△AFB ≌△BGC ,同理可得△CDH ≌△ADE ≌△AFB ≌△BGC ,△BFG ≌△CHG ≌△DEH ≌△AEF , 则点B 到FG 的距离为√BF 2−(12FG)2=√(√5)2−(√2)2=√3,则△ABF 的面积为12AB ⋅FR =12×4×1=2,△BFG 的面积为12×2√2×√3=√6,故该几何体的表面积4×2+4×√6+4×4+2√2×2√2+2√2×4=32+8√2+4√6,故A 正确; 将该几何体放置在一个球体内,要使该球体体积最小,则球心在该几何体上下底面中心所连直线上, 且A 、B 、C 、D ,N 、P 、Q 、M 均在球面上,设球心到下底面ABCD 的距离为x , 由于四边形MNPQ 为边长为2√2的正方形,四边形ABCD 为边长为4的正方形, 则其对角线长度分别为4,4√2,则(2√2)2+x 2=22+(2−x)2,解得x =0,则该球体的半径为2√2,体积为4π3×(2√2)3=64√2π3,故B 错误;以A 为坐标原点建立如图所示的空间直角坐标系,则C (4,4,0),P (2,0,2),B (4,0,0),F (2,0,1),G (4,2,1),M (2,4,2),CP →=(−2,−4,2),BF →=(﹣2,0,1),BG →=(0,2,1),BM →=(﹣2,4,2), 平面ABF 的一个法向量为m →=(0,1,0),则cos <CP →,m →>=−42√6=−√63,设直线CP 与平面ABF 所成角为θ,则sinθ=|cos <CP →,m →>|=√63,故直线CP 与平面ABF 所成角的正弦值为√63,故C 正确; 设平面BFG 的法向量为n →=(x 1,y 1,z 1),则{n →⋅BF →=−2x 1+z 1=0n →⋅BG →=2y 1+z 1=0,令x 1=1,得n →=(1,﹣1,2), 则点M 到平面BFG 的距离为|n →⋅BM →||n →|=222=√63,故D 正确. 故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.已知点N 是点M (3,3,4)在坐标平面Oxz 内的射影,则|ON →|= 5 . 解:由题可知,N (3,0,4),则ON →=(3,0,4),∴|ON →|=√32+42=5. 故答案为:5.14.若双曲线C :x 2m+1+y 2m 2−m−2=1的实轴长与虚轴长相等,则m = 1 .解:由题可知(m +1)+(m 2﹣m ﹣2)=0,解得m =1或m =﹣1(舍去),∴m =1. 故答案为:1.15.过点M(√3,0)作圆C :x 2+(y ﹣1)2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 √3x −y =0 .解:圆C :x 2+(y ﹣1)2=1①,则圆心C (0,1), 以C (0,1),M (√3,0)为直径的圆的方程为:(x −√32)2+(y −12)2=1②,①﹣②可得,√3x −y =0,故直线AB 的方程为√3x −y =0. 故答案为:√3x −y =0.16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AM =2MB ,N 为DD 1的中点,记平面CMN 与平面ADD 1A 1的交线为l ,则直线l 与直线AC 1所成角的余弦值为7√111111.解:设I ∩AA 1=P ,连接NP ,MP ,直线NP 即为直线l .易证得MP ∥CN ,由AM =2MB ,N 为DD 1的中点,得AP =13AA 1,以D 为坐标原点,DA .DC ,DD 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,设AB =6,则得:N (0,0,3),P (6,0,2),A (6,0,0),C 1(0,6,6), NP →=(6,0,﹣1),AC 1→=(﹣6,6,6), 所以得:|cos <NP →,AC 1→>|=|NP →⋅AC 1→||NP →|⋅|AC 1→|=37×63=7√111111,故直线与直线 AC 1 所成角的余弦值为7√111111.故答案为:7√111111. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 1:x +ay ﹣a +2=0与l 2:2ax +(a +3)y +a ﹣5=0. (1)当a =1时,求直线l 1与l 2的交点坐标; (2)若l 1∥l 2,求a 的值. 解:(1)因为a =1,所以l 1:x +y +1=0,l 2:2x +4y ﹣4=0,即x +2y ﹣2=0, 联立{x +y +1=0x +2y −2=0解得{x =−4y =3,故直线l 1与l 2的交点坐标为(﹣4,3).(2)因为l 1∥l 2,所以2a 2﹣a ﹣3=0,解得a =﹣1或a =32, 当a =﹣1时,l 1与l 2重合,不符合题意. 当a =32时,l 1与l 2不重合,符合题意. 故a =32.18.(12分)如图,在正四棱锥P ﹣ABCD 中,E ,F 分别为P A ,PC 的中点,DG →=2GP →. (1)证明:B ,E ,G ,F 四点共面.(2)记四棱锥P ﹣BEGF 的体积为V 1,四棱锥P ﹣ABCD 的体积为V 2,求V 1V 2的值.解:(1)证明:因为E ,F 分别为P A ,PC 的中点, 所以BE →=12BA →+12BP →,BF →=12BC →+12BP →, 所以BG →=BD →+DG →=BD →+23DP →=BD →+23(BP →−BD →)=13BD →+23BP →=13BA →+13BC →+23BP →=23(12BA →+12BP →)+23(12BC →+12BP →)=23BE →+23BF →, 故B ,E ,G ,F 四点共面;(2)由正四棱锥的对称性知,V 1=2V E ﹣PBG ,V 2=2V A ﹣PBD , 设点E 到平面PBG 的距离为d 1,点A 到平面PBD 的距离为d 2,由E 是P A 的中点得d 2=2d 1, 由DG →=2GP →得S △PBD =3S △PBG ,所以V 1V 2=V E−PBG V A−PBD=13S △PBG ⋅d 113S △PBD ⋅d 2=16.19.(12分)已知P 是圆C :x 2+y 2=12上一动点,过P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2PM →,记点M 的轨迹为E . (1)求E 的方程;(2)若A ,B 是E 上两点,且线段AB 的中点坐标为(−85,25),求|AB |的值. 解:(1)设M (x ,y ),则Q (x ,0), 因为PQ →=2PM →,则P (x ,2y ), 因为P 在圆C 上,所以x 2+(2y )2=12, 故E 的方程为x 212+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),若A ,B 是E 上两点,则{x 1212+y 123=1x 2212+y 223=1, 两式相减得x 12−x 2212+y 12−y 223=0,即y 1−y 2x 1−x 2=−x 1+x 24(y 1+y 2).因为线段AB 的中点坐标为(−85,25),所以y 1−y 2x 1−x 2=−x 1+x 24(y 1+y 2)=1,所以k AB =1,则直线AB 的方程为y =x +2.联立方程组{y =x +2x 212+y 23=1,整理得5x 2+16x +4=0,其中Δ>0, 则x 1+x 2=−165,x 1x 2=45, |AB|=√1+12√(x 1+x 2)2−4x 1x 2=4√225. 20.(12分)如图,这是某圆弧形山体隧道的示意图,其中底面AB 的长为16米,最大高度CD 的长为4米,以C 为坐标原点,AB 所在的直线为x 轴建立直角坐标系. (1)求该圆弧所在圆的方程;(2)若某种汽车的宽约为2.5米,高约为1.6米,车辆行驶时两车的间距要求不小于0.5米以保证安全,同时车顶不能与隧道有剐蹭,则该隧道最多可以并排通过多少辆该种汽车?(将汽车看作长方体)解:(1)由圆的对称性可知,该圆弧所在圆的圆心在y轴上,由图形可得A(﹣8,0),B(8,0),D(0,4),设该圆的半径为r米,则r2=82+(r﹣4)2,解得r=10,圆心为(0,﹣6),故该圆弧所在圆的方程为x2+(y+6)2=100.(2)设与该种汽车等高且能通过该隧道的最大宽度为d米,则(d2)2+(6+1.6)2=102,解得d=2√42.24.若并排通过4辆该种汽车,则安全通行的宽度为4×2.5+3×0.5=11.5<2√42.24.隧道能并排通过4辆该种汽车;若并排通过5辆该种汽车,则安全通行的宽度为5×2.5+4×0.5=14.5>2√42.24,故该隧道不能并排通过5辆该种汽车.综上所述,该隧道最多可以并排通过4辆该种汽车.21.(12分)如图,在斜三棱柱ABC﹣A1B1C1中,△ABC是边长为2的等边三角形,M,Q分别为AC,A1B1的中点,且MQ⊥AB.(1)证明:MC1⊥AB.(2)若BB1=4,MQ=√15,求平面MB1C1与平面MC1Q夹角的余弦值.(1)证明:因为△A1B1C1是等边三角形,Q为A1B1的中点,所以C1Q⊥A1B1,又AB∥A1B1,所以C1Q⊥AB,因为MQ⊥AB,C1Q∩MQ=Q,所以AB⊥平面MC1Q,又MC1⊂平面C1MQ,所以MC1⊥AB;(2)解:取AB靠近点A的四等分点N,连接MN,NQ,易证得MN∥C1Q,则MN⊥AB,且MN=√32,由BB 1=4,得QN =3√72,因为MQ =√15,所以MQ 2+MN 2=QN 2, 即MQ ⊥MN ,又MQ ⊥AB ,从而MQ ⊥平面ABC ,以M 为坐标原点,MN 所在直线为x 轴,MQ 所在直线为z 轴,建立如图所示的空间直角坐标系,则M (0,0,0),B 1(0,1,√15),C 1(−√3,0,√15), 则MB 1→=(0,1,√15),MC 1→=(−√3,0,√15), 设平面MB 1C 1的法向量为m →=(x ,y ,z ),则有{m →⋅MB 1→=y +√15z =0m →⋅MC 1→=−√3x +√15z =0,令z =1,得m →=(√5,−√15,1),由图可知,n →=(0,1,0)是平面MC 1Q 的一个法向量,设平面MB 1C 1与平面MC 1Q 的夹角为θ,则cosθ=|m →⋅n →||m →||n →|=√1521=√357.22.(12分)如图,已知F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点. (1)求E 的方程.(2)过直线l :x =1上任意一点T 作直线l 1,l 1与E 的左、右两支相交于A ,B 两点.直线l 1关于直线l 对称的直线为l 2(与l 1不重合),l 2与E 的左、右两支相交于C ,D 两点.证明:∠ABD =∠ACD .解:(1)∵F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点,∴{a 2+b 2=10409a2−69b2=1,解得a 2=4,b 2=6,∴E 的方程为x 24−y 26=1.(2)证明:设T (1,m ),由题意得直线l 1的斜率存在且不等于0, 设直线l 的方程为y ﹣m =k (x ﹣1),则直线l 2的方程为y ﹣m =﹣k (x ﹣1), 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 联立方程组{y −m =k(x −1)x 24−y 26=1,整理得(3﹣2k 2)x 2+(4k 2﹣4km )x ﹣2k 2+4km ﹣2m 2﹣12=0,Δ=(4k 2﹣4km )2﹣(12﹣8k 2)(﹣2k 2+4km ﹣2m 2﹣12)=﹣72k 2﹣48km +24m 2+144>0, 则x 1+x 2=4k 2−4km 2k 2−3,x 1x 2=2k 2−4km+2m 2+122k 2−3,|AT |=√1+k 2|x 1−1|,|BT |=√1+k 2|x 2﹣1|,|CT |=√1+k 2|x 3﹣1|,|DT |=√1+k 2|x 4﹣1|, ∴|AT ||BT |=(1+k 2)|(x 1﹣1)(x 2﹣1)|=(1+k 2)|x 1x 2﹣(x 1+x 2)+1| =(1+k 2)|2k 2−4km+2m 2+122k 2−3−4k 2−4km 2k 2−3+1|=(1+k 2)|2m 2+92k 2−3|,同理,|CT ||DT |=(1+k 2)|2m 2+92k 2−3,∴|AT||DT|=|CT||BT|,∴△ACT ∽△DBT ,∴∠ABD =∠ACD .。
2024-2025学年酒泉市高二数学上学期期中考试卷考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列1,3,……,则该数列的第25项是()A.7B.C. D.52.已知数列{}n a 的前n 项和()22n S n =+,则567a a a ++的值为()A.81B.36C.45D.333.在等差数列{}n a 中,67821a a a ++=,则59a a +的值为()A.7B.14C.21D.284.20y -+=的倾斜角为()A.π6B.π 3 C.2π3D.5π65.设n S 为数列{}n a 的前n 项和,若21n n S a =-,则791012a a a a ++的值为()A.8B.4C.14D.186.若点()1,2P -在圆22:0C x y x y m ++++=的外部,则m 的取值一定不是()A.4- B.1- C.0D.27.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则下列说法正确的是()A.公差0d >B.190S >C.使0nS <成立的n 的最小值为20D.110a >8.已知,A B 是圆224x y +=上的两个动点,且AB =,点()00,M x y 是线段AB 的中点,则004x y +-的最大值为()A.12B. C.6D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线l 过点()0,4,40y -+=及x 轴围成等腰三角形,则直线l 的方程可能为()A.40y +-=B.40y -+=C.30y -+=D.3120y -+=10.已知数列{}n a 的前n 项和为n S ,则下列说法中正确的是()A.若2n S n =,则{}n a 是等差数列B.若2nn S =,则{}n a 是等比数列C.若{}n a 是等差数列,则202510132025S a =D.若{}n a 是等比数列,且0n a >,则221212n n nS S S -+⋅>11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=,则下列结论中正确的是()A.圆1O 与圆2O 相交B.圆1O 与圆2O 的公共弦AB 所在的直线方程为0x y -=C.圆1O 与圆2O 的公共弦AB 的垂直平分线方程为10x y +-=D.若AB 为圆1O 与圆2O 的公共弦,P 为圆1O 上的一个动点,则△PAB面积的最大值为1+三、填空题:本题共3小题,每小题5分,共15分.12.已知直线l 的方向向量为()1,2,且直线l 经过点()2,3-,则直线l 的一般式方程为________.13.圆C :22650x y x +-+=,0,0为圆C 上任意一点,则y x 的最大值为______.14.已知等比数列{}n a 的前n 项和2n n S a =-,N n +∈,则a =________;设数列{}n a 的前n 项和为n T ,若5n T n λ>+对N n +∈恒成立,则实数λ的取值范围为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程.16.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求{}n a ,{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .17.已知圆C :2244100x y x y m +----=,点()1,0P .(1)若17m =-,过P 的直线l 与C 相切,求l 的方程;(2)若C 上存在到P 的距离为1的点,求m 的取值范围.18.已知数列{}n a 满足:()*312232222n na a a a n n +++⋅⋅⋅+=∈N ,数列{}nb 满足5012n nb a =+.(1)求数列{}n a 的通项公式;(2)求100n n b b -+的值;(3)求12399b b b b +++⋅⋅⋅+的值.19.已知等差数列{}n a 的前n 项和为n S ,11a =,410S =,数列{}n b 满足13b =,121n n b b +=-.(1)证明:数列{}1n b -是等比数列;(2)证明:2112n n n n S b S b ++⋅>⋅;(3)若()421nn n a c b =-,求数列{}n c 的前n 项和nT 2024-2025学年酒泉市高二数学上学期期中考试卷考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列1,3,……,则该数列的第25项是()A.7B.C. D.5【答案】A 【解析】【分析】根据数列的规律及通项可得数列的项.【详解】由已知数列1,,3,……,,……,则数列的第n第257=,故选:A.2.已知数列{}n a 的前n 项和()22n S n =+,则567a a a ++的值为()A.81B.36C.45D.33【答案】C 【解析】【分析】根据数列的前n 项和,可得数列的项,进而可得值.【详解】由已知数列{}n a 的前n 项和()22n S n =+,则75746a a a S S ++=-()()227242=+-+45=,故选:C.3.在等差数列{}n a 中,67821a a a ++=,则59a a +的值为()A.7B.14C.21D.28【答案】B 【解析】【分析】由等差中项的性质计算即可;【详解】因为在等差数列{}n a 中,67821a a a ++=,所以678773217a a a a a ++==⇒=,所以759214a a a ==+,故选:B.4.20y -+=的倾斜角为()A.π6B.π 3 C.2π3D.5π6【答案】B 【解析】【分析】先由直线方程得到斜率,进而可得其倾斜角.【详解】由题意可得直线的斜率为k =设其倾斜角为α,则tan α=,又[)0,πα∈,所以π3α=,故选:B5.设n S 为数列{}n a 的前n 项和,若21n n S a =-,则791012a a a a ++的值为()A.8B.4C.14D.18【答案】D 【解析】【分析】易知数列前n 和求出通项公式,再由等比数列的性质化简求得结果.【详解】当1n =时,11121a S a ==-,∴11a =,当2n ≥时,1121n n S a --=-,则1122n n n n n a S S a a --=-=-,∴12n n a a -=,即数列{}n a 是首项11a =,公比2q =的等比数列,即12n n a -=,∴()()27793210121011181a q a a a a q a q ++===++故选:D.6.若点()1,2P -在圆22:0C x y x y m ++++=的外部,则m 的取值一定不是()A.4-B.1- C.0D.2【答案】D 【解析】【分析】根据点在圆外及方程表示圆求出m 的范围得解.【详解】因为点()1,2P -在圆C :220x y x y m ++++=的外部,所以22(1)2120m -+-++>,解得6m >-,又方程表示圆,则1140m +->,即12m <,所以162m -<<,结合选项可知,m 的取值一定不是2.故选:D.7.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则下列说法正确的是()A.公差0d >B.190S >C.使0nS <成立的n 的最小值为20D.110a >【答案】C 【解析】【分析】根据等差数列的通项公式,前n 项和公式,结合条件10a >,逐项进行判断即可求解.【详解】设等差数列{}n a 的公差为d ,由316=S S ,得113316120a d a d +=+,即1131170a d +=,即11090a d a +==,又10a >,所以0d <,所以110a <;故AD 错,()1191910191902a a S a +===,故B 错因为190S =,0d <,所以180S >,200S <,所以0nS <成立的n 的最小值为20.故C 正确.故选:C8.已知,A B 是圆224x y +=上的两个动点,且AB =,点()00,M x y 是线段AB 的中点,则004x y +-的最大值为()A.12 B.C.6D.【答案】C 【解析】【分析】先根据题意求出M 的轨迹方程为222x y +=,设()00,M x y 到直线40x y +-=的距离为d ,由此可得004x y +-=,将问题转化为求圆222x y +=上的点到直线40x y +-=距离的最大值,先求圆心到直线的距离再加半径即可求解.【详解】根据已知有,圆心0,0,半径2r =,因为弦AB =,所以圆心到AB 所在直线的距离d ==又因为M 为AB 的中点,所以有OM =,所以M 的轨迹为圆心为0,0,半径为1r =的圆,M 的轨迹方程为222x y +=;令直线为40x y +-=,则()00,M x y 到直线40x y +-=的距离为d ,则d =,即004x y +-=,所以当d 最大时,004x y +-=也取得最大值,由此可将问题转化为求圆222x y +=上的点到直线40x y +-=距离的最大值的2倍,设圆心0,0到直线的距离为0d ,则0d ==,所以max 0d d =+=所以004x y +-的最大值为6.故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线l 过点()0,4,40y -+=及x 轴围成等腰三角形,则直线l 的方程可能为()A.40y +-=B.40y -+=C.30y -+= D.3120y -+=【答案】AD 【解析】【分析】由题意知直线l 过点()0,4,所以根据直线l 是否存在斜率进行分类讨论,结合等腰三角形等知识,即可求解.【详解】设()0,4为点A ,易知点()0,4A 40y -+=上,直线40y -+=与x轴的交点,03B ⎛⎫- ⎪ ⎪⎝⎭,当直线l 的斜率不存在时,因为直线l 过点()0,4,所以直线l 的方程为0x =,与x 轴的交点为()0,0O ;此时4OA =,3OB =,3AB =,所以AOB V 不是等腰三角形,故直线l 存在斜率;设B 关于y轴的对称点为C ⎫⎪⎭,当直线l 过A ,C 两点时,AB AC =,ABC V 是等腰三角形,同时直线ABπ3,所以ABC V 是等边三角形,所以AC BC =,此时直线l 的方程为144x y +=40y +-=,设直线l 与x 轴相交于点D,如图所示,若AB BD =,则π6ADB ∠=,所以直线AD ,即直线l的斜率为3,此时方程为343y x =+3120y -+=;所以直线l40y +-=3120y -+=故选:AD.10.已知数列{}n a 的前n 项和为n S ,则下列说法中正确的是()A.若2n S n =,则{}n a 是等差数列B.若2nn S =,则{}n a 是等比数列C.若{}n a 是等差数列,则202510132025S a =D.若{}n a 是等比数列,且0n a >,则221212n n nS S S -+⋅>【答案】AC 【解析】【分析】利用n S 和n a 的关系即可判断A ,B 选项;利用等差数列的求和公式即可判断C 选项;通过举例即可判断D 选项.【详解】对于A ,若2n S n =,则当1n >时,121n n n a S S n -=-=-,当1n =时,111a S ==,符合21n a n =-,故21n a n =-,则{}n a 是等差数列,故A 正确;对于B ,若2nn S =,则112a S ==,2212a S S =-=,3324a S S =-=,故a a a a ≠2312,{}n a 不是等比数列,故B 错误;对于C ,若{}n a 是等差数列,则()1202520251013202520252a a S a +==,故C 正确;对于D ,若1n a =,符合{}n a 是等比数列,且0n a >,此时()()22121212141n n S S n n n -+⋅-+==-,2224n S n =,不满足221212n n n S S S -+⋅>,故D 错误.故选:AC11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=,则下列结论中正确的是()A.圆1O 与圆2O 相交B.圆1O 与圆2O 的公共弦AB 所在的直线方程为0x y -=C.圆1O 与圆2O 的公共弦AB 的垂直平分线方程为10x y +-=D.若AB 为圆1O 与圆2O 的公共弦,P 为圆1O 上的一个动点,则△PAB 面积的最大值为1+【答案】ABC 【解析】【分析】根据圆的一般方程确定圆心、半径,判断1212||,,O O r r 的关系判断A ,两圆方程相减求相交线方程判断B ;应用点斜式写出公共弦AB 的垂直平分线方程判断C ;数形结合判断使△PAB 面积最大时P 点的位置,进而求最大面积判断D.【详解】由题设2121)1:(x O y -+=,则1(1,0)O ,半径11r =,222:(1)(2)5O x y ++-=,则2(1,2)O -,半径2r =,所以12||1,1)O O =,两圆相交,A 对;两圆方程相减,得公共弦AB 所在直线为0x y -=,B 对;公共弦AB 的垂直平分线方程为20(1)(1)11y x x -=⋅-=----,即10x y +-=,C 对;如下图,若O 与B 重合,而1O 到0x y -=的距离d =,且||2AB ==,要使△PAB 面积最大,只需P 到AB 的距离最远为11d r +=,所以最大面积为1121)22+=,D 错.故选:ABC三、填空题:本题共3小题,每小题5分,共15分.12.已知直线l 的方向向量为()1,2,且直线l 经过点()2,3-,则直线l 的一般式方程为________.【答案】270x y --=【解析】【分析】根据点斜式求得直线方程,并化为一般式.【详解】直线l 的方向向量为()1,2,所以直线l 的斜率为2,所以直线方程为()32224,270y x x x y +=-=---=.故答案为:270x y --=13.圆C :22650x y x +-+=,0,0为圆C 上任意一点,则0y x 的最大值为______.【答案】5【解析】【分析】设0y k x =,则直线00y kx =与圆有公共点,联立方程消元后,利用判别式即可得解.【详解】设y k x =,则00y kx =,联立0022000650y kx x y x =⎧⎨+-+=⎩,消元得()22001650k x x +-+=,由()2Δ362010k=-+≥,解得252555k -≤≤,所以00y x 的最大值为5.故答案为:514.已知等比数列{}n a 的前n 项和2n n S a =-,N n +∈,则a =________;设数列{}n a 的前n 项和为n T ,若5n T n λ>+对N n +∈恒成立,则实数λ的取值范围为________.【答案】①.1②.9λ<-【解析】【分析】根据等比数列的性质,结合2n n S a =-,有(2)(21)2n n a a --=-,即可求a 值,进而有12n n a -=即(1)l 2n n =-,结合5n T n λ>+对N n +∈恒成立求λ的范围即可.【详解】由等比数列的前n 项和2n n S a =-知,1q ≠,所以1(1)21n n n a q S a q-==--,所以2q =,而112a S a ==-,2q =,∴(2)(21)2n n a a --=-,即1a =,由上知:12nn a -=,则(1)l 2n n =-,∴==2−>5+,即226(3)9,N n n n n λ+<-=--∈,当3n =时,2(3)9,N n n +--∈的最小值为9-,所以9λ<-.故答案为:1;9λ<-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程.【答案】(1)12m =;()1,1C .(2)()2211x y -+=【解析】【分析】(1)根据题意,求得两直线的斜率,结合121k k ×=-,求得12m =,得出直线的方程,联立方程组,求得交点坐标.(2)由(1)中的直线方程,求得()0,0A ,()2,0B ,得到ABC V 的外接圆是以AB 为直径的圆,求得圆心坐标和半径,即可求解.【小问1详解】解:显然1m ≠,可得1122k m =--,22k m =-,由12l l ⊥,可得121k k ×=-,即()12122m m ⎛⎫-⋅-=- ⎪-⎝⎭,解得12m =,所以直线1l :0x y -=,直线2l :20x y +-=,联立方程组020x y x y -=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,所以点()1,1C .【小问2详解】解:由直线1l :0x y -=,直线2l :20x y +-=,可得()0,0A ,()2,0B ,所以ABC V 的外接圆是以AB 为直径的圆,可得圆心1,0,半径112r AB ==,所以ABC V 的外接圆方程是()2211x y -+=.16.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求{}n a ,{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .【答案】(1)21n a n =-,12n n b -=;(2)221nn S n =+-.【解析】【分析】(1)设公差为d ,公比为q ()0q >,根据已知列出方程可求出2=d ,2q =,代入通项公式,即可求出结果;(2)分组求和,分别求出{}n a 和{}n b 的前n 项和,加起来即可求出结果.【小问1详解】设{}n a 公差为d ,{}n b 公比为q ()0q >,因为111a b ==,则由3521a b +=可得,41221d q ++=,即4202q d =-,由5313a b +=可得,21413d q ++=,解得2124q d =-,则3d <.所以有()24202124q d d =-=-,整理可得2847620d d -+=,解得2=d 或3138d =>(舍去).所以2=d ,则212424q =-⨯=,解得2q =±(舍去负值),所以2q =.所以有()12121n a n n =+-=-,11122n n n b --=⨯=.【小问2详解】由(1)知,21n a n =-,12n n b -=,则1212n n n a b n -+=-+.()()()1122n n n S a b a b a b =++++++L 1212n n a a a b b b =+++++++ ()()112112212n n n n ⨯--=⨯++-221n n =+-.17.已知圆C :2244100x y x y m +----=,点()1,0P .(1)若17m =-,过P 的直线l 与C 相切,求l 的方程;(2)若C 上存在到P 的距离为1的点,求m 的取值范围.【答案】(1)1x =或3430x y --=(2)1212⎡---+⎣【解析】【分析】(1)对直线l 的斜率是否存在讨论,根据直线与圆的位置关系列式运算;(2)要使圆C 上存在到点P 的距离为1的点,则圆心C 到()1,0P 的距离d 满足,11180r d r m -≤≤+⎧⎨+>⎩,运算得解.【小问1详解】因为17m =-,所以圆C 的方程为()()22221x y -+-=①当l 的斜率不存在时,l 的方程为1x =,与圆C 相切,符合题意;②当l 的斜率存在时,设l 的方程为()1y k x =-,即kx y k 0--=,圆心C 到l 的距离1d =,解得34k =,则l 的方程为()314y x =-,即3430x y --=,综上可得,l 的方程为1x =或3430x y --=.【小问2详解】由题意可得圆C :()()222218x y m -+-=+,圆心()2,2C ,半径r =,则圆心C 到()1,0P 的距离d ==要使C 上存在到P 的距离为1的点,则11180r d r m -≤≤+⎧⎨+>⎩,即11180m -≤+>⎪⎩,解得1212m ---+≤≤,所以m 的取值范围为1212⎡---+⎣.18.已知数列{}n a 满足:()*312232222n n a a a a n n +++⋅⋅⋅+=∈N ,数列{}n b 满足5012n n b a =+.(1)求数列{}n a 的通项公式;(2)求100n n b b -+的值;(3)求12399b b b b +++⋅⋅⋅+的值.【答案】(1)2nn a =(2)5012(3)51992【解析】【分析】(1)根据题意,当2n ≥时,可得311223112222n n a a a a n --+++⋅⋅⋅+=-,两式相减,求得2n n a =,再由1n =,得到12a =,即可求得数列的通项公式.(2)由(1)得50122n n b =+,结合指数幂的运算法则,即可求得100n n b b -+的值;.(3)由(2)知1005012n n b b -+=,结合倒序相加法,即可求解.【小问1详解】由数列满足:()*312232222n n a a a a n n +++⋅⋅⋅+=∈N ,当2n ≥时,可得311223112222n n a a a a n --+++⋅⋅⋅+=-,两式相减,可得12n n a=,所以2n n a =,当1n =,可得112a =,所以12a =,适合上式,所以数列的通项公式为2n n a =.【小问2详解】由数列满足505011222n n n b a ==++,则100100505010050502222211122222nn n nn nn b b --+++++++==⋅5050505505005022+212(2+2)(222)21+22n n n n n =+==+.【小问3详解】由(2)知1005012n n b b -+=,可得123995050129509111222222b b b b +++⋅⋅⋅+++++++=,则999899997150580510211122222b b b b +++⋅⋅⋅++++++=+ ,两式相加可得123995099(2)2b b b b +++⋅⋅=⋅+,所以1239951992b b b b +++⋅⋅⋅=+.19.已知等差数列{}n a 的前n 项和为n S ,11a =,410S =,数列{}n b 满足13b =,121n n b b +=-.(1)证明:数列{}1n b -是等比数列;(2)证明:2112n n n n S b S b ++⋅>⋅;(3)若()421nn n a c b =-,求数列{}n c 的前n 项和n T .【答案】(1)证明见解析;(2)证明见解析;(3)11634994n n n T -+=-⋅.【解析】【分析】(1)由递推关系得112(1)n n b b +-=-,结合等比数列定义证明;(2)由等差数列前n 项和求基本量,结合(1)结论,写出等差、等比数列通项公式、前n 项和公式,再应用作差法比较大小即可;(3)应用错位相减、等比数列前n 项和求结果.【小问1详解】由题设112112(1)n n n n b b b b ++=-⇒-=-,而112b -=,所以{}1n b -是首项、公比均为2的等比数列,得证.【小问2详解】令数列{}n a 的公差为d ,而414646101S a d d d =+=+=⇒=,所以(1)(1)22n n n n n S n -+=+=,又12nn b -=,则2111(21)()222(1)22222n n n n n n n S b n n b n S ++++++=⨯-⨯⋅⋅-⨯(21)(1)22(1)2n n n n n n =++⨯-+⨯(1)20n n =+⨯>恒成立,所以2112n n n n S b S b ++⋅>⋅,得证.【小问3详解】由上知n a n =,则()4214441nn n n n a n nc b -===-,则21231444n n n T -=++++L ,即2311231444444n n n T n n --=+++++ ,所以2311131111411444444414n n n n n T n n --=+++++-=-- ,即11634994n n n T -+=-⋅。
2023-2024学年山东省普高联考高二(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点A (3,2,3),B (1,1,4),则A 、B 的中点的坐标为( ) A .(1,12,−12)B .(2,32,72)C .(4,3,7)D .(−1,−12,12)2.已知直线l 1:2x +2y ﹣5=0,l 2:4x +ny +1=0,若l 1∥l 2,则n 的值为( ) A .﹣6B .6C .4D .﹣43.过点A (1,1)的直线l 与圆M :x 2+y 2﹣6x =0相交的所有弦中,弦长最短为( ) A .5B .2C .√5D .44.已知空间四边形OABC ,其对角线是OB ,AC ,M ,N 分别是对边OA ,BC 的中点,点G 在线段MN 上,且MG =3GN ,用基底向量OA →,OB →,OC →表示向量OG →应是( ) A .OG →=18OA →+38OB →+38OC →B .OG →=18OA →−38OB →+38OC →C .OG →=16OA →+13OB →+13OC →D .OG →=16OA →−13OB →+13OC →5.已知实数x ,y 满足方程x 2+y 2﹣2x =0,则y+1x+1的最大值是( )A .34B .43C .0D .126.战国时期成书《经说》记载:“景:日之光,反蚀人,则景在日与人之间”.这是中国古代人民首次对平面镜反射的研究,体现了传统文化中的数学智慧.在平面直角坐标系xOy 中,一条光线从点(2,3)射出,经y 轴反射后与圆x 2﹣6x +y 2+4y +12=0相切,则反射光线所在直线的斜率为( ) A .−43或−34B .17C .57D .567.已知中心在原点,半焦距为4的椭圆x 2m 2+y 2n 2=1(m >0,n >0,m ≠n)被直线方程2x ﹣y +9=0截得的弦的中点横坐标为﹣4,则椭圆的标准方程为( ) A .x 28+y 24=1 B .x 232+y 216=1C .x 28+y 24=1或y 28+x 24=1D .x 232+y 216=1或y 232+x 216=18.苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度AB =100米,拱高OP =10米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是( )米.(注意:√10取3.162)A .6.48B .4.48C .2.48D .以上都不对二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.空间直角坐标系中,已知O (0,0,0),OA →=(−1,2,1),OB →=(−1,2,−1),OC →=(2,3,−1),则( ) A .|AB →|=2B .△ABC 是直角三角形C .与OA →平行的单位向量的坐标为(√66,−√63,−√66)D .{OA →,OB →,OC →}可以作为空间的一组基底10.在如图所示的三棱锥O ﹣ABC 中,OA =OC =OB =1,OA ⊥面OBC ,∠BOC =π3,下列结论正确的为( )A .直线AB 与平面OBC 所成的角为45° B .二面角O ﹣BC ﹣A 的正切值为√33C .O 到面ABC 的距离为√217D .异面直线OC ⊥AB11.已知直线l :kx ﹣y +2k =0(k ∈R )和圆O :x 2+y 2=8,则( ) A .直线l 恒过定点(2,0)B .存在k 使得直线l 与直线l 0:x ﹣2y +2=0垂直C .直线l 与圆O 相交D .若k =1,则圆O 上到直线l 的距离为√2的点有四个12.已知抛物线y 2=4x ,焦点F ,过点P (1,1)作斜率互为相反数的两条直线分别交抛物线于A ,B 及C ,D 两点.则下列说法正确的是( ) A .抛物线的准线方程为x =﹣1 B .若|AF |=5,则直线AP 的斜率为1 C .若PA →=3BP →,则直线AB 的方程为y =xD .∠CAP =∠BDP三、填空题:本题共4小题,每小题5分,共20分.13.过P (﹣1,a )、Q (a +1,4)两点的直线的倾斜角为45°,那么实数a = .14.a →=(1,−1,2),b →=(−2,1,0),c →=(−3,1,k),若a →,b →,c →共面,则实数k = . 15.古希腊数学家阿波罗尼斯在《圆锥曲线论》中记载了用平面截圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的顶点和轴都重合),已知两个圆锥的底面直径均为4,侧面积均为2√5π.记过两个圆锥轴的截面为平面α,平面α与两个圆锥侧面的交线为AC ,BD .已知平面β平行于平面α,平面β与两个圆锥侧面的交线为双曲线C 的一部分,且C 的两条渐近线分别平行于AC ,BD ,则该双曲线C 的离心率为 .16.如图,已知菱形ABCD 中,AB =2,∠BAD =120°,E 为边BC 的中点,将△ABE 沿AE 翻折成△AB 1E (点B 1位于平面ABCD 上方),连接B 1C 和B 1D ,F 为B 1D 的中点,则在翻折过程中,AE 与B 1C 的夹角为 ,点F 的轨迹的长度为 .四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知点A (1,2,﹣1),B (2,k ,﹣3),C (0,5,1),向量a →=(−3,4,5). (1)若AB →⊥a →,求实数k 的值;(2)求向量AC →在向量a →方向上的投影向量.18.(12分)已知△ABC 的顶点A (5,1),B (1,3),C (4,4). (1)求AB 边上的高所在直线的方程; (2)求△ABC 的外接圆的方程.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,M 为BB 1上一点,已知BM =2,CD =3,AD =4,AA 1=5.(1)求直线A 1C 和平面ABCD 的夹角; (2)求点A 到平面A 1MC 的距离.20.(12分)已知定点A (1,﹣2),点B 为圆(x +1)2+(y +4)2=4上的动点. (1)求AB 的中点C 的轨迹方程;(2)若过定点P(12,−2)的直线l 与C 的轨迹交于M ,N 两点,且|MN|=√3,求直线l 的方程.21.(12分)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C ,E ,D ,G 在同一平面内,且CG=DG .(1)证明:平面BFD ⊥平面BCG ;(2)若直线GC 与平面ABG 所成角的正弦值为√105,求平面BFD 与平面ABG 所成角的余弦值.22.(12分)“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学知识,例如:用一张圆形纸片,按如下步骤折纸(如图):步骤1:设圆心是E,在圆内异于圆心处取一定点,记为F;步骤2:把纸片折叠,使圆周正好通过点F(即折叠后图中的点A与点F重合);步骤3:把纸片展开,并留下一道折痕,记折痕与AE的交点为P;步骤4:不停重复步骤2和3,就能得到越来越多的折痕.现取半径为4的圆形纸片,设点F到圆心E的距离为2√3,按上述方法折纸.以线段EF的中点为原点,线段EF所在直线为x轴建立平面直角坐标系xOy,记动点P的轨迹为曲线C.(1)求C的方程;(2)设轨迹C与x轴从左到右的交点为点A,B,点P为轨迹C上异于A,B,的动点,设PB交直线x=4于点T,连结AT交轨迹C于点Q.直线AP、AQ的斜率分别为k AP、k AQ.(ⅰ)求证:k AP•k AQ为定值;(ⅱ)证明直线PQ经过x轴上的定点,并求出该定点的坐标.2023-2024学年山东省普高联考高二(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点A (3,2,3),B (1,1,4),则A 、B 的中点的坐标为( ) A .(1,12,−12)B .(2,32,72)C .(4,3,7)D .(−1,−12,12)解:因为A (3,2,3),B (1,1,4),所以中点M(3+12,2+12,3+42)=(2,32,72). 故选:B .2.已知直线l 1:2x +2y ﹣5=0,l 2:4x +ny +1=0,若l 1∥l 2,则n 的值为( ) A .﹣6B .6C .4D .﹣4解:因为l 1∥l 2,所以42=n 2≠1−5⇒n =4.故选:C .3.过点A (1,1)的直线l 与圆M :x 2+y 2﹣6x =0相交的所有弦中,弦长最短为( ) A .5B .2C .√5D .4解:将A (1,1)代入x 2+y 2﹣6x ,得到12+12﹣6×1<0,所以点A 在圆内, 再根据x 2+y 2﹣6x =0可得圆心坐标M (3,0),可知当l 与AM 垂直时,弦长最小, 因为AM =√5,即最短弦长为的一半为√32−(√5)2=2,所以最短弦长为2×2=4. 故选:D .4.已知空间四边形OABC ,其对角线是OB ,AC ,M ,N 分别是对边OA ,BC 的中点,点G 在线段MN 上,且MG =3GN ,用基底向量OA →,OB →,OC →表示向量OG →应是( )A .OG →=18OA →+38OB →+38OC →B .OG →=18OA →−38OB →+38OC →C .OG →=16OA →+13OB →+13OC →D .OG →=16OA →−13OB →+13OC →解:∵OG →=OM →+MG →=OM →+34MN →=OM →+34(MO →+OC →+CN →)=OM →+34MO →+34OC →+34×12CB →=14OM →+34OC →+38(OB →−OC →)=18OA →+38OB →+38OC → 故选:A .5.已知实数x ,y 满足方程x 2+y 2﹣2x =0,则y+1x+1的最大值是( )A .34B .43C .0D .12解:C 的方程x 2+y 2﹣2x =0可化为(x ﹣1)2+y 2=1, 它表示圆心(1,0),半径为1的圆,y+1x+1表示圆上的点与点P (﹣1,﹣1)的连线的斜率k , 设过圆上点与点P (﹣1,﹣1)的直线方程为y +1=k (x +1), 则圆心(1,0)到直线y +1=k (x +1)的距离d =|2k−1|√k +1≤1,可得0≤k ≤43,即最大值为43,故选:B .6.战国时期成书《经说》记载:“景:日之光,反蚀人,则景在日与人之间”.这是中国古代人民首次对平面镜反射的研究,体现了传统文化中的数学智慧.在平面直角坐标系xOy 中,一条光线从点(2,3)射出,经y 轴反射后与圆x 2﹣6x +y 2+4y +12=0相切,则反射光线所在直线的斜率为( ) A .−43或−34B .17C .57D .56解:根据题意,设B 与点(2,3)关于y 轴的对称,则B 的坐标为(﹣2,3), 则反射光线经过点B ,且与圆x 2﹣6x +y 2+4y +12=0相切,设反射光线所在直线的方程为:y﹣3=k(x+2),即kx﹣y+2k+3=0,圆x2﹣6x+y2+4y+12=0的标准方程为(x﹣3)2+(y+2)2=1,则圆心为(3,﹣2),半径r=1,由圆心(3,﹣2)到反射光线的距离等于半径可得:√1+k2=1,即12k2+25k+12=0,解得k=−43或k=−34.故选:A.7.已知中心在原点,半焦距为4的椭圆x2m2+y2n2=1(m>0,n>0,m≠n)被直线方程2x﹣y+9=0截得的弦的中点横坐标为﹣4,则椭圆的标准方程为()A.x28+y24=1B.x232+y216=1C.x28+y24=1或y28+x24=1D.x232+y216=1或y232+x216=1解:设直线2x﹣y+9=0与椭圆相交于A(x1,y1),B(x2,y2)两点,由{x12m2+y12n2=1x22 m2+y22n2=1,得(x1+x2)(x1−x2)m2+(y1+y2)(y1−y2)n2=0,得k=y1−y2x1−x2=−n2m2×x1+x2y1+y2=2,弦的中点坐标是M(﹣4,1),直线AB的斜率k=2,所以n2m2=12,m2=2n2,又m2﹣n2=16,所以m2=32,n2=16,椭圆的标准方程为x232+y216=1.故选:B.8.苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度AB=100米,拱高OP=10米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP相距30米的支柱MN的高度是()米.(注意:√10取3.162)A.6.48B.4.48C.2.48D.以上都不对解:以O为原点,以AB所在直线为x轴,以OP所在直线为y轴建立平面直角坐标系,设圆心坐标(0,a),P(0,10),A(﹣50,0),则圆拱所在圆的方程为x 2+(y ﹣a )2=r 2, ∴{(10−a)2=r 2(−50)2+a 2=r 2,解得a =﹣120,r 2=16900, ∴圆的方程为x 2+(y +120)2=16900.将x =﹣30代入圆方程,得:900+(y +120)2=16900, ∵y >0,∴y =40√10−120≈40×3.162﹣120=6.48. 故选:A .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.空间直角坐标系中,已知O (0,0,0),OA →=(−1,2,1),OB →=(−1,2,−1),OC →=(2,3,−1),则( ) A .|AB →|=2B .△ABC 是直角三角形C .与OA →平行的单位向量的坐标为(√66,−√63,−√66)D .{OA →,OB →,OC →}可以作为空间的一组基底 解:因为OA →=(−1,2,1),OB →=(−1,2,−1),所以AB →=OB →−OA →=(0,0,−2),所以|AB →|=2,选项A 正确; 又因为OC →=(2,3,−1),所以BC →=OC →−OB →=(3,1,0), 所以AB →⋅BC →=0,所以△ABC 是直角三角形,选项B 正确; 因为|OA →|=√1+4+1=√6, 所以与OA →平行的单位向量的坐标为:±OA →|OA →|=±(√66,−√63,−√66),选项C 错误; 假设OA →,OB →,OC →共面,则存在唯一的有序数对(x ,y )使OA →=xOB →+yOC →,即(﹣1,2,1)=x (﹣1,2,﹣1)+y (2,3,﹣1)=(﹣x +2y ,2x +3y ,﹣x ﹣y ), 所以{−1=−x +2y 2=2x +3y 1=−x −y ,此方程组无解,故OA →,OB →,OC →不共面,故可作为空间一组基底,选项D 正确. 故选:ABD .10.在如图所示的三棱锥O ﹣ABC 中,OA =OC =OB =1,OA ⊥面OBC ,∠BOC =π3,下列结论正确的为( )A .直线AB 与平面OBC 所成的角为45° B .二面角O ﹣BC ﹣A 的正切值为√33C .O 到面ABC 的距离为√217D .异面直线OC ⊥AB解:选项A ,因为OA ⊥面OBC ,故∠ABO 为直线AB 与平面OBC 所成的角, 又OA =OC =OB =1,所以tan ∠ABO =1,故直线AB 与平面OBC 所成的角是45°,故A 正确; 选项B ,取BC 中点为D ,连接OD ,AD ,因为OA =OB =OC =1,OA ⊥平面OBC ,∠BOC =π3,所以AB =AC =√2,BC =1,OD ⊥BC ,AD ⊥BC , 因为OD ∩AD =D ,所以BC ⊥平面AOD ,故∠ODA 为二面角O ﹣BC ﹣A 的平面角,则tan ∠ODA =OA OD =2√33, 故二面角O ﹣BC ﹣A 的正切值为2√33,故B 错误;选项C ,因为AB =AC =√2,BC =1,所以AD =√72,设O 到面ABC 的距离为h ,则由V A ﹣OBC =V O ﹣ABC ,可得:13×√34×1=13×12×√72×ℎ,解得ℎ=√217,故C 正确;选项D ,若OC ⊥AB ,又OC ⊥OA ,且AB ∩OA =A ,则OC ⊥面OAB , 则有OC ⊥OB ,与∠BOC =π3矛盾,故D 错误.故选:AC .11.已知直线l :kx ﹣y +2k =0(k ∈R )和圆O :x 2+y 2=8,则( ) A .直线l 恒过定点(2,0)B .存在k 使得直线l 与直线l 0:x ﹣2y +2=0垂直C .直线l 与圆O 相交D .若k =1,则圆O 上到直线l 的距离为√2的点有四个解:由直线l :kx ﹣y +2k =0,整理成k (x +2)﹣y =0,则直线恒过定点(﹣2,0),故A 错误; 若直线l :kx ﹣y +2k =0与直线l 0:x ﹣2y +2=0垂直, 则k +2=0,解得k =﹣2,故B 正确;因为(﹣2)2+0=4<8,所以定点(﹣2,0)在圆O :x 2+y 2=8内部, 所以直线l 与圆O 相交,故C 正确; 当k =1时,直线l 化为x ﹣y +2=0, 圆心O 到直线的距离d =|2|√2=√2,圆O 半径2√2, 因为d <r 且d =12r ,所以圆O 到直线l 距离为√2的点有三个,故D 错误.故选:BC .12.已知抛物线y 2=4x ,焦点F ,过点P (1,1)作斜率互为相反数的两条直线分别交抛物线于A ,B 及C ,D 两点.则下列说法正确的是( ) A .抛物线的准线方程为x =﹣1 B .若|AF |=5,则直线AP 的斜率为1 C .若PA →=3BP →,则直线AB 的方程为y =xD .∠CAP =∠BDP解:对于选项A :因为抛物线方程为y 2=4x ,可得该抛物线的准线方程为x =﹣1,故选项A 正确; 对于选项B :不妨设A (x 0,y 0),因为|AF |=5,所以x 0+p2=x 0+1=5,x 0=4,解得y 0=±4, 又P (1,1),则直线AP 的斜率为4−14−1=1或−4−14−1=−53,故选项B 错误; 对于选项C :不妨设A (x 1,y 1),B (x 2,y 2),因为P (1,1),所以BP →=(1−x 2,1−y 2),PA →=(x 1−1,y 1−1), 因为PA →=3BP →,所以{3(1−x 2)=x 1−13(1−y 2)=y 1−1,得{x 1=4−3x 2y 1=4−3y 2.因为y 12=4x 1,所以(4−3y 2)2=4(4−3x 2),即3y 22−8y 2=−4x 2, 因为y 22=4x 2,所以4y 22−8y 2=0,y 2=0或y 2=2,当y 2=0时,x 2=0,解得x 1=4,y 1=4; 当y 2=2时,x 2=1,解得x 1=1,y 1=﹣2,此时直线AB 的斜率不存在,直线CD 的斜率为0,不符合题意;则A (4,4),B (0,0),此时直线AB 的方程为y =x ,故选项C 正确. 对于选项D :易知直线AB ,CD 的斜率存在,不妨设直线AB :y =k (x ﹣1)+1, 则直线CD :y =﹣k (x ﹣1)+1,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 联立{y =k(x −1)+1y 2=4x ,即{x =1k (y −1)+1y 2=4x,消去x 并整理得y 2−4k y +4k −4=0,因为P (1,1)在抛物线内部,所以Δ>0, 由韦达定理得y 1+y 2=4k ,y 1y 2=4k−4,因为|AP|=√1+1k 2|y 1−1|,|BP|=√1+1k2|y 2−1|, 所以|AP|⋅|BP|=(1+1k 2)|(y 1−1)(y 2−1)|=(1+1k2)|y 1y 2−(y 1+y 2)+1| =(1+1k 2)|4k −4−4k +1|=3(1+1k2), 同理得|CP|⋅|DP|=3[1+1(−k)2]=3(1+1k 2),所以|AP |•|BP |=|CP |•|DP |,即|AP||DP|=|CP||BP|,又∠CP A =∠BPD ,所以△APC ∽△BPD ,则∠CAP =∠BDP ,故选项D 正确. 故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.过P (﹣1,a )、Q (a +1,4)两点的直线的倾斜角为45°,那么实数a = 1 . 解:过P (﹣1,a )、Q (a +1,4)两点的直线的倾斜角为45°, 则k PQ =tan45°=1,又k PQ =4−aa+2=1⇒a =1. 故答案为:1.14.a →=(1,−1,2),b →=(−2,1,0),c →=(−3,1,k),若a →,b →,c →共面,则实数k = 2 . 解:因为a →,b →,c →共面,所以存在x ,y ∈R ,使得c →=xa →+yb →, 又因为a →=(1,−1,2),b →=(−2,1,0),c →=(−3,1,k), 所以(﹣3,1,k )=x (1,﹣1,2)+y (﹣2,1,0), 所以{−3=x −2y1=−x +y k =2x ,解得x =1,y =2,k =2.故答案为:2.15.古希腊数学家阿波罗尼斯在《圆锥曲线论》中记载了用平面截圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的顶点和轴都重合),已知两个圆锥的底面直径均为4,侧面积均为2√5π.记过两个圆锥轴的截面为平面α,平面α与两个圆锥侧面的交线为AC ,BD .已知平面β平行于平面α,平面β与两个圆锥侧面的交线为双曲线C 的一部分,且C 的两条渐近线分别平行于AC ,BD ,则该双曲线C 的离心率为 √5 .解:以AC ,BD 的交点在平面β内的射影为坐标原点,两圆锥的轴在平面β内的射影为y 轴,在平面β内与x轴垂直的直线为x轴,建立平面直角坐标系.根据题意可设双曲线C的方程为x2a2−y2b2=1(a>0,b>0).∵两个圆锥的底面直径均为4,则底面半径为2,又侧面积均为2√5π,∴一个圆锥的母线长为√5.则双曲线C的渐近线方程为y=±2x,即ba=2.∴双曲线的离心率为e=ca=√c2a2=√a2+b2a2=√1+(ba)2=√5.故答案为:√5.16.如图,已知菱形ABCD中,AB=2,∠BAD=120°,E为边BC的中点,将△ABE沿AE翻折成△AB1E (点B1位于平面ABCD上方),连接B1C和B1D,F为B1D的中点,则在翻折过程中,AE与B1C的夹角为90°,点F的轨迹的长度为π2.解:在菱形ABCD中,∠BAD=120°,E为边BC的中点,所以AE⊥BC,在翻折过程中,有AE⊥B1E,AE⊥CE,因为B1E∩CE=E,B1E、CE⊂平面B1CE,所以AE⊥平面B1CE,又B1C⊂平面B1CE,所以AE⊥B1C,即AE与B1C的夹角为90°;分别取AB ,AB 1的中点M 和N ,连接EM ,EN ,FN ,因为N ,F 分别为AB 1和B 1D 的中点, 所以FN =12AD ,FN ∥AD ,又E 为BC 的中点,所以CE =12BC =12AD ,CE ∥AD ,所以FN =CE ,FN ∥CE ,所以点F 的轨迹与点N 的轨迹相同,即从点M 到点N 的轨迹,因为AE ⊥平面B 1CE ,所以点B 1的轨迹是以E 为圆心,BE 为半径的圆, 所以点N 的轨迹是以AE 的中点为圆心,BE 2为半径的圆, 所以点N 的轨迹长度为12×2π×BE2=π×12=π2,即点F 的轨迹长度为π2.故答案为:90°,π2.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知点A (1,2,﹣1),B (2,k ,﹣3),C (0,5,1),向量a →=(−3,4,5). (1)若AB →⊥a →,求实数k 的值;(2)求向量AC →在向量a →方向上的投影向量.解:(1)由题意,AB →=(1,k −2,−2),a →=(−3,4,5), 因为AB →⊥a →,所以AB →⋅a →=0,即﹣3+4k ﹣8﹣10=0,得k =214. (2)由题意,AC →=(−1,3,2),a →=(−3,4,5),所以向量AC →在向量上a →上的投影向量为:(AC →⋅a →|a →|)a →|a →|=3+12+10√9+16+253√210,2√25,√22)=(−32,2,52).18.(12分)已知△ABC 的顶点A (5,1),B (1,3),C (4,4). (1)求AB 边上的高所在直线的方程;(2)求△ABC 的外接圆的方程. 解:(1)∵A (5,1),B (1,3), ∴直线AB 的斜率k AB =1−35−1=−12, ∴AB 边上的高所在直线的斜率为2, ∵AB 边上的高所在直线过点C (4,4),∴AB 边上的高所在直线的方程为y ﹣4=2(x ﹣4),即2x ﹣y ﹣4=0. (2)∵CA →=(1,−3),CB →=(−3,−1), ∴CA →⋅CB →=0,即△ABC 为以角C 为直角的直角三角形, 故△ABC 的外接圆以AB 中点(3,2)为圆心,|AB|2=12√(1−5)2+(3−1)2=√5为半径,∴△ABC 的外接圆的方程为(x ﹣3)2+(y ﹣2)2=5.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,M 为BB 1上一点,已知BM =2,CD =3,AD =4,AA 1=5.(1)求直线A 1C 和平面ABCD 的夹角; (2)求点A 到平面A 1MC 的距离.解:(1)依题意:AA 1⊥平面ABCD ,连接AC ,则A 1C 与平面ABCD 所成夹角为∠A 1CA ,∵AA 1=5,AC =√32+42=5, ∴△A 1CA 为等腰三角形, ∴∠A 1CA =π4,∴直线A 1C 和平面ABCD 的夹角为π4,(2)(空间向量),如图建立坐标系,则A (0,0,0),C (3,4,0),A 1(0,0,5),M (3,0,2), ∴AC →=(3,4,0),A 1C →=(3,4,﹣5),MC →=(0,4.﹣2), 设平面A 1MC 的法向量n →=(x ,y ,z ),由{n →⋅A 1C →=3x +4y −5z =0n →⋅MC →=4y −2z =0,可得n →=(2,1,2), ∴点A 到平面A 1MC 的距离d =|AC →⋅n →||n →|=3×2+4×1√2+1+2=103.20.(12分)已知定点A (1,﹣2),点B 为圆(x +1)2+(y +4)2=4上的动点. (1)求AB 的中点C 的轨迹方程;(2)若过定点P(12,−2)的直线l 与C 的轨迹交于M ,N 两点,且|MN|=√3,求直线l 的方程.解:定点A (1,﹣2),点B 为圆(x +1)2+(y +4)2=4上的动点. (1)设点C 的坐标为(x ,y ),则点B 的坐标为(2x ﹣1,2y +2), ∵点B 为圆(x +1)2+(y +2)2=4上的动点,∴(2x ﹣1+1)2+(2y +2+4)2=4,即x 2+(y +3)2=1, ∴AB 的中点C 的轨迹方程为x 2+(y +3)2=1;(2)当直线l的斜率存在时,设直线l的方程为y+2=k(x−12 ),∵圆的半径r=1且|MN|=√3,∴圆心到直线的距离d=1 2,∴d=|1−k2|√1+k=12,解得k=34,∴直线l的方程为y+2=34(x−12),即6x﹣8y﹣19=0;当直线l的斜率不存在时,直线l的方程为x=1 2,此时|MN|=√3,满足条件;综上,直线l的方程为x=12或6x﹣8y﹣19=0.21.(12分)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C,E,D,G在同一平面内,且CG=DG.(1)证明:平面BFD⊥平面BCG;(2)若直线GC与平面ABG所成角的正弦值为√105,求平面BFD与平面ABG所成角的余弦值.解:(1)证明:如图,连接CE,DG,因为该几何体是由等高的半个圆柱和14个圆柱拼接而成,CG=DG,所以∠ECD=∠DCG=45°,所以∠ECG=90°,所以CE⊥CG,因为BC∥EF,BC=EF,所以四边形BCEF 为平行四边形, 所以BF ∥CE , 所以BF ⊥CG ,因为BC ⊥平面ABF ,BF ⊂平面ABF , 所以BC ⊥BF ,因为BC ,CG ⊂平面BCG ,BC ∩CG =C , 所以BF ⊥平面BCG , 因为BF ⊂平面BFD , 所以平面BFD ⊥平面BCG .(2)如图,以A 为坐标原点建立空间直角坐标系,设AF =2,AD =t ,则A (0,0,0),B (0,2,0),F (2,0,0),D (0,0,t ),G (﹣1,1,t ),C (0,2,t ),则AB →=(0,2,0),AG →=(−1,1,t),GC →=(1,1,0), 设平面ABG 的一个法向量为m →=(x ,y ,z), 则{m →⋅AB →=0,m →⋅AG →=0,所以{m →⋅AB →=(x ,y ,z)⋅(0,2,0)=2y =0m →⋅AG →=(x ,y ,z)⋅(−1,1,t)=−x +y +tz =0,令z =1,y =0,x =t ,所以m →=(t ,0,1),记直线GC 与平面ABG 所成的角为θ,则sinθ=|cos〈GC →,m →〉|=|GC →⋅m →||GC →||m →|=|t|√2×√t +1=√105,解得t =2(负值舍去),即AD =2,设平面BFD 的一个法向量为n →=(x′,y′,z′),FB →=(−2,2,0),FD →=(−2,0,2),则{n →⋅FB →=0n →⋅FD →=0即{−2x ′+2y ′=0−2x′+2z′=0,令x ′=1,则n →=(1,1,1), 所以cos <m →,n →>=m →⋅n →|m →||n →|=√2+1⋅√1+1+1=35×3=√155,所以平面BFD 与平面ABG 所成角的余弦值为√155. 22.(12分)“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学知识,例如:用一张圆形纸片,按如下步骤折纸(如图): 步骤1:设圆心是E ,在圆内异于圆心处取一定点,记为F ;步骤2:把纸片折叠,使圆周正好通过点F (即折叠后图中的点A 与点F 重合); 步骤3:把纸片展开,并留下一道折痕,记折痕与AE 的交点为P ; 步骤4:不停重复步骤2和3,就能得到越来越多的折痕.现取半径为4的圆形纸片,设点F 到圆心E 的距离为2√3,按上述方法折纸.以线段EF 的中点为原点,线段EF 所在直线为x 轴建立平面直角坐标系xOy ,记动点P 的轨迹为曲线C . (1)求C 的方程;(2)设轨迹C 与x 轴从左到右的交点为点A ,B ,点P 为轨迹C 上异于A ,B ,的动点,设PB 交直线x =4于点T ,连结AT 交轨迹C 于点Q .直线AP 、AQ 的斜率分别为k AP 、k AQ . (ⅰ)求证:k AP •k AQ 为定值;(ⅱ)证明直线PQ 经过x 轴上的定点,并求出该定点的坐标.解:(1)因为|PE|+|PF|=|PA|+|PE|=4>|EF|=2√3, 所以点P 的轨迹是以E ,F 为焦点,且长轴长2a =4的椭圆, 焦距2c =|EF|=2√3, 此时b 2=a 2﹣c 2=1, 则轨迹C 方程为x 24+y 2=1;(2)证明:(i )不妨设P (x 1,y 1),Q (x 2,y 2),T (4,m ), 由题可知A (﹣2,0),B (2,0),第21页(共21页) 则k AP =y 1x 1+2,k AQ =k AT =m−04−(−2)=m 6, 因为k BP =k BT =y 1x 1−2=m 2, 所以m =2y 1x 1−2, 所以k AP ⋅k AQ =y 1x 1+2⋅m 6=y 1x 1+2⋅y 13(x 1−2)=y 123(x 12−4),① 因为点P 在椭圆上,所以x 124+y 12=1,② 联立①②,解得k AP •k AQ =−112, 故k AP •k AQ 为定值;(ii )证明:不妨设直线PQ 的方程为x =ty +n ,P (x 1,y 1),Q (x 2,y 2),联立{x =ty +nx 24+y 2=1,消去x 并整理得(t 2+4)y 2+2tny +n 2﹣4=0, 由韦达定理得{y 1+y 2=−2tn t 2+4y 1y 2=n 2−4t 2+4, 由(i )知k AP ⋅k AQ =−112, 即y 1x 1+2⋅y 2x 2+2=y 1y 2(ty 1+n+2)(ty 2+n+2)=−112, 整理得n 2−44n 2+16n+16=−112, 解得n =1或n =﹣2(舍去),所以直线PQ 的方程为x =ty +1,故直线PQ 经过定点(1,0).。
2024学年上海市延安中学高二数学第一学期期中考试卷(考试时间:90分钟满分100分)一、填空题(第1-12题每题3分,共36分,考生应在答题纸相应编号的空格内直接填写结果,否则一律得零分.)1.若点A ∈直线a ,且直线a ⊂平面α,则A ________α.(填合适的符号)2.已知角α的两边和角β的两边分别平行且60α=,则β=_________.3.棱锥的高为9,底面积为162,平行于底面的截面面积为32,则截得的棱台的高为_________.4.如果三棱锥S ABC -的侧棱与底面所成角都相等,顶点S 在底面的射影O 在ABC V 内,那么O 是ABC V 的_____心.5.已知圆柱的侧面展开图是一个边长为4的正方形,则该圆柱的表面积是______________.6.如图,在长方体1111ABCD A B C D -中,8AB =,16AA =,则棱11B C 与平面11A BCD 的距离为__________.7.在长方体1111ABCD A B C D -中,122BD CD AA ==,则直线1BC 与直线11B D 所成角的余弦值为______________.8.在各项均为正数的等比数列{}n a 中,前n 项和为n S ,满足12lim n n S a ∞→+=,那么1a 的取值范围是___.9.在平面上画n 条直线,假设其中任意2条直线都相交,且任意3条直线都不共点,设k 条直线将平面分成了()f k 个区域,那么1k +条直线可把平面分成()f k +______个区域.10.已知ABC V 用斜二测画法画出的直观图是边长为1的正三角形A B C ''' (如图),则ABC V 中边长与A B C ''' 的边长相等的边上的高为_______________11.已知在直三棱柱111ABC A B C -中,底面为直角三角形,90ACB ∠=︒,6AC =,12BC CC ==,P 是1BC 上一动点,则1CP PA +的最小值为______.12.已知两个等比数列{}n a ,{}n b 满足()10a a a =>,111b a -=,222ba -=,333b a -=.若数列{}na 唯一,则a =______.二、选择题(本大题共有4题,每题有且只有一个正确答案,选对得3分,否则一律得零分)13.以下命题中真命题的是().A.所有侧面都是矩形的棱柱是长方体B.有两个相邻的侧面是矩形的棱柱是直棱柱C.侧棱垂直底面两条棱的棱柱是直棱柱D.各侧面都是全等的矩形的直棱柱是正棱柱14.1l 、2l 是空间两条直线,α是平面,以下结论正确的是().A.如果1l ∥α,2l ∥α,则一定有1l ∥2l .B.如果12l l ⊥,2l α⊥,则一定有1l α⊥.C.如果12l l ⊥,2l α⊥,则一定有1l ∥α.D.如果1l α⊥,2l ∥α,则一定有12l l ⊥.15.如图,正方体1111ABCD A B C D -中,P Q R S 、、、分别为棱1AB BC BB CD 、、、的中点,连接11A S B D 、,对空间任意两点M N 、,若线段MN 与线段11A S B D 、都不相交,则称M N 、两点可视,下列选项中与点1D 可视的为()A.点PB.点QC.点RD.点B16.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…,即121a a ==,()123,N n n n a a a n n --=+≥∈,此数列在现代物理“准晶体结构”、化学等领域都有着广泛的应用.若此数列被2除后的余数构成一个新数列,则数列的前2026项的和为()A.1350B.676C.1351D.1352三、解答题(共52分)特别注意:本卷解答题用空间坐标表示解题,一律不给分!17.已知等差数列{}n a 的首项为1a ,公差为d ,前n 项和为n S .若11a d ==,用数学归纳法证明:321(N,1)ni n i aS n n ==∈≥∑.18.已知A 是圆锥的顶点,BD 是圆锥底面的直径,C 是底面圆周上一点,BD =2,BC =1,AC 与底面所成的角为3π,过点A 作截面ABC 、ACD ,截去部分后的几何体如图.(1)求原来圆锥的侧面积;(2)求该几何体的体积.19.如图,正四面体P ABC -中,棱长为2,PA 的中点为M .求:(1)二面角M BC P --的大小;(2)点P 到平面BMC 的距离.20.如图,在四棱柱1111ABCD A B C D -中,四边形ABCD 为直角梯形,AB ∥,CD AB CD >,90ABC ∠= .过点1C 作1C O ⊥平面ABCD ,垂足为,,O OB OC M =是1CC 的中点.(1)在四边形ABCD 内,过点O 作OE AD ⊥,垂足为E .(i )求证:平面1OEC ⊥平面11ADD A ;(ii )判断11,,,O E D C 是否共面,并证明.(2)在棱BC 上是否存在一点N ,使得1AC ∥平面OMN ?若存在,给出证明:若不存在,请说明理由.21.已知数列{}n a 满足12a =,对任意正整数m 、p 都有m p m p a a a +=⋅.(1)求数列{}()N,1n a n n ∈≥的通项公式n a ;(2)数列{}n b 满足()31223N,121212121n n n b b b ba n n =++++∈≥++++ ,求数列{}n b 的前n 项和n B ;(3)在(2)中的n B ,设2nn nB c =,求数列{}()N,1n c n n ∈≥中最小项的值.上2024学年上海市延安中学高二数学第一学期期中考试卷(考试时间:90分钟满分100分)一、填空题(第1-12题每题3分,共36分,考生应在答题纸相应编号的空格内直接填写结果,否则一律得零分.)1.若点A ∈直线a ,且直线a ⊂平面α,则A ________α.(填合适的符号)【答案】∈【解析】【分析】由点线面的位置关系判断即可.【详解】点A ∈直线a ,且直线a ⊂平面α,则A ∈α,故答案为:∈2.已知角α的两边和角β的两边分别平行且60α= ,则β=_________.【答案】60o 或120 【解析】【分析】由等角定理求解即可.【详解】角α的两边和角β的两边分别平行且60α= ,由等角定理可知,βα=或180βα+= ,则60β= 或120 ,故答案为:60o 或1203.棱锥的高为9,底面积为162,平行于底面的截面面积为32,则截得的棱台的高为_________.【答案】5【解析】【分析】设出截得的棱台的高,利用棱锥平行于底面的截面比例关系列式求解.【详解】设截得的棱台的高为h ,由棱锥被平行于底面的平面所截,截面面积与底面积的比等于截得锥体的高与原锥体高的平方比,得2932(9162h -=,解得5h =,所以截得的棱台的高为5.故答案为:54.如果三棱锥S ABC -的侧棱与底面所成角都相等,顶点S 在底面的射影O 在ABC V 内,那么O 是ABC V 的_____心.【答案】外【解析】【分析】设侧棱与底面所成角为θ,则tan SO SO SOOA OB OCθ===,故OA OB OC ==,从而判断即可.【详解】三棱锥S ABC -的侧棱与底面所成角都相等,设夹角为θ,顶点S 在底面的射影O 在ABC V 内,所以tan SO SO SOOA OB OCθ===,所以OA OB OC ==,故O 是ABC V 的外心.故答案为:外5.已知圆柱的侧面展开图是一个边长为4的正方形,则该圆柱的表面积是______________.【答案】816π+【解析】【分析】根据给定条件,求出该圆柱的底面圆半径,再求出其表面积.【详解】依题意,圆柱的底面圆周长为4,则半径2πr =,所以该圆柱的表面积282π1616πS r =+=+.故答案为:816π+6.如图,在长方体1111ABCD A B C D -中,8AB =,16AA =,则棱11B C 与平面11A BCD 的距离为__________.【答案】245【解析】【分析】建立空间直角坐标系,由11//B C 平面11A BCD ,所以棱11B C 与平面11A BCD 的距离即为1B 到平面11A BCD 的距离,利用坐标法求解点到平面的距离即可.【详解】11//B C BC ,11B C ⊄平面11A BCD ,⊂BC 平面11A BCD ,所以11//B C 平面11A BCD ,所以1B 到平面11A BCD 的距离即为棱11B C 与平面11A BCD 的距离,如图:建立空间直角坐标系,8AB =,16AA =,设AD a =,所以()1,0,6A a ,(),8,0B a ,()0,8,0C ,()10,0,6D ,()1,8,6B a ,()10,8,6A B =- ,(),0,0BC a =-,设平面11A BCD 的法向量为 =s s ,则10m A B m BC ⎧⋅=⎪⎨⋅=⎪⎩ ,故8600y z ax -=⎧⎨-=⎩,则0x =,令6y =,8z =,故()0,6,8m =,()10,0,6BB = ,所以1B 到平面11A BCD的距离为:1245m BB m ⋅==,故答案为:2457.在长方体1111ABCD A B C D -中,122BD CD AA ==,则直线1BC 与直线11B D 所成角的余弦值为______________.【答案】34##0.75【解析】【分析】根据异面直线所成角的定义可得1DBC ∠或其补角即为所求的角,再由余弦定理计算可得结果.【详解】如图所示:不妨设1222BD CD AA ===,则由长方体性质可得3BC =,易知直线1BC 与直线11B D 所成的角即为直线1BC 与直线BD 所成的角,即为1DBC ∠或其补角;在1BDC 中,可得1122,2,B BC D D C ===由余弦定理可知22211114423cos 22224BD C B C D DBC BD C B +-+-∠===⨯⨯⨯⨯.故答案为:348.在各项均为正数的等比数列{}n a 中,前n 项和为n S ,满足12lim n n S a ∞→+=,那么1a 的取值范围是___.【答案】(2【解析】【分析】利用等比数列前n 项和的极限,得到关于1a 的代数式,进而求得1a 的取值范围.【详解】各项均为正数的等比数列中,设其公比为q ,首项为1a ,则1lim 1n n a S q∞→+=-,01q <<,则1112a q a =-,则()121a q =-,由01q <<,可得011q <-<,()0212q <-<,则()0212q <-<,则1a 的取值范围是(2.故答案为:(29.在平面上画n 条直线,假设其中任意2条直线都相交,且任意3条直线都不共点,设k 条直线将平面分成了()f k 个区域,那么1k +条直线可把平面分成()f k +______个区域.【答案】1k +##1k +【解析】【分析】根据题意,依次分析(1),(2),(3),(4),(5)f f f f f 的值,由此类推,归纳可得答案.【详解】1条直线把平面分成2个区域,2条直线把平面分成224+=个区域,则有(2)(1)2f f =+,同理,3条直线把平面分成2237++=个区域,则有(3)(2)3f f =+,4条直线把平面分成223411+++=个区域,则有(4)(3)4f f =+,5条直线把平面分成2234516++++=个区域,则有(5)(4)5f f =+,依次类推,第1k +条直线与前k 条直线都相交,则第1k +条直线有k 个交点,被分为1k +段,每段都会把对应的平面分为两部分,则增加了1k +个平面,即(1)()1f k f k k +=++.故答案为:1k +.10.已知ABC V 用斜二测画法画出的直观图是边长为1的正三角形A B C ''' (如图),则ABC V 中边长与A B C ''' 的边长相等的边上的高为_______________【解析】【分析】由斜二测画法的特点可知平行于x 轴的边长不变,在直观图中由正弦定理求出O C '',然后求出原图中OC 的长度即可求解.【详解】由于ABC V 用斜二测画法画出的直观图是边长为1的正三角形A B C ''' ,则ABC V 中边长与A B C ''' 的边长相等的边为A B AB ''=,在O A C ''' 中1A C ''=,45A O C '''∠= ,60C A B '''∠=o ,所以120C A O '''∠=o ,由正弦定理得:sin sin C O A C C A O C O A''''=''''''∠∠,所以2222O C ''==,所以原图ABC V 中AB边上的高为:22OC =⨯=,.11.已知在直三棱柱111ABC A B C -中,底面为直角三角形,90ACB ∠=︒,6AC =,1BC CC ==,P 是1BC 上一动点,则1CP PA +的最小值为______.【答案】【解析】【分析】把面11A C B 沿1BC 展开与1CBC △在一个平面上如图,连接1AC ,则1AC 的长度即为1CP PA +的最小值,求解即可.【详解】由题意知,1PA 在几何体内部,但在面11A C B 内,把面11A C B 沿1BC 展开与1CBC △在一个平面上如图,连接1AC,则1AC 的长度即为1CP PA +的最小值,因为在直三棱柱111ABC A B C -中,1CC ⊥平面111A B C ,而11AC ⊂平面111AB C ,则111A C CC ⊥,因为90ACB ∠=︒,则11190A C B ∠=︒,即1111A C B C ⊥,又1111111,,CC B C C CC B C ⋂=⊂平面11BB C C ,则11A C ⊥平面11BB C C ,而1BC ⊂平面11BB C C ,所以111A C BC ⊥,即190AC B ∠=︒,因为1BC CC ==,易知1CC BC ⊥,所以140CC B ∠=︒所以114590135CC A ∠=︒+︒=︒,而116A C =,1CC =所以在11C CA 中,22211111112cos13550A C A C CC A C CC =+-⋅︒=,所以1AC =,即1CP PA +的最小值为故答案为:12.已知两个等比数列{}n a ,{}n b 满足()10a a a =>,111b a -=,222b a -=,333b a -=.若数列{}n a 唯一,则a =______.【答案】13【解析】【分析】设等比数列{}n a 的公比为()0q q ≠,依题意可得24310aq aq a -+-=,且2440a a ∆=+>,由于数列{}n a 唯一,则公比q 的值只能有一个,故方程必有一解为0,代入方程即可求解参数.【详解】设等比数列{}n a 的公比为()0q q ≠,∵()10a a a =>,111b a -=,222b a -=,333b a -=,∴11b a =+,22b aq =+,233b aq =+.∵1b ,2b ,3b 成等比数列,∴()()()22213aq a aq+=++,整理得24310aq aq a -+-=.∵0a >,∴2440a a ∆=+>,∴关于公比q 的方程有两个不同的根,且两根之和为4,两根之积为13a-.又数列{}n a 唯一,公比q 的值只能有一个,故这两个q 的值必须有一个不满足条件.∵公比q 的值不可能等于0,∴方程24310aq aq a -+-=必有一根为0,把0q =代入此方程,解得13a =.故答案为:13二、选择题(本大题共有4题,每题有且只有一个正确答案,选对得3分,否则一律得零分)13.以下命题中真命题的是().A.所有侧面都是矩形的棱柱是长方体B.有两个相邻的侧面是矩形的棱柱是直棱柱C.侧棱垂直底面两条棱的棱柱是直棱柱D.各侧面都是全等的矩形的直棱柱是正棱柱【答案】B 【解析】【分析】利用长方体、直棱柱、正四棱柱的定义,对各个选项逐一分析判断,即可求解.【详解】对于A ,直棱柱的侧面都是矩形,但不一定是长方体,如直三棱柱,故A 不正确,对于B ,有两个相邻侧面是矩形,则利用线面垂直的判定定理证明出侧棱垂直于底面,则该四棱柱是直棱柱,故B 正确,对于C ,斜四棱柱可以满足侧棱垂直底面两条棱,但不是直棱柱,故C 不正确;对于D ,底面是菱形的直棱柱,满足底面四条边相等,各侧面都是全等的矩形,但不是正四棱柱,故D 不正确.故选:B.14.1l 、2l 是空间两条直线,α是平面,以下结论正确的是().A.如果1l ∥α,2l ∥α,则一定有1l ∥2l .B.如果12l l ⊥,2l α⊥,则一定有1l α⊥.C.如果12l l ⊥,2l α⊥,则一定有1l ∥α.D.如果1l α⊥,2l ∥α,则一定有12l l ⊥.【答案】D 【解析】【分析】由空间中直线与直线、直线与平面、平面与平面的关系逐一核对四个选项得答案.【详解】对于A ,若1l ∥α,2l ∥α,则有1l ∥2l 或1l 与2l 相交或1l 与2l 异面,故A 错误;对于B 、C ,如果1l ⊥2l ,2l ⊥α,则有1l ∥α或1l ⊂α,故B 、C 错误;对于D ,如果1l ⊥α,则1l 垂直α内的所有直线,又2l ∥α,则过2l 与α相交的平面交α于a ,则2l ∥a ,∴1l ⊥2l ,故D 正确.故选:D .15.如图,正方体1111ABCD A B C D -中,P Q R S 、、、分别为棱1AB BC BB CD 、、、的中点,连接11A S B D 、,对空间任意两点M N 、,若线段MN 与线段11A S B D 、都不相交,则称M N 、两点可视,下列选项中与点1D 可视的为()A.点PB.点QC.点RD.点B【答案】B 【解析】【分析】根据异面直线的定义判断即可.【详解】A 选项:四边形11A D SP 是平行四边形,1A S 与1D P 相交,故A 错;C 选项:四边形11D B BD 是平行四边形,1D R 与1DB 相交,故C 错;D 选项:四边形11D B BD 是平行四边形,1D B 与1DB 相交,故D 错;利用排除法可得选项B 正确.故选:B.16.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…,即121a a ==,()123,N n n n a a a n n --=+≥∈,此数列在现代物理“准晶体结构”、化学等领域都有着广泛的应用.若此数列被2除后的余数构成一个新数列,则数列的前2026项的和为()A.1350B.676C.1351D.1352【答案】C 【解析】【分析】依据斐波那契数列性质得出数列中数字规律即可求得新数列的规律,再利用数列的周期性即可得结果.【详解】根据斐波那契数列性质可得中的数字呈现出奇数、奇数、偶数循环的规律,因此新数列即为按照1,1,0成周期出现的数列,周期为3,易知202667531=⨯+,一个周期内的三个数字之和为2;所以数列的前2026项的和为675211351⨯+=.故选:C三、解答题(共52分)特别注意:本卷解答题用空间坐标表示解题,一律不给分!17.已知等差数列{}n a 的首项为1a ,公差为d ,前n 项和为n S .若11a d ==,用数学归纳法证明:321(N,1)ni n i aS n n ==∈≥∑.【答案】证明见解析.【解析】【分析】根据给定条件,求出等差数列的通项n a ,前n 项和为n S ,再利用数学归纳法证明.【详解】等差数列中,1(1)n a a n d n =+-=,1()(1)22n n n a a n n S ++==,当1n =时,311a =,21n S =,原等式成立;假设当N ()n k k *=∈时,原等式成立,即321kk i ka S==∑,321(1)[2ki k k k =+=∑,则133233311121((1)[]21)(1)k kk i i k k ak a a k k k k +++===+=++++=+∑∑()()()()()()22222211112412442k k k k k k k k S +⎡⎤++++⎡⎤=⋅++=⋅+==⎢⎥⎣⎦⎣⎦,即当1n k =+时,原等式成立,所以对一切N n *∈,等式321ni n i aS ==∑成立.18.已知A 是圆锥的顶点,BD 是圆锥底面的直径,C 是底面圆周上一点,BD =2,BC =1,AC 与底面所成的角为3π,过点A 作截面ABC 、ACD ,截去部分后的几何体如图.(1)求原来圆锥的侧面积;(2)求该几何体的体积.【答案】(1)2π;(2)36+﹒【解析】【分析】(1)设BD 的中点为O ,连结OA ,OC ,则OA ⊥平面BCD ,求出圆锥母线长度即能求出圆锥侧面积.(2)该几何体的体积()13BCD V S S AO =+⋅△半圆,由此能求出结果.【小问1详解】如图,设BD 的中点为O ,连接OA OC 、,A 是圆锥的顶点,BD 是圆锥底面的直径,OA ∴⊥平面BCD .2BD = ,1BC =,AC 与底面所成角的大小为3π,∴在Rt AOC 中,1OC =,3ACO π∠=,2AC =,AO =,∴圆锥侧面积为:2222r AC πππ⋅=⨯⨯=;【小问2详解】该几何体为三棱锥与半个圆锥的组合体,AO = ,90BCD ∠=︒,CD ∴=∴该几何体的体积V =()11133133226BCD S S AO π+⎛⎫+⋅=⨯⨯⨯ ⎪⎝⎭半圆△.19.如图,正四面体P ABC -中,棱长为2,PA 的中点为M .求:(1)二面角M BC P --的大小;(2)点P 到平面BMC 的距离.【答案】(1)3arcsin3(2)1【分析】(1)取BC 的中点O ,连接,OM OP ,易证得PA ⊥平面BMC ,,OM BC OP BC ⊥⊥,则POM ∠即为二面角M BC P --的平面角,再解Rt POM 即可;(2)由PM ⊥平面BMC ,可得线段PM 的长度即为点P 到平面BMC 的距离,即可得解.【小问1详解】取BC 的中点O ,连接,OM OP ,在正四面体P ABC -中,PA 的中点为M ,则,,3BM PA CM PA BM CM ⊥⊥==,因为O 为BC 的中点,所以,OM BC OP BC ⊥⊥,所以POM ∠即为二面角M BC P --的平面角,因为,,BM CM M BM CM ⋂=⊂平面BMC ,所以PA ⊥平面BMC ,又OM ⊂平面BMC ,所以PA OM ⊥,在Rt POM 中,1,3PM OP ==,则3sin 3PM POM OP ∠==,所以二面角M BC P --的大小为3arcsin3;【小问2详解】由(1)知PM ⊥平面BMC ,所以线段PM 的长度即为点P 到平面BMC 的距离,所以点P 到平面BMC 的距离为1.20.如图,在四棱柱1111ABCD A B C D -中,四边形ABCD 为直角梯形,AB ∥,CD AB CD >,90ABC ∠= .过点1C 作1C O ⊥平面ABCD ,垂足为,,O OB OC M =是1CC 的中点.(1)在四边形ABCD 内,过点O 作OE AD ⊥,垂足为E .(i )求证:平面1OEC ⊥平面11ADD A ;(ii )判断11,,,O E D C 是否共面,并证明.(2)在棱BC 上是否存在一点N ,使得1AC ∥平面OMN ?若存在,给出证明:若不存在,请说明理由.【答案】(1)(i )证明见解析;(ii )不共面,证明见解析(2)存在,证明见解析【解析】【分析】(1)(i )由线面垂直的性质可得1C O ⊥AD ,然后由面面垂直的判定可证,(ii )利用反证法,假设不共面,利用面面平行的性质推出矛盾,进而得到结论正确;(2)利用面面平行的判定可得平面OMN ∥平面1ABC ,然后利用线面平行的定义得证.【小问1详解】(i )由1C O ⊥平面ABCD ,AD ⊂平面ABCD ,则1C O ⊥AD ,又OE AD ⊥,1OE OC O = ,1,OE OC ⊂平面1OEC ,则AD ⊥平面1OEC ,因为AD ⊂平面11ADD A ,所以平面1OEC ⊥平面11ADD A ;(ii )11,,,O E D C 不共面,假设11,,,O E D C 共面于α,由四棱柱1111ABCD A B C D -,得平面//ABCD 平面1111D C B A ,又平面ABCD OE α⋂=,平面11111A B C D C D α⋂=,所以11//OE C D ,又11//CD C D ,所以//OE CD ,又OE AD ⊥,即CD AD ⊥,又90ABC ∠= ,且90ADC ∠=︒,//AB CD ,从而四边形ABCD 为矩形,与AB CD >矛盾!所以11,,,O E D C 不共面;【小问2详解】取BC 的中点N ,连接CO 并延长交AB 于P ,因为90ABC ∠=︒,OB OC =,所以O 为CP 的中点,//ON AB ,因为ON ⊄平面1ABC ,AB ⊂平面1ABC ,所以//ON 平面1ABC ,由M 是1CC 的中点,1//,MN BC MN ⊄平面1ABC ,1BC ⊂平面1ABC ,所以//MN 平面1ABC ,因为ON MN N ⋂=,,ON MN ⊂平面OMN ,所以平面//OMN 平面1ABC ,因为1AC ⊂平面1ABC ,所以1//AC 平面OMN .21.已知数列{}n a 满足12a =,对任意正整数m 、p 都有m p m p a a a +=⋅.(1)求数列{}()N,1n a n n ∈≥的通项公式n a ;(2)数列{}n b 满足()31223N,121212121n n n b b b ba n n =++++∈≥++++ ,求数列{}n b 的前n 项和n B ;(3)在(2)中的n B ,设2nn nB c =,求数列{}()N,1n c n n ∈≥中最小项的值.【答案】(1)2nn a =()N,1n n ∈≥(2)244233n n n B =⨯++()N,1n n ∈≥.(3)3【解析】【分析】(1)直接给,m n 赋值得到一个等比数列的关系式,求出的通项;(2)通过n a 和前n 项和之间的关系求解通项即可;(3)通过判断数列的单调性,确定最大值的位置,判断单调性只需要比较1,n n c c -的大小即可.【小问1详解】对任意正整数m 、p 都有m p m p a a a +=⋅成立,12a =,所以令,1m n p ==,得11n n a a a +=⋅,N,1n n ∈≥,∴数列(N,1n n ∈≥)是首项和公比都为2的等比数列.∴2nn a =(N,1n n ∈≥).【小问2详解】由()31223N,121212121n n n b b b ba n n =++++∈≥++++ ,得()31121231N,221212121n n n b b b ba n n ---=++++∈≥++++ ,故()1N,221n n n n ba a n n --=∈≥+,所以()()121122122N,2n nn n n b n n ---=+=+∈≥,当1n =时,11121b a =+,16b =,于是,()()21122,N,26,1n n n n n b n --⎧+∈≥⎪=⎨=⎪⎩,当1n =时,116B b ==;当2n ≥时,()()35211211236222222n n n n B b b b b --=+++⋅⋅⋅+=+++⋅⋅⋅++++⋅⋅⋅+()()311221421261212n n ----=++--244233n n =⨯++又1n =时,12442633B =⨯++=,综上,有244233n n n B =⨯++,N,1n n ∈≥.【小问3详解】因为2n n n B c =,11116322B c ===,所以()24121,N,1332n n n c n n =⨯+⨯+∈≥,所以()111112412412121212,233233232n n n n n n n n c c n -----⎛⎫-=⨯+⨯+-⨯--=-≥ ⎪⎝⎭,数列{}()N,1n c n n ∈≥是单调递增数列,即数列{}n c 中数值最小的项是1c ,其值为3.。
2024学年长沙市高二数学上学期期中考试卷一、单选题(本大题共8小题)1.直线120x y +-=的倾斜角是()A .π4B .π2C .3π4D .π32.已知点B 是A (3,4,5)在坐标平面xOy 内的射影,则|OB|=()A .B .C .5D .3.长轴长是短轴长的3倍,且经过点()3,0P 的椭圆的标准方程为()A .2219x y +=B .221819x y +=C .2219x y +=或221819y x +=D .2219y x +=或221819x y +=4.已知方程22121x y m m -=++表示双曲线,则m 的取值范围为()A .()2,1--B .()(),21,-∞-⋃-+∞C .()1,2D .()(),12,-∞+∞ 5.在正四棱锥P ABCD -中,4,2,PA AB E ==是棱PD 的中点,则异面直线AE 与PC 所成角的余弦值是()A .B .C .38D .6.已知椭圆22:195x y C +=的右焦点F ,P 是椭圆上任意一点,点(0,A ,则APF 的周长最大值为()A .9+B .7+C .14D .157.已知()()3,0,0,3A B -,从点()0,2P 射出的光线经x 轴反射到直线AB 上,又经过直线AB 反射到P 点,则光线所经过的路程为()A .B .6C .D .8.已知,A B 两点的坐标分别是()()1,0,1,0-,直线,AM BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的差是2,则点M 的轨迹方程为()A .()211y x x =-+≠±B .()211y x x =+≠±C .()211x y y =-+≠±D .()211x y y =+≠±二、多选题(本大题共3小题)9.(多选题)已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于()A .79B .13-C .79-D .1310.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12F F 、,过点1F 的直线与C 的左支相交于,P Q 两点,若2PQ PF ⊥,且243PQ PF =,则()A .4PQ a=B .13PF PQ =C .双曲线C 的渐近线方程为y =D .直线PQ 的斜率为411.已知椭圆221:195x y C +=,将1C 绕原点O 沿逆时针方向旋转π2得到椭圆2C ,将1C 上所有点的横坐标沿着x 轴方向、纵坐标沿着y 轴方向分别伸长到原来的2倍得到椭圆3C ,动点P ,Q 在1C 上且直线PQ 的斜率为12-,则()A .顺次连接12,C C 的四个焦点构成一个正方形B .3C 的面积为1C 的4倍C .3C 的方程为2244195x y +=D .线段PQ 的中点R 始终在直线109y x =上三、填空题(本大题共3小题)12.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为.13.直线2y x =-与抛物线22y x =相交于,A B 两点,则OA OB ⋅=.14.设F 是双曲线()2222:10,0x y C a b a b-=>>的右焦点,O 为坐标原点,过F 作C 的一条渐近线的垂线,垂足为H ,若FOH △的内切圆与x 轴切于点B ,且BF OB =,则C 的离心率为.四、解答题(本大题共5小题)15.在平面直角坐标系中,已知点()1,0A -、()1,0B ,动点P 满足PA PB ⊥.(1)求动点P 的轨迹方程;(2)若过点()1,2Q 的直线l 与点P 的轨迹(包括点A 和点B )有且只有一个交点,求直线l 的方程.16.如图,在棱长为a 的正方体OABC O A B C ''''-中,E ,F 分别是AB ,BC 上的动点,且AE BF =.(1)求证:A F C E ''⊥;(2)当三棱锥B BEF '-的体积取得最大值时,求平面B EF '与平面BEF 的夹角的正切值.17.已知顶点为O 的抛物线212y x =的焦点为F ,直线l 与抛物线交于,A B 两点.(1)若直线l 过点()5,0M ,且其倾斜角ππ,63θ⎡⎤∈⎢⎥⎣⎦,求OAB S 的取值范围;(2)是否存在斜率为1的直线l ,使得FA FB ⊥?若存在,求出直线l 的方程;若不存在,请说明理由.18.如图,P 为圆锥的顶点,O 是圆锥底面的圆心,AC 为底面直径,ABD △为底面圆O 的内接正三角形,且ABD △的边长为3E 在母线PC 上,且3,1AE CE ==.(1)求证:直线//PO 平面BDE ;(2)若点M 为线段PO 上的动点,当直线DM 与平面ABE 所成角的正弦值最大时,求此时点M 到平面ABE 的距离.19.已知椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,离心率22e =,点,P Q 分别是椭圆的右顶点和上顶点,POQ 的边PQ 上的中线长为32.(1)求椭圆的标准方程;(2)过点(2,0)H -的直线交椭圆C 于,A B 两点,若11AF BF ⊥,求直线AB 的方程;(3)直线12,l l 过右焦点2F ,且它们的斜率乘积为12-,设12,l l 分别与椭圆交于点,C D 和,E F .若,M N分别是线段CD 和EF 的中点,求OMN 面积的最大值.参考答案1.【答案】C【分析】求出直线的斜率即可求解.【详解】因为120x y +-=,所以12y x =-+,所以直线120x y +-=的斜率为1-,所以直线120x y +-=的倾斜角为3π4.故选:C.2.【答案】C【详解】解:∵点B 是点A (3,4,5)在坐标平面Oxy 内的射影,∴B (3,4,0),则|OB|=5.故选:C .3.【答案】C【详解】当椭圆的焦点在x 轴上时,长半轴长为3,则短半轴长为1,所以椭圆的方程为2219x y +=;当椭圆的焦点在y 轴上时,短半轴长为3,则长半轴长为9,所以椭圆的方程为221819y x +=;所以椭圆方程为2219x y +=或221819y x +=.故选:C.4.【答案】B【详解】因为方程22121x y m m -=++表示双曲线,所以()()210m m ++>,解得2m <-或1m >-,故m 的取值范围为()(),21,-∞-⋃-+∞.故选:B.5.【答案】D 【详解】由题意知,4,2,PA AB ==PO ==所以(P ,()0,A ,()C ,()D ,22E ⎛- ⎝⎭,,21422AE ⎛⎫=- ⎪ ⎪⎝⎭,,(PC ,所以c o 24s AE PC ⋅== 故选:D.6.【答案】C【解析】设椭圆的左焦点为F ',||4||AF AF ==',||||26PF PF a +'==,利用||||||PA PF AF -'' ,即可得出.【详解】如图所示设椭圆的左焦点为F ',||4||AF AF ==',则||||26PF PF a +'==,||||||PA PF AF -'' ,APF ∴△的周长||||||||||6||AF PA PF AF PA PF =++=++-'46||||10||10414PA PF AF =++-'≤+'=+=,当且仅当三点A ,F ',P 共线时取等号.APF ∴△的周长最大值等于14.故选:C .7.【答案】C【详解】直线AB 的方程为3y x =+,设点()0,2P 关于3y x =+的对称点为()1,P a b ,则212322b ab a -⎧=-⎪⎪⎨+⎪=+⎪⎩,得1,3a b =-=,即()11,3P -点()0,2P 关于x 轴的对称点为()20,2P -,由题意可知,如图,点12,P P 都在光线CD 上,并且利用对称性可知,1DP DP =,2CP CP =,所以光线经过的路程211226PC CD DP P C CD DP PP ++=++==故选:C 8.【答案】A【详解】设(),M x y ()1x ≠±,则211AM BM y yk k x x -=-=+-,整理得()211y x x =-+≠±,所以动点M 的轨迹方程是()211y x x =-+≠±.故选:A.9.【答案】BC【详解】因为A 和B 到直线l 的距离相等,由点A 和点B 到直线的距离公式,可得2234163111a a a a --+++++化简得3364a a +=+,所以()3364a a +=±+,解得79a =-或13-,故选:BC .10.【答案】BC【详解】由243PQ PF =,设3PQ m =,24PF m =,由2PQ PF ⊥,得25QF m =,则142PF m a =-,152QF m a =-,而11||||||PF QF PQ +=,解得23am =,因此12||3a PF =,14||3a QF =,对于A ,2PQ a =,A 错误;对于B ,显然112F F P Q = ,则13PF PQ =,B 正确;对于C ,令12||2F F c =,在12PF F 中,由2221212PF PF F F +=,得222464499a a c +=,则22179c a =,222289b c a =-=,即b a C的渐近线方程为3y x =±,C 正确;对于D ,由2121tan 4PF PF F PF ∠==,结合对称性,图中,P Q 位置可互换,则直线PQ 的斜率为4±,D错误.故选:BC 11.【答案】ABD【详解】椭圆221:195x y C +=的焦点为()2,0-,2,0,将1C 绕原点O 沿逆时针方向旋转π2得到椭圆2C ,则椭圆2C 的焦点为()0,2-,0,2,所以顺次连接12,C C 的四个焦点构成一个正方形,故A 正确;将1C 上所有点的横坐标沿着x 轴方向、纵坐标沿着y 轴方向分别伸长到原来的2倍得到椭圆3C ,所以3C 与1C 为相似曲线,相似比为2,所以3C 的面积为1C 的面积的224=倍,故B 正确;且3C 的方程为2222195x y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+=,即2213620x y +=,故C 错误;设1,1,2,2,则1212,22x x y y R ++⎛⎫⎪⎝⎭,又2211195x y +=,2222195x y +=,所以2222121209955x x y y -+-=,即()()()()12121212095x x x x y y y y +-+-+=,所以1212121259y y y y x x x x -+⋅=--+,即59PQ OR k k ⋅=-,所以109OR k =,所以线段PQ 的中点R 始终在直线109y x =上,故D 正确;故选:ABD12.【答案】x +4y -4=0【解析】设l 1与l 的交点为A (a,8-2a ),求得A 关于P 的对称点坐标,利用对称点在直线2l 上求得a ,即得A 点坐标,从而得直线l 方程.【详解】设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.故答案为:x +4y -4=0.13.【答案】0【详解】解:设()11,A x y ,()22,B x y ,则11221212(,)(,)OA OB x y x y x x y y ==+,由222y x y x=-⎧⎨=⎩,解得2240y y --=或2640x x -+=,所以124x x =,124y y =-,所以1212440OA OB x x y y =+=-+=.故答案为:0.14.【答案】【分析】由双曲线C 的右焦点(c,0)F 到渐近线的距离为FH b =,得到直角FOH △的内切圆的半径为r ,设FOH △的内切圆与FH 切于点M ,结合BF OB =和BF MH FH +=,列出方程求得a b =,利用离心率的定义,即可求解.【详解】由双曲线2222:1x y C a b-=的渐近线方程为b y x a =±,即0bx ay ±=,又由双曲线C 的右焦点(c,0)F 到渐近线的距离为FH b =,所以OH a ==,则直角FOH △的内切圆的半径为2a b cr +-=,如图所示,设FOH △的内切圆与FH 切于点M ,则2a b cMH r +-==,因为BF OB = ,可得12FM BF c ==,所以122a b cBF MH c FH b +-+=+==,可得a b =,所以双曲线C 的离心率为c e a ==故答案为:.15.【答案】(1)()2210x y y +=≠(2)3450x y -+=或1x =【详解】(1)法一:设s ,因为PA PB ⊥,所以由0PA PB ⋅= ,得()()221,1,10x y x y x y +⋅-=-+=,所以动点P 轨迹方程为()2210x y y +=≠.法二:由题2,AB PA PB =⊥,所以P 点的轨迹是以AB 中点O 为圆心,半径为1的圆去掉A 、B 得到的,所以P 点的轨迹方程为()2210x y y +=≠(2)因为直线l 与点P 的轨迹(并上点A 和点B )有且只有一个交点(如图),①若斜率不存在,此时直线l 方程为:1x =,与圆221x y +=切于点B ,②当直线l 与圆相切斜率存在时,设():12l y k x =-+,即20kx y k -+-=,根据圆心到切线距离等于半径可得1=,得34k =,所以此时直线l 方程为3450x y -+=.综上,直线l 方程为1x =或3450x y -+=.16.【答案】(1)证明见解析(2)【分析】(1)构建空间直角坐标系,令AE BF m ==且0m a ≤≤,应用向量法求证C E A F ''⊥垂直即可;(2)由三棱锥体积最大,只需△BEF 面积最大求出参数m ,再标出相关点的坐标,求平面B EF '与平面BEF 的法向量,进而求它们夹角的余弦值,即可得正切值.【详解】(1)如下图,构建空间直角坐标系O xyz -,令AE BF m ==且0m a ≤≤,所以(0,,)C a a ',(,0,)A a a ',(,,0)E a m ,(,,0)F a m a -,则(,,)C E a m a a '=-- ,(,,)A F m a a '=-- ,故2()0C E A F am a m a a ''⋅=-+-+=,所以C E A F ''⊥,即A F C E ''⊥.(2)由(1)可得三棱锥B BEF '-体积取最大,即BEF △面积()22112228BEF a a S m a m m ⎛⎫=-=--+ ⎪⎝⎭ 最大,所以当2a m =时()2max 8BEF a S = ,故E 、F 为AB 、BC 上的中点,所以,,02a E a ⎛⎫ ⎪⎝⎭,,,02a F a ⎛⎫ ⎪⎝⎭,(,,)B a a a ',故0,,2a EB a ⎛⎫'= ⎪⎝⎭ ,,0,2a FB a ⎛⎫'= ⎪⎝⎭,若(,,)m x y z = 为平面B EF '的法向量,则022am EB y az a m FB x az ⎧⋅=+=⎪⎪⎨⎪⋅=''+=⎪⎩ ,令1z =-,故(2,2,1)m =- ,又面BEF 的法向量为(0,0,1)n =,所以11cos ,313m n m n m n ⋅-===⨯ ,设平面B EF '与平面BEF 的夹角为θ,由图可知θ为锐角,则1cos 3θ=,所以22sin 3θ==,所以sin tan cos θθθ==所以平面B EF '与平面BEF的夹角正切值为17.【答案】(1)⎡⎣(2)存在,9y x =-+或9y x =--【详解】(1)由题可知()3,0F ,且直线l 的斜率不为0,设1,1,2,2.设直线l 的方程为50kx y k --=,因为ππ,63θ⎡⎤∈⎢⎥⎣⎦,则3k ∈⎣,因此点O 到直线l的距离为d =联立212,15,y x x y k ⎧=⎪⎨=+⎪⎩则212600y y k --=,显然Δ0>,所以121212,60y y y y k +==-,则AB =,所以12OAB S d AB == 当213k =时,OAB S取得最大值为,当23k =时,OABS 取得最小值为,所以OABS的取值范围为⎡⎣.(2)设直线方程为y x b =+,即x y b =-,联立212,,y x x y b ⎧=⎨=-⎩得212120y y b -+=,故144480b ∆=->即3b <,又121212,12y y y y b +==,易知()()11223,,3,FA x y FB x y =-=-,因为FA FB ⊥,则0FA FB ⋅=,因为1122,x y b x y b =-=-,所以()()2121223(3)0y y b y y b -++++=,即218270b b +-=,解得9b =-+9b =--,故存在斜率为1的直线l,使得FA FB⊥,此时直线l的方程为9y x=-+9y x=--18.【答案】(1)证明见解析(2)14【详解】(1)设AC BD F⋂=,连接EF,ABD为底面圆O的内接正三角形,2πsin3AC∴==,F为BD中点,2221,,AE CE AE CE AC AE EC==∴+=∴⊥,又3312,2,12223AF CF AO AF==∴=-===.AF AEAE AC=,且,,,EAF CAE AEF ACE AFE AEC EF AC∠∠∠∠=∴∴=∴⊥∽.PO⊥平面,ABD AC⊂平面,ABD PO AC∴⊥,//EF PO∴,PO⊄平面,BDE EF⊂平面BDE,//PO∴平面BDE.(2)1,2OF CF F==∴为OC中点,又//PO EF,E∴为PC中点,2PO EF=,2EF==,PO∴=,则2PC=,以F为坐标原点,,,FB FC FE方向为,,x yz轴正方向,可建立如图所示空间直角坐标系,则3110,,0,,0,0,0,0,,,0,0,0,,0,0,,222222A B E D O P⎛⎫⎛⎛⎫⎛⎫⎛⎫⎛----⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝⎭⎝⎭⎝⎭,(3313,0,0,,,0,0,,0,,02222AB AE OP DO DA⎫⎛⎛⎫⎛⎫∴=====⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,设()()101,2OM OP DM DO OMλλ⎫==≤≤∴=+=-⎪⎪⎝⎭.设平面ABE的法向量 =s s,则30,230,22AB n x y AE n y z ⎧⋅=+=⎪⎪⎨⎪⋅=+=⎪⎩令1y =-,解得x z n =∴=-,设直线DM 与平面ABE 所成夹角为θ,sin DM n DM n θ⋅∴===⋅ ,令32t λ=+,则[]22,5,3t t λ-∈∴=,2222222(2)1314717431(32)33t t t t t t t λλ-++-+⎛⎫∴===-+ ⎪+⎝⎭,111,,52t ⎡⎤∈∴⎢⎥⎣⎦ 当127t =,即12λ=时,22min31311449(32)74λλ+⎡⎤+==⎢+⎣⎦,max (sin )1θ∴=,此时1,0,1,2DM MA DA DM ⎛=-∴=-=- ⎝⎭⎝⎭ ,∴点M 到平面ABE的距离12MA n d n ⋅=.19.【答案】(1)2212x y +=;(2)220x y -+-或220x y ++=;.【分析】(1)根据POQ 的边PQ上中线为PQ =,再联立2222,2c e a b c a ===+即可求解;(2)设直线AB 的方程为(2)(0)y k x k =+≠,1122()A x y B x y ,,(,),联立直线AB 与椭圆方程得1212,x x x x +,再由11AF BF ⊥,即110AF BF ⋅=,最后代入即可求解;(3)设直线1l 的方程为(1)y k x =+,则直线2l 的方程为1(1)2y x k=-+,分别与椭圆方程联立,通过韦达定理求出中点,M N 的坐标,观察坐标知,MN 的中点坐标1(,0)2T 在x 轴上,则1||||2OMN M N S OT y y =- 整理后利用基本不等式即可得到面积的最值.【详解】(1)由题意,因为(,0),(0,)P a Q b ,POQ为直角三角形,所以PQ ==又22222c e a b c a ===+,所以1,1a b c ===,所以椭圆的标准方程为2212x y +=;(2)由(1)知,1(1,0)F -,显然直线AB 的斜率存在,设直线AB 的方程为(2)(0)y k x k =+≠,1122()A x y B x y ,,(,),联立2212(2)x y y k x ⎧+=⎪⎨⎪=+⎩消去y 得,2222(12)8820k x k x k +++-=,所以22222(8)4(12)(82)8(12)0k k k k ∆=-+-=->,即2102k <<.且22121222882,1212k k x x x x k k -+=-=++,因为11AF BF ⊥,所以110AF BF ⋅=,所以1122(1,)(1,)0x y x y ------=,即12121210x x x x y y ++++=,所以1212121(2)(2)0x x x x k x k x +++++⋅+=,整理得2221212(12)()(1)140k x x k x x k ++++++=,即22222228(1)(82)(12)()1401212k k k k k k k +-+-+++=++,化简得2410k -=,即12k =±满足条件,所以直线AB 的方程为1(2)2y x =+或1(2)2y x =-+,即直线AB 的方程为220x y -+=或220x y ++=;(3)由题意,2(1,0)F ,设直线1l 的方程为(1)y k x =+,3344(,),(,)C x y D x y ,则直线2l 的方程为1(1)2y x k=-+,5566(,),(,)E x y F x y ,联立2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩消去y 得2222)202142(-=+-+x k x k k ,所以22343422422,1212k k x x x x k k -+==++,所以23422,212M x x k x k+==+2(1)12M M k y k x k =-=-+,所以2222(,)1212k kM k k -++,同理联立22121(1)2x y y x k ⎧+=⎪⎪⎨⎪=--⎪⎩消去y 得222(12)2140k x x k +-+-=,所以2565622214,1212k x x x x k k -+==++所以5621,212N x x x k +==+21(1)212N Nky x k k =--=+所以221(,1212k N k k ++,即MN 的中点1(,0)2T .所以221121||112||||12412212282||||OMN M N k k S OT y y k k k k =-==⨯=⨯≤+++ ,当且仅当12||||k k =,即22k =±时取等号,所以OMN的面积最大值为【思路导引】本题考查待定系数法求椭圆的标准方程,直线与椭圆综合应用问题,利用基本不等式求最值,第三问的解题关键是分类联立直线12,l l 与椭圆方程,求出,M N 的坐标,观察坐标知,MN 的中点坐标1(,0)2T 在x 轴上,则1||||2OMN M N S OT y y =- 整理后利用基本不等式得到面积的最值.。
河南省信阳2024-2025学年高二上期期中测试数学试题(答案在最后)命题人:一.选择题(共8小题,满分40分,每小题5分)1.已知直线l 经过点(1,0)P ,且方向向量(1,2)v =,则l 的方程为()A.220x y +-=B.220x y --=C.210x y +-= D.210x y --=2.已知()()2,2,11,1,a b k ==-- ,,且2a b ⊥ ,则k 的值为()A.5B.5- C.3D.43.“3m =-”是“直线()1:1210l m x y +++=与直线2:310l x my ++=平行”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件4.以点()1,5C --为圆心,并与x 轴相切的圆的方程是()A.22(1)(5)9x y +++=B.22(1)(5)16x y +++=C.22(1)(5)9x y -+-= D.22(1)(5)25x y +++=5.空间四边形OABC 中,,,OA a OB b OC c ===,点M 在OA 上,2,3OM OA = 点N 为BC 的中点,则MN = ()A.121232a b c -+B.211322a b c-++C.111222a b c +- D.221332a b c +-6.已知抛物线2:8C x y =的焦点为,F P 是抛物线C 上的一点,O 为坐标原点,OP =PF =()A.4B.6C.8D.107.已知椭圆222210x y a b a b+=>>的两个焦点分别为()()12,,,0330F F -,上的顶点为P ,且1260F PF ∠=︒,则此椭圆长轴为()A.B. C.6 D.128.已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点Q 在C 的右支上,2QF 与C的一条渐近线平行,交C 的另一条渐近线于点P ,若1OQ PF ∥,则C 的离心率为()A.B.C.2D.二.多选题(共4小题,满分20分,每小题5分)9.已知向量()2,0,2a =r ,13,1,22b ⎛⎫=-- ⎪⎝⎭ ,()1,2,3c =-,则下列结论正确的是()A.a 与b垂直B.b 与c共线C.a 与c所成角为锐角D.a ,b ,c,可作为空间向量的一组基底10.下列说法正确的是()A.330y +-=的倾斜角为150︒B.若直线0ax by c ++=经过第三象限,则0ab >,0bc <C.点()1,2--在直线()()()212430x y λλλλ++-+-=∈R 上D.存在a 使得直线32x ay +=与直线20ax y +=垂直11.如图,已知正方体1111ABCD A B C D -的棱长为a ,则下列选项中正确的有()A.异面直线1B D 与1AA 的夹角的正弦值为63B.二面角1A BD A --C.四棱锥111A BB D D -的外接球体积为3π2a D.三棱锥1A BC D -与三棱锥111A B D D -体积相等12.在平面直角坐标系xOy 中,已知圆221:(1)2C x y -+=的动弦AB ,圆2228C :(x a )(y -+-=,则下列选项正确的是()A.当圆1C 和圆2C 存在公共点时,则实数a 的取值范围为[3,5]-B.1ABC 的面积最大值为1C.若原点O 始终在动弦AB 上,则OA OB ⋅不是定值D.若动点P 满足四边形OAPB 为矩形,则点P 的轨迹长度为三.填空题(共4小题,满分20分,每小题5分)13.两条平行直线1:3450l x y +-=与2:6850l x y +-=之间的距离是_______.14.已知双曲线()222:109x y C b b-=>的左、右焦点分别是1F 、2F ,离心率为43,P 为双曲线上一点,4OP =(O 为坐标原点),则12PF F 的面积为______.15.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为椭圆C 上的一点,且12PF PF ⊥ ,若12PF F 的面积为9,则b 的值为______.16.已知棱长为1的正四面体ABCD ,M 为BC 中点,N 为AD 中点,则BN DM ⋅=_______四.解答题(共6小题,满分70分)17.已知等腰ABC V 的一个顶点C 在直线l :240x y -+=上,底边AB 的两端点坐标分别为()1,3A -,()2,0B .(1)求边AB 上的高CH 所在直线方程;(2)求点C 到直线AB 的距离.18.已知圆C 的方程为:()()22314x y -++=.(1)若直线:0l x y a -+=与圆C 相交于A 、B 两点,且AB =,求实数a 的值;(2)过点()1,2M 作圆C 的切线,求切线方程.19.已知椭圆M :22221(3x y a a a +=>-倍.(1)求M 的方程;(2)若倾斜角为π4的直线l 与M 交于A ,B 两点,线段AB 的中点坐标为1,2m ⎛⎫⎪⎝⎭,求m .20.如图,已知PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AD AB ===,M ,N 分别为AB ,PC 的中点.(1)求证:MN ⊥平面PCD ;(2)求PD 与平面PMC 所成角的正弦值.21.设抛物线C :22y px =(0p >)的焦点为F ,点()2,P n 是抛物线C 上位于第一象限的一点,且4=PF .(1)求抛物线C 的方程;(2)如图,过点P 作两条直线,分别与抛物线C 交于异于P 的M ,N 两点,若直线PM ,PN 的斜率存在,且斜率之和为0,求证:直线MN 的斜率为定值.22.已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,1//,AB CD A A ⊥平面,ABCD AD AB ⊥,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.河南省信阳2024-2025学年高二上期期中测试数学试题命题人:一.选择题(共8小题,满分40分,每小题5分)1.已知直线l 经过点(1,0)P ,且方向向量(1,2)v =,则l 的方程为()A.220x y +-=B.220x y --=C.210x y +-= D.210x y --=【答案】B 【解析】【分析】由直线的方向向量求出斜率,再由点斜式得到直线方程即可;【详解】因为直线的方向向量(1,2)v =,所以直线的斜率为2,又直线l 经过点(1,0)P ,所以直线方程为()021y x -=-,即220x y --=,故选:B.2.已知()()2,2,11,1,a b k ==-- ,,且2a b ⊥ ,则k 的值为()A.5B.5- C.3D.4【答案】D 【解析】【分析】由题意可得20⋅=a b ,代入坐标计算可得答案.【详解】由题意可得()22,2,2b k =-- ,则24420a b k ⋅=--+= ,解之可得4k =.故选:D .3.“3m =-”是“直线()1:1210l m x y +++=与直线2:310l x my ++=平行”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据直线平行的条件,判断“3m =-”和“直线()1:1210l m x y +++=与直线2:310l x my ++=平行”之间的逻辑关系,即可得答案.【详解】当3m =-时,直线11:02l x y --=与21:03l x y -+=平行;当直线()1:1210l m x y +++=与直线2:310l x my ++=平行时,有()1230m m +-⨯=且1210m ⨯-⋅≠,解得3m =-,故“3m =-”是“直线()1:1210l m x y +++=与直线2:310l x my ++=平行”的充要条件.故选:A.4.以点()1,5C --为圆心,并与x 轴相切的圆的方程是()A.22(1)(5)9x y +++=B.22(1)(5)16x y +++=C.22(1)(5)9x y -+-=D.22(1)(5)25x y +++=【答案】D 【解析】【分析】由题意确定圆的半径,即可求解.【详解】解:由题意,圆心坐标为点()1,5C --,半径为5,则圆的方程为22(1)(5)25x y +++=.故选:D .5.空间四边形OABC 中,,,OA a OB b OC c ===,点M 在OA 上,2,3OM OA = 点N 为BC 的中点,则MN = ()A.121232a b c -+B.211322a b c-++C.111222a b c +- D.221332a b c +- 【答案】B 【解析】【分析】由向量的三角形法则和平行四边形法则,利用基底表示向量.【详解】点N 为BC 的中点,则有()12ON OB OC =+,所以()1221123322MN ON OM OB OC OA a b c =-=+-=-++ .故选:B.6.已知抛物线2:8C x y =的焦点为,F P 是抛物线C 上的一点,O 为坐标原点,43OP =PF =()A.4B.6C.8D.10【答案】B 【解析】【分析】求出抛物线焦点和准线方程,设()(),0P m n m ≥,结合3OP =4n =,由焦半径公式得到答案.【详解】抛物线2:8C x y =的焦点为()0,2F ,准线方程为2y =-,设()(),0P m n m ≥,则2228,3,m n m n ⎧=⎪+=,解得4n =或12n =-(舍去),则26PF n =+=.故选:B .7.已知椭圆222210x y a b a b+=>>的两个焦点分别为()()12,,,0330F F -,上的顶点为P ,且1260F PF ∠=︒,则此椭圆长轴为()A.3B.23C.6D.12【答案】D 【解析】【分析】根据焦点坐标得到c ,再由1260F PF ∠=得到a ,c 的关系求解.【详解】因为椭圆222210x y a b a b+=>>的两个焦点分别为()()123,0,3,0F F -,则3c =,又上顶点为P ,且1260F PF ∠=,所以1sin 302c a =︒=,所以6a =,故长轴长为12.故选:D8.已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点Q 在C 的右支上,2QF 与C的一条渐近线平行,交C 的另一条渐近线于点P ,若1OQ PF ∥,则C 的离心率为()A.B.C.2D.【答案】A 【解析】【分析】设出直线2PF 的方程,与渐近线的方程联立,求出P 的坐标,由O 为12F F 的中点,1OQ PF ∥,得Q 为2PF 的中点,求出Q 的坐标,代入双曲线的方程求解即可.【详解】令()2,0F c ,由对称性,不妨设直线2PF 的方程为()by x c a=-,由()b y x c a b y x a ⎧=-⎪⎪⎨⎪=-⎪⎩,解得2x c =,2bc y a =-,即点P 的坐标为,22c bc a ⎛⎫- ⎪⎝⎭,由O 为12F F 的中点,1OQ PF ∥,得Q 为2PF 的中点,则点Q 的坐标为3,44c bc a ⎛⎫-⎪⎝⎭,代入双曲线的方程,有222222911616c b c a a b -=,即222c a =,222c a=,解得e =,所以双曲线C.故选:A二.多选题(共4小题,满分20分,每小题5分)9.已知向量()2,0,2a =r ,13,1,22b ⎛⎫=-- ⎪⎝⎭,()1,2,3c =- ,则下列结论正确的是()A.a 与b垂直B.b 与c共线C.a 与c所成角为锐角D.a ,b ,c,可作为空间向量的一组基底【答案】BC 【解析】【分析】对A :计算出a b ⋅ 即可得;对B :由向量共线定理计算即可得;对C :计算a c ⋅ 并判断a 与c是否共线即可得;对D :借助空间向量基本定理即可得.【详解】对A :132********a b ⎛⎫⎛⎫⋅=⨯-+⨯+⨯-=--=- ⎪ ⎝⎭⎝⎭r r ,故a 与b 不垂直,故A 错误;对B :由13,1,22b ⎛⎫=-- ⎪⎝⎭ 、()1,2,3c =-,有12b c = ,故b 与c 共线,故B 正确;对C :()21022380a c ⋅=⨯+⨯-+⨯=> ,且a 与c不共线,故a 与c所成角为锐角,故C 正确;对D :由b 与c 共线,故a ,b ,c不可作为空间向量的一组基底,故D 错误.故选:BC .10.下列说法正确的是()A.330y +-=的倾斜角为150︒B.若直线0ax by c ++=经过第三象限,则0ab >,0bc <C.点()1,2--在直线()()()212430x y λλλλ++-+-=∈R 上D.存在a 使得直线32x ay +=与直线20ax y +=垂直【答案】ACD 【解析】【分析】求出直线的斜率,从而得到倾斜角,即可判断A ;利用特殊值判断B ;将点的坐标代入方程即可判断C ;根据两直线垂直求出参数的值,即可判断D.【详解】对于A:直线330y +-=的斜率33k =-,所以该直线的倾斜角为150︒,故A 正确;对于B :当0a =,0bc >时,直线cy b=-经过第三象限,故B 错误;对于C :将()1,2--代入方程,则()2212430y λλ----+-=,即点()1,2--在直线上,故C 正确;对于D :若两直线垂直,则320a a +=,解得0a =,故D 正确.故选:ACD.11.如图,已知正方体1111ABCD A B C D -的棱长为a ,则下列选项中正确的有()A.异面直线1B D 与1AA 的夹角的正弦值为63B.二面角1A BD A --C.四棱锥111A BB D D -的外接球体积为3π2a D.三棱锥1A BC D -与三棱锥111A B D D -体积相等【答案】ACD【解析】【分析】对于选项A :根据异面直线的夹角分析求解;对于B :分析可知1AOA ∠为二面角1A BD A --的平面角,运算求解即可;对于C :四棱锥111A BB D D -的外接球即为正方体的外接球,求正方体的外接球即可;对于D :根据锥体的体积公式分析判断即可.【详解】对于A :因为11//AA BB ,在1Rt B BD 中,1BB D ∠就是异面直线所成的角,且1,BD B D ==,则1sin3BB D ∠==,故A 正确;对于B :连接AC 交BD 于点O ,连接1A O ,因为1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1AA ⊥BD ,又因为BD ⊥AO ,1AA AO A ⋂=,1,AA AO ⊂平面1AOA ,可得BD ⊥平面1AOA ,且1AO ⊂平面1AOA ,则BD ⊥1A O ,可知1AOA ∠为二面角1A BD A --的平面角,在1Rt A AO △中,1tan 222A OA a∠==B 错误;对于C ,显然四棱锥111A BB D D -的外接球即为正方体的外接球,因为正方体外接球的半径32R a =,所以正方体的外接球体积为3343ππ32V R a ==,故C 正确;对于D ,因为111111A B D D D A B D V V --=,三棱锥1A ABD -的高1AA 与三棱锥111D A B D -的高1DD 相等,底面积111ABD A B D S S =△△,故三棱锥1A ABD -与三棱锥111A B D D -体积相等,故D 正确.故选:ACD .12.在平面直角坐标系xOy 中,已知圆221:(1)2C x y -+=的动弦AB ,圆22228C :(x a )(y -+-=,则下列选项正确的是()A.当圆1C 和圆2C 存在公共点时,则实数a 的取值范围为[3,5]-B.1ABC 的面积最大值为1C.若原点O 始终在动弦AB 上,则OA OB ⋅不是定值D.若动点P 满足四边形OAPB 为矩形,则点P的轨迹长度为【答案】ABD【解析】【分析】根据两圆位置关系列不等式求解实数a 的范围判断A ,根据三角形面积结合正弦函数可求出面积最大值判断B ,分类讨论,设直线方程,利用韦达定理结合数量积数量积坐标运算求解判断C ,先根据矩形性质结合垂径定理得到点P 的轨迹,然后利用圆的周长公式求解判断D .【详解】对于A ,圆221:(1)2C x y -+=的圆心为1,0圆2228C :(x a )(y -+-=的圆心为(a,半径为当圆1C 和圆2C存在公共点时,12C C ≤≤2(1)a ≤-+≤,解得35a -≤≤,所以实数a 的取值范围为[3,5]-,正确;对于B ,1ABC的面积为1111sin sin 12ABC S AC B AC B =∠=∠≤ ,当1π2AC B ∠=时,1ABC 的面积有最大值为1,正确;对于C ,当弦AB 垂直x 轴时,()()0,1,0,1A B -,所以()0111OA OB ⋅=+⨯-=- ,当弦AB 不垂直x 轴时,设弦AB 所在直线为y kx =,与圆221:(1)2C x y -+=联立得,()221210k x x +--=,设1122()A x y B x y ,,(,),则12211x x k -=+,()()2221212121212211111OA OB x x y y x x k x x k x x k k -⋅=+=+=+=+⨯=-+ ,综上1OA OB ⋅=- ,恒为定值,错误;对于D ,设0,OP 中点00,22x y ⎛⎫ ⎪⎝⎭,该点也是AB 中点,且ABOP ==,又AB =,所以=,化简得()220013x y -+=,所以点P 的轨迹为以1,0的圆,其周长为长度为,正确.故选:ABD三.填空题(共4小题,满分20分,每小题5分)13.两条平行直线1:3450l x y +-=与2:6850l x y +-=之间的距离是_______.【答案】12##0.5【解析】【分析】将直线1l 的方程可化为68100x y +-=,利用平行线间的距离公式可求得结果.【详解】直线1l 的方程可化为68100x y +-=,且直线2l 的方程为6850x y +-=,所以,平行直线1l 与2l之间的距离为12d ==.故答案为:12.14.已知双曲线()222:109x y C b b-=>的左、右焦点分别是1F 、2F ,离心率为43,P 为双曲线上一点,4OP =(O 为坐标原点),则12PF F 的面积为______.【答案】7【解析】【分析】由双曲线的离心率可求得c 的值,可求得12F F 的值,推导出12F PF ∠为直角,利用勾股定理结合双曲线的定义可求出12PF PF ⋅的值,再利用三角形的面积公式可求得12PF F 的面积.【详解】如图所示:因为双曲线C 的离心率433c c e a ===,所以4c =,128F F =,设点P 在双曲线的右支上,由1212142OP F F OF OF ====,可得22OPF OF P ∠=∠,11OPF OF P ∠=∠,所以,()121212121π22F PF OPF OPF OPF OPF OF P OF P ∠=∠+∠=∠+∠+∠+∠=,由双曲线定义可得126PF PF -=,由勾股定理可得222121264PF PF F F +==,所以()222121212236PF PF PF PF PF PF -=+-⋅=,可得1214PF PF ⋅=,因此12PF F 的面积为12172S PF PF =⋅=.故答案为:7.15.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为椭圆C 上的一点,且12PF PF ⊥ ,若12PF F 的面积为9,则b 的值为______.【答案】3【解析】【分析】由椭圆的性质结合三角形面积公式计算即可.【详解】122PF PF a += ,222121224PF PF PF PF a ∴++⋅=,①又12,PF PF ⊥222212124PF PF F F c ∴+==②∴①-②得:()22212244PF PF a c b ⋅=-=,2121,2PF PF b ∴⋅=12PF F △的面积为9,1221219,02PF F S PF PF b b ∴=⋅==> ,3.b ∴=故答案为:3.16.已知棱长为1的正四面体ABCD ,M 为BC 中点,N 为AD 中点,则BN DM ⋅=_______【答案】12-##0.5-【解析】【分析】由题意可得:111,222BN BA BD DM BC BD =+=- ,根据空间向量的数量积运算求解.【详解】由题意可知:1BA BC BD === ,且12BA BC BA BD BC BD ⋅=⋅=⋅= ,因为M 为BC 中点,N 为AD中点,则111,222BN BA BD DM BM BD BC BD =+=-=- ,所以111222BN DM BA BD BC BD ⎛⎫⎛⎫⋅=+⋅- ⎪ ⎪⎝⎭⎝⎭211114422BA BC BD BC BA BD BD =⋅+⋅-⋅-uu r uu u r uu u r uu u r uu r uu u r uu u r 1111111142422222=⨯+⨯-⨯-=-.故答案为:12-四.解答题(共6小题,满分70分)17.已知等腰ABC V 的一个顶点C 在直线l :240x y -+=上,底边AB 的两端点坐标分别为()1,3A -,()2,0B .(1)求边AB 上的高CH 所在直线方程;(2)求点C 到直线AB 的距离.【答案】(1)10x y -+=(2)722【解析】【分析】(1)求出AB 的中点H 的坐标,利用垂直关系得到高CH 所在直线的斜率,得到高CH 所在直线方程;(2)联立两直线得到点C 的坐标,利用点到直线距离公式求出答案.【小问1详解】由题意可知,H 为AB 的中点,()1,3A - ,()2,0B ,13,22H ⎛⎫∴ ⎪⎝⎭.又30112AB k -==---,11CH ABk k ∴=-=.CH ∴所在直线方程为3122y x -=-,即10x y -+=.【小问2详解】由24010x y x y -+=⎧⎨-+=⎩,解得32x y =-⎧⎨=-⎩,所以()3,2C --.又直线AB 方程为()2y x =--,即20x y +-=.∴点C 到直线AB 的距离722d ==.18.已知圆C 的方程为:()()22314x y -++=.(1)若直线:0l x y a -+=与圆C 相交于A 、B 两点,且AB =,求实数a 的值;(2)过点()1,2M 作圆C 的切线,求切线方程.【答案】(1)2a =-或6-;(2)1x =或512290x y +-=.【解析】【分析】(1)根据已知条件,结合点到直线的距离公式,以及垂径定理,即可求解;(2)结合切线的定义和点到直线的距离公式,即可分类讨论思想,即可求解.【小问1详解】圆C 的方程为:22(3)(1)4x y -++=,则圆C 的圆心为(3,1)-,半径为2,直线:0l x y a -+=与圆C 相交于A 、B 两点,且||AB ==,解得2a=-或6-;【小问2详解】当切线的斜率不存在时,直线1x=,与圆C相切,切线的斜率存在时,可设切线为2(1)y k x-=-,即20kx y k--+=,2=,解得512k=-,故切线方程为512290x y+-=,综上所述,切线方程为1x=或512290x y+-=.19.已知椭圆M:22221(3x y aa a+=>-倍.(1)求M的方程;(2)若倾斜角为π4的直线l与M交于A,B两点,线段AB的中点坐标为1,2m⎛⎫⎪⎝⎭,求m.【答案】(1)22163x y+=(2)1m=-【解析】【分析】(1)根据条件确定a的值,即得椭圆的标准方程;(2)涉及中点弦问题,可以考虑“点差法”解决问题.【小问1详解】由题意可得2a=26a=,所以M的方程为22163x y+=.【小问2详解】由题意得πtan14ABk==.设()11,A x y,()22,B x y,依题意可得12x x≠,且12122,1212x x my y+=⎧⎪⎨+=⨯=⎪⎩,由22112222163163x yx y⎧+=⎪⎪⎨⎪+=⎪⎩得()()()()12121212063x x x x y y y y-+-++=,则12122121106363y y m m x x -+⨯=+⨯=-,解得1m =-.经检验,点11,2⎛⎫- ⎪⎝⎭在椭圆M 内.所以1m =-为所求.20.如图,已知PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AD AB ===,M ,N 分别为AB ,PC 的中点.(1)求证:MN ⊥平面PCD ;(2)求PD 与平面PMC 所成角的正弦值.【答案】(1)证明见解析(2)3【解析】【分析】(1)建立空间直角坐标系,空间向量法证明直线与法向量平行,即可证明结论成立;(2)建立空间直角坐标系,求出直线的方法向量,以及平面的一个法向量,计算向量夹角余弦值,即可得出结果;【小问1详解】以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z轴,建立空间直角坐标系,则()()()()()0,0,2,2,2,0,0,2,0,1,0,0,1,1,1P C D M N ,()()0,2,2,2,0,0PD CD =-=- ,()0,1,1MN = ,设平面PCD 的一个法向量为(),,n x y z =,则22020n PD y z n CD x ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,取1y =,得()0,1,1n = ,因为//MN n ,所以MN ⊥平面PCD ;【小问2详解】()()()0,0,2,2,2,0,1,0,0,P C M ()1,0,2PM =- ,()1,2,0MC = ,设平面PMC 的一个法向量为(),,m a b c =,则2020m PM a c m MC a b ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,取2a =,得()2,1,1m =- ,()0,2,2,PD =- 设直线PD 与平面PMC 所成角为θ,则直线PD 与平面PMC所成角的正弦值为:3sin 3PD m PD m θ⋅===⋅ .21.设抛物线C :22y px =(0p >)的焦点为F ,点()2,P n 是抛物线C 上位于第一象限的一点,且4=PF.(1)求抛物线C 的方程;(2)如图,过点P 作两条直线,分别与抛物线C 交于异于P 的M ,N 两点,若直线PM ,PN 的斜率存在,且斜率之和为0,求证:直线MN 的斜率为定值.【答案】(1)28y x=(2)证明见解析【解析】【分析】(1)代入抛物线的焦半径公式求p ,即可求抛物线的标准方程;(2)首先根据(1)的结果求点P 的坐标,设直线PM 和PN 的直线方程与抛物线方程联立,求得点,M N 的坐标,并表示直线MN 的坐标,即可证明.【小问1详解】由抛物线的定义知422p PF ==+,解得4p =,所以抛物线C 的方程为28y x =.【小问2详解】因为点P 的横坐标为2,即282y =⨯,解得4y =±,故P 点的坐标为()2,4,由题意可知,直线PM ,PN 不与x 轴平行,设()11,M x y ,()22,N x y ,设直线PM :()42m y x -=-,即42x my m =-+,代入抛物线的方程得()2842y my m =-+,即2832160y my m -+-=,则148y m +=,故184y m =-,所以()211428442882x my m m m m m m =-+=--+=-+,即()2882,84M m m m -+-,设直线PN :()42m y x --=-,即42x my m =-++,同理可得284y m =--,则()222428442882x my m m m m m m =-++=---++=++,即()2882,84N m m m ++--直线MN 的斜率121216116MN y y m k x x m-===---,所以直线MN 的斜率为定值.【点睛】关键点点睛:本题的关键是利用直线PM 与PN 的斜率互为相反数,与抛物线方程联立,利用两根之和公式求点,M N 的坐标.22.已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,1//,AB CD A A ⊥平面,ABCD AD AB ⊥,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.【答案】(1)证明见解析(2)22211(3)11【解析】【分析】(1)取1CB 中点P ,连接NP ,MP ,借助中位线的性质可得四边形1D MPN 是平行四边形,再利用平行四边形的性质结合线面平行的判定定理计算即可得;(2)建立适当空间直角坐标系,求出平面1CB M 与平面11BB CC 的法向量后结合空间向量夹角公式计算即可得;(3)借助空间中点到平面的距离公式计算即可得.【小问1详解】取1CB 中点P ,连接NP ,MP ,由N 是11B C 的中点,故1NP CC ∥,且112NP CC =,由M 是1DD 的中点,故1111122D M DD CC ==,且11D M CC ∥,则有1D M NP ∥、1D M NP =,故四边形1D MPN 是平行四边形,故1D N MP ∥,又MP ⊂平面1CB M ,1D N ⊄平面1CB M ,故1//D N 平面1CB M ;【小问2详解】以A为原点建立如图所示空间直角坐标系,有0,0,0、()2,0,0B 、()12,0,2B 、()0,1,1M 、1,1,0、()11,1,2C ,则有()11,1,2CB =- 、()1,0,1CM =- 、()10,0,2BB = ,设平面1CB M 与平面11BB CC 的法向量分别为 =1,1,1、 =2,2,2,则有111111200m CB x y z m CM x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,1222122020n CB x y z n BB z ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,分别取121x x ==,则有13y =、11z =、21y =、20z =,即()1,3,1m = ,()1,1,0n =,则cos ,11m n m n m n ⋅===⋅ ,故平面1CB M 与平面11BB CC 的夹角余弦值为11;【小问3详解】由()10,0,2BB = ,平面1CB M 的法向量为()1,3,1m = ,则有111BB m m ⋅== ,即点B 到平面1CB M 的距离为11.。
2024-2025学年湖南省长沙市长郡中学高二上学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.直线x+y−12=0的倾斜角是( )A. π4B. π2C. 3π4D. π32.已知点B是点A(3,4,5)在坐标平面Oxy内的射影,则|OB|等于A. 5B. 34C. 41D. 523.长轴长是短轴长的3倍,且经过点P(3,0)的椭圆的标准方程为A. x29+y2=1 B. x281+y29=1C. x29+y2=1或y281+x29=1 D. y29+x2=1或x281+y29=14.已知方程x22+m −y2m+1=1表示双曲线,则m的取值范围为A. (−2,−1)B. (−∞,−2)∪(−1,+∞)C. (1,2)D. (−∞,1)∪(2,+∞)5.在正四棱锥P−ABCD中,PA=4,AB=2,E是棱PD的中点,则异面直线AE与PC所成角的余弦值是( )A. 612B. 68C. 38D. 56246.已知椭圆C:x29+y25=1的右焦点为F,P是椭圆上任意一点,点A(0,23),则▵APF的周长的最大值为A. 9+21B. 14C. 7+23+5D. 15+37.已知A(−3,0),B(0,3),从点P(0,2)射出的光线经x轴反射到直线AB上,又经过直线AB反射到P点,则光线所经过的路程为A. 210B. 6C. 26D. 268.已知A,B两点的坐标分别是(−1,0),(1,0),直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是2,则点M的轨迹方程为A. y=−x2+1(x≠±1)B. y=x2+1(x≠±1)C. x=−y2+1(y≠±1)D. x=y2+1(y≠±1)二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.已知A(−3,−4),B(6,3)两点到直线l:ax+y+1=0的距离相等,则a的值可取A. −13B. 13C. −79D. 7910.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1的直线与C的左支相交于P,Q两点,若PQ⊥PF2,且4|PQ|=3|PF2|,则( )A. |PQ|=4aB. 3PF1=PQC. 双曲线C的渐近线方程为y=±223x D. 直线PQ的斜率为411.已知椭圆C1:x29+y25=1,将C1绕原点O沿逆时针方向旋转π2得到椭圆C2,将C1上所有点的横坐标、纵坐标分别伸长到原来的2倍得到椭圆C3,动点P,Q在C1上,且直线PQ的斜率为−12,则A. 顺次连接C1,C2的四个焦点构成一个正方形B. C3的面积为C1的4倍C. C3的方程为4x29+4y25=1D. 线段PQ的中点R始终在直线y=109x上三、填空题:本题共3小题,每小题5分,共15分。
2024-2025学年江西省南昌县莲塘第一中学高二上学期11月期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知z =1−i ,则z (1−z )=( )A. −1−iB. −1+iC. 1−iD. 1+i2.已知椭圆方程为x 236+y 264=1,则该椭圆的长轴长为( )A. 6B. 12C. 8D. 163.已知椭圆C:x 23+y 22=1的左、右焦点分别为F 1,F 2,过F 2的直线l 交C 于A 、B 两点,则△AF 1B 的周长为( )A. 2B. 4C. 23 D. 434.已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的离心率为2,则渐近线方程是( )A. y =±12xB. y =±2xC. y =±3xD. y =±33x 5.已知抛物线的焦点在直线x−2y−4=0上,则此抛物线的标准方程是( )A. y 2=16xB. x 2=−8yC. y 2=16x 或x 2=−8yD. y 2=16x 或x 2=8y6.“a =3”是“直线l 1:ax−2y +3=0与直线l 2:(a−1)x +3y−5=0垂直”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7.已知动圆C 与圆C 1:(x−3)2+y 2=4外切,与圆C 2:(x +3)2+y 2=4内切,则动圆圆心C 的轨迹方程为( )A. 圆B. 椭圆C. 双曲线D. 双曲线一支8.一个工业凹槽的截面是一条抛物线的一部分,它的方程是x 2=4y,y ∈[0,10],在凹槽内放入一个清洁钢球(规则的球体),要求清洁钢球能擦净凹槽的最底部,则清洁钢球的最大半径为( )A. 12B. 1C. 2D. 52二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
2024-2025学年河南省南阳市六校高二上学期10月期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知直线l 的斜率为− 3,则直线l 的一个方向向量的坐标为( )A. (−1,− 3)B. ( 3,−1)C. (− 3,−1)D. ( 3,−3)2.抛物线C :y = 2x 2的焦点坐标为( )A. ( 22,0)B. ( 24,0)C. (0, 28)D. (0, 24)3.已知▵ABC 三个顶点的坐标分别为A (3,−1),B (−5,2),C (7,4),则BC 边上的中线所在直线的方程为( )A. x +2y−1=0B. 2x +y−5=0C. 2x−y−7=0D. x−2y−5=04.已知双曲线C 以两个坐标轴为对称轴,且经过点(2, 3)和(− 5,−2),则C 的渐近线方程为( )A. y =± 22xB. y =±xC. y =± 2xD. y =±2x5.“a =−3”是“直线ax +2ay−3=0与(a−1)x−(a +1)y +13=0垂直”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.已知直线l 经过点P (2,1),且与圆C :(x +1)2+(y−2)2=9相交于A ,B 两点,若|AB |=4 2,则直线l 的方程为( )A. y =1或3x +4y−10=0B. y =1或4x +3y−11=0C. 4x +3y−11=0或3x +4y−10=0D. 4x−3y−5=0或3x−4y−2=07.如图是某抛物线形拱桥的示意图,当水面处于l 位置时,拱顶离水面的高度为2.5m ,水面宽度为8m ,当水面上涨0.9m 后,水面的宽度为( )A. 6.4mB. 6mC. 3.2mD. 3m 8.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线上一点,若P 与F 1恰好关于C 的一条渐近线y =2x 对称,且|PF 2|=2,则▵PF 1F 2的面积为( )A. 2B. 22C. 23D. 4二、多选题:本题共3小题,共18分。
本试卷分选择题和非选择题两部分,共4页,总分值为150分。
考试用时120分钟。
本卷须知:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B 铅笔将自己的学号填涂在答题卡上。
2、选择题每题选出答案后,有2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。
3、非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4、考生必须保持答题卡的整洁和平整。
第一部分选择题(共40分) 【一】选择题:本大题共8小题,每题5分,在每题给同的四个选项中,只有一项为哪一项符合题目要求的。
1.集合A={x |x 2-x -2<0},B={x |-1<x <1},那么A. A ⊂≠BB. B ⊂≠AC.A=BD.A ∩B=∅ 2.在一组样本数据〔x 1,y 1〕,〔x 2,y 2〕,…,〔x n ,y n 〕〔n ≥2,x 1,x 2,…,x n 不全相等〕的散点图中,假设所有样本点〔x i ,y i 〕(i =1,2,…,n )都在直线y =12x +1上,那么这组样本数据的样本相关系数为A.-1B. 0C.12D.13.正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,假设点〔x ,y 〕在△ABC 内部,那么z=-x+y 的取值范围是 A. (1-3,2) B. (0,2) C. (3-1,2) D. (0,1+3)4.设F 1、F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角形,那么E 的离心率为〔 〕 A.12 B. 23 C.34 D.45 5.〝〞的含义是〔 〕A. a ,b 不全为0B. a ,b 全不为0C. a ,b 至少一个为0D. a 不为0且b 为0,或b 不为0且a 为06.如图,网格纸上小正方形的边长为1,粗线画出的 是某几何体的三视图,那么此几何体的体积为〔 〕 A.6 B.9 C.12 D.187.ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,那么φ=( ) A.π4 B.π3 C.π2 D.3π48.数列{}n a 满足11a =,21114n n a a ++=,记数列{}2n a 前n 项的和为S n ,假设2130n n tS S +-≤对任意的*n N ∈ 恒成立,那么正整数t 的最小值为 〔 〕 A 、10B 、9C 、8D 、7第二部分 非选择题(共110分)【二】填空题:本大题共6个小题,每题5分,共计30分。
9. 不等式2x 2-x-1>0的解集是 10. 把89化为二进制的结果是 11. 如右图所示的程序框图输出的结果是_______12. 在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,那么AB AD ⋅=13. 某老师从星期一到星期五收到信件数分别是10,6,8,5,6,那么该组数据的方差___2=s14. 曲线C 是平面内与两个定点F 1〔-1,0〕和F 2〔1,0〕的距离的积等于常数 a 2 (a >1)的点的轨迹.给出以下三个结论:① 曲线C 过坐标原点; ② 曲线C 关于坐标原点对称;③假设点P 在曲线C 上,那么△F 1PF 2的面积不大于21a 2。
其中,所有正确结论的序号是【三】解答题:本大题共6个小题,总分值80分。
解答应写出文字说明、证明过程或推演步骤。
15. 〔本小题总分值12分〕 函数()tan 34f x x π⎛⎫=+ ⎪⎝⎭.〔1〕求9f π⎛⎫⎪⎝⎭的值;〔2〕设3,2απ⎛⎫∈π ⎪⎝⎭,假设234f απ⎛⎫+= ⎪⎝⎭,求cos 4απ⎛⎫- ⎪⎝⎭的值.16.〔本小题总分值12分〕16.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg),得到频率分布直方图如下:求:〔1〕根据直方图可得这100名学生中体重在(56,64)的学生人数.〔2〕请根据上面的频率分布直方图估计该地区17.5-18岁的男生体重.〔3〕假设在这100名男生中随意抽取1人,该生体重低于62的概率是多少?17. 〔本小题总分值14分〕如图,在四棱锥P ABCD -ABCD 为菱形,60BAD ︒∠=,Q 为AD 的中点。
〔1〕假设PA PD =,求证:平面PQB ⊥平面PAD ;〔2〕点M 在线段PC 上,PM tPC =,试确定t 的值,使//PA 平面MQB .18.〔本小题总分值14分〕等差数列{}n a 中,13a =,前项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b = 〔1〕求n a 与n b ; 〔2〕求12111nS S S +++… 频率 组距0.080.070.06 0.05 0.040.03 0.020.0154 56 58 60 62 64 66 68 70 72 74 76 体重〔kg 〕_________学号:_______________•••••••••••••••••••••• 封 •••••••••••••••••••••• ••••••••••••••••••••••O19.〔本小题总分值14分〕双曲线)0,0(1:2222>>=-b a by a x E 的两条渐近线分别为x y l x y l 2:,2:21-==. 〔1〕求双曲线E 的离心率;〔2〕如图,O 为坐标原点,动直线l 分别交直线21,l l 于B A ,两点〔B A ,分别在第【一】四象限〕,且OAB ∆的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?假设存在,求出双曲线E 的方程;假设不存在,说明理由。
20. 〔本小题总分值14分〕设函数f (x )=ax-x 〔1〕假设13log [8()]y f x =-在[1,+∞]上是单调递减函数,求实数a 的取值范围.〔2〕设1,a x y k =+=,假设不等式22()()()2k f x f y k⋅≥-对一切(,)(0,)x y k ∈恒成立,求实数k 的取值范围.题号 得分本卷须知:O •••••••••••••••••••••• 密•••••••••••••••••••••• O •••••••••••••••••••••• 封 ••••••••••••••••••••••O •••••••••••••••••••••• 线••••••••••••••••••••••O班级:_______________姓名:_______________学号:_______________ •••••••••••••• 密•••••••••••••••••••••• O •••••••••••••••••••••• 封 •••••••••••••••••••••• O •••••••••••••••••••••• 线••••••••••••••••••••••O字迹的钢笔或签字笔在各题目指定区域内的相应位置上答题,超出指定区域的答案无效。
2、如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效。
答 案〔2〕解:因为3tan 3444f ααπππ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭…………5分 ()tan α=+π………6分tan 2α==.………7分所以sin 2cos αα=,即sin 2cos αα=. ① 二.填空题 (本大题共6小题,每题5分,共30分.把答案填在答卷的相应位置)9. 10. 11.12. 13. 14. 【三】解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 15. 16. 17.18.20.19.因为22sin cos 1αα+=, ② 由①、②解得21cos 5α=.…………………9分 因为3,2απ⎛⎫∈π ⎪⎝⎭,所以5cos α=,25sin α=10分 所以cos 4απ⎛⎫- ⎪⎝⎭cos cos sin sin 44ααππ=+……………11分52252310525210⎛=-+-⨯=- ⎝⎭.……12分 16.〔1〕)(401004.0100207.0205.003.0人)(=⨯=⨯⨯+⨯+……4分 〔2〕可利用平均数来衡量该地区17.5-18岁的男生体重:)((kg 2.652)02.07504.07304.07105.06906.06708.06507.06305.06105.05903.05701.055=⨯⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯……8分〔3〕P=14.02205.003.001.0=⨯⨯++)( ……12分 17.解:〔1〕连BD ,四边形ABCD 菱形, ∵AD ⊥AB , ∠BAD=60°△ABD 为正三角形, Q 为AD 中点, ∴AD ⊥BQ …………1分∵PA=PD ,Q 为AD 的中点,AD ⊥PQ ……2分 又BQ ∩PQ=Q …………3分 ∴AD ⊥平面PQB ,……4分 AD 平面PAD …………5分 ∴平面PQB ⊥平面PAD …………6分〔2〕当13t =时,//PA 平面MQB ......7分 连AC 交BQ 于N (9)分由//AQ BC 可得,ANQ BNC ∆∆∽,12AQ AN BC NC ∴==……10分 //PA 平面MQB ,PA ⊂平面PAC ,平面PAC 平面MQB MN =,//PA MN ∴……12分13PM AN PC AC == 即:13PM PC = 13t ∴=……14分18.解:〔I 〕由可得223123q a a q q ++=⎧⎪+⎨=⎪⎩……2分 解直得,3q =或4q =-〔舍去〕,……4分26a =……5分3(1)33n a n n ∴=+-= 13n n b -=……7分〔2〕证明:(33)12211()2(33)31n n n n S S n n n n +=∴==-++……9分 121112*********(1)(1)322334131n S S S n n n ∴+++=-+-+-++-=-++…………14分 19.解法一:(1)因为双曲线E 的渐近线分别为和2,2y x y x ==-.所以2,2,b c a a==∴=,……3分 从而双曲线E 的离心率e =……4分(2)由(1)知,双曲线E 的方程为222214x y a a-=.设直线l 与x 轴相交于点C.当l x ⊥轴时,假设直线l 与双曲线E 有且只有一个公共点, 那么,4OC a AB a ==, ……9分又因为OAB ∆的面积为8,所以118,48,222OC AB a a a =∴⋅=∴=.此时双曲线E 的方程为221416x y -=.假设存在满足条件的双曲线E,那么E 的方程只能为221416x y -=.……8分以下证明:当直线l 不与x 轴垂直时,双曲线E :221416x y -=也满足条件.设直线l 的方程为y kx m =+,依题意,得k>2或k<-2.那么(,0)mC k-,记1122(,),(,)A x y B x y .由2y x y kx m =⎧⎨=+⎩,得122m y k =-,同理得222m y k =+.由1212OAB S OC y y ∆=-得, 1228222m m m k k k -⋅-=-+即222444(4)m k k =-=-.由221416y kx m x y =+⎧⎪⎨-=⎪⎩得, 222(4)2160k x kmx m ----=.因为240k -<, 所以22222244(4)(16)16(416)k m k m k m ∆=+-+=---,又因为224(4)m k =-.所以0∆=,即l 与双曲线E 有且只有一个公共点. 因此,存在总与l 有且只有一个公共点的双曲线E,且E 的方程为221416x y -=.……14分 20. 〔1〕令,要使在[1,+∞〕上是单调递减等价于由得1-a+8>0a<9由u(x)在上是增函数,即对,恒成立,解得,所以-1≤a≤9……6分〔2〕由条件f(x)f(y)=(+2,令xy=t,由x+y=k,那么t令g(t)=f(x)f(y)=,t∈(0,当1-g(t)单调递增,那么,条件不成立.当1-时,,当且仅当t=取到等号.时,即0<k.且②时,那么所以0<k……14分。