电力电子技术 整流电路
- 格式:pptx
- 大小:4.32 MB
- 文档页数:98
电力电子技术整流电路总结篇一:电力电子技术常见的整流电路特点总结电力电子技术常见的整流电路特点总结篇二:电力电子技术重要公式总结单相半波可控整流带电阻负载的工作情况:au1iRdbcde电阻负载的特点:电压与电流成正比,两者波形相同。
触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。
导通角:晶闸管在一个电源周期中处于通态的电角度,用θ表示。
直流输出电压平均值:1Ud????2U21?cos?2U2sin?td(?t)?(1?cos?)?0.45U22?2(3-1)VT的a移相范围为180?通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式简称相控方式。
带阻感负载的工作情况:bcdef阻感负载的特点:电感对电流变化有抗拒作用,使得流过电感的电流不发生突变。
续流二极管数量关系:idVT????id2?(3-5)(3-6)(3-7)iVT?idVdR?????id(?t)?2?id?2d????id2?12?iVdR???2??????id(?t)?id(3-8)2?2dabcdifgV单相半波可控整流电路的特点:1.VT的a移相范围为180?。
2.简单,但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。
3.实际上很少应用此种电路。
4.分析该电路的主要目的建立起整流电路的基本概念。
单相桥式全控整流电路带电阻负载的工作情况:bucdV图3-5单相全控桥式带电阻负载时的电路及波形数量关系:1?22U21?cos?1?cos?Ud??2U(:电力电子技术整流电路总结)2sin?td(?t)??0.9U2???22a角的移相范围为180?。
向负载输出的平均电流值为:(3-9)Ud22U21?cos?U21?cos?id???0.9R?R2R2流过晶闸管的电流平均值只有输出直流平均值的一半,即:(3-11)idVT1U21?cos??id?0.452R2(3-10)流过晶闸管的电流有效值:iVT1?2???1?(2U2U1???sin?t)2d(?t)?2sin2??R?2R2?(3-12)变压器二次测电流有效值i2与输出直流电流i有效值相等:2U2U22?1???。
目录第1章绪论 (1)1.1 什么是整流电路 (1)1.2 整流电路的发展与应用 (1)1.3 本设计的简介 (1)第二章总体设计方案介绍 (2)2.1总的设计方案 (2)2.2 单相桥式全控整流电路主电路设计 (3)2.3保护电路的设计 (5)2.4触发电路的设计 (9)第三章整流电路的参数计算与元件选取 (12)3.1 整流电路参数计算 (12)3.2 元件选取 (13)第四章设计总结 (15)4.1设计总结 (15)第五章心得体会 (16)参考文献 (17)第1章绪论1.1 什么是整流电路整流电路(rectifying circuit)把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。
可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路.1.2 整流电路的发展与应用电力电子器件的发展对电力电子的发展起着决定性的作用,因此不管是整流器还是电力电子技术的发展都是以电力电子器件的发展为纲的,1947年美国贝尔实验室发明了晶体管,引发了电子技术的一次革命;1957年美国通用公司研制了第一个晶闸管,标志着电力电子技术的诞生;70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件迅速发展,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。
21. 单相半波可控整流电路对电感负载供电, L =20mH , U 2=100V ,求当 α=0 和 60 时的负载电流 I d ,并画出 u d 与 i d 波形。
解: α=0 时,在电源电压 u 2 的正半周期晶闸管导通时,负载电感 导通时刻,负载电流为零。
在电源电压u 2 的负半周期,负载电感导通。
因此,在电源电压 u 2 的一个周期里,以下方程均成立:L di d 2U 2 sin tdt2考虑到初始条件:当 t =0时 i d =0可解方程得:2U 2 i d(1 cos t)L1 2 2U 22(1 cos t)d( t) L2U 2=2u d 与 i d 的波形如下图:量在 u 2负半周期180 ~300 期间释放,因此在 u 2 一个周期中 60 ~300 期间以下微分方程成 立: L d d itd2U 2 sin t其平均值为此时 u d 与 i d 的波形如下图:α = 60 °时, L 储能, 电感 L 储藏的能L 储能,在晶闸管开始 L 释放能量,晶闸管继续I d考虑初始条件:当t = 60 时 i d = 0 可解方程得:i d2U 2 L 1( cos t)I d52U 2 1 33 2U L 2 (12 cos t)d( t) =2U 22L =11.25(A)2.图2-9 为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化问题吗?试说明:①晶闸管承受的最大反向电压为2 2U2 ;②当负载是电阻或电感时,其输出电压和电流的波形与单相全控桥时相同。
答:具有变压器中心抽头的单相全波可控整流电路,该变压器没有直流磁化的问题。
因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。
以下分析晶闸管承受最大反向电压及输出电压和电流波形的情况。
①以晶闸管VT 2为例。
一、实验背景整流是指将交流电变换为直流电的变换,而将交流电变换为直流电的电路称为整流电路。
整流电路是四种变换电路中最基本的变换电路,应用非常广泛。
对于整流电路,当其带不同负载情况下,电路的工作情况不同。
此外,可控整流电路不仅可以工作在整流状态,即将交流电能变换为直流电能,还可以工作在逆变状态,即将直流电能变换为交流电能,称为有源逆变。
在工业中,应用最为广泛的是三相桥式全控整流电路(Three Phase Full Bridge Converter),它是由两个三相半波可控整流电路发展而来。
该次试验即是针对三相桥式全控整流电路而展开的一些较为简单的学习与研究。
二、实验原理三相桥式全控整流及有源逆变该次实验连接电路图如下图所示整流有源逆变控制信号初始化约定:,,整流,,逆变,,临界注意事项:在接主电路过程中,晶闸管接入双刀双闸开关时一定要注意正负极必须正确匹配。
电容器用于吸收感性电流引起的干扰,使得示波器显示的波形更加标准、清晰。
双刀双掷开关在切换时主回路必须断电,否则很可能因切换时拉出电弧而损坏设备。
(一)整流电路1、整流的概念把交流电变换为直流电的变换称为整流(Rectifier),又叫AC-DC变换(AC-DC Converter)。
整流电路是一种把交流电源电压转换成所需的直流电压的电路。
AC-DC变换的功率流向是双向的,功率流向由交流电源流向负载的变换称之为“整流”,功率流向由负载流向交流电源的变换称之为“有源逆变”。
采用晶闸管作为整流电路的主控器件,通过对晶闸管触发相位的控制从而达到控制输出直流电压的目的,这样的电路称之为相控整流电路。
2、整流电路的分类(1)按电路结构分类①半波整流电路:半波整流电路中每根电源进线流过单方向电流,又称为零式整流电路或单拍整流电路。
②全波整流电路:全波整流电路中每根电源进线流过双方向电流,又称为桥式整流电路或双拍整流电路。
(2)按电源相数分类①单相整流电路:又分为单脉波整流电路和双脉波整流电路。
1. 单相半波可控整流电路对电感负载供电,L =20mH ,U 2=100V ,求当α=0︒和60︒时的负载电流I d ,并画出u d 与i d 波形。
解:α=0︒时,在电源电压u 2的正半周期晶闸管导通时,负载电感L 储能,在晶闸管开始导通时刻,负载电流为零。
在电源电压u 2的负半周期,负载电感L 释放能量,晶闸管继续导通。
因此,在电源电压u 2的一个周期里,以下方程均成立:t U ti Lωsin 2d d 2d= 考虑到初始条件:当ωt =0时i d =0可解方程得:)cos 1(22d t L U i ωω-= ⎰-=πωωωπ202d )(d )cos 1(221t t L U I =LU ω22=22.51(A)u d 与i d 的波形如下图:当α=60°时,在u 2正半周期60︒~180︒期间晶闸管导通使电感L 储能,电感L 储藏的能量在u 2负半周期180︒~300︒期间释放,因此在u 2一个周期中60︒~300︒期间以下微分方程成立:t U ti Lωsin 2d d 2d= 考虑初始条件:当ωt =60︒时i d =0可解方程得:)cos 21(22d t L U i ωω-=其平均值为)(d )cos 21(2213532d t t L U I ωωωπππ-=⎰=L U ω222=11.25(A)此时u d 与i d 的波形如下图:2.图2-9为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化2U;②当负载是电阻或电感时,其问题吗?试说明:①晶闸管承受的最大反向电压为22输出电压和电流的波形与单相全控桥时相同。
答:具有变压器中心抽头的单相全波可控整流电路,该变压器没有直流磁化的问题。
因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。
以下分析晶闸管承受最大反向电压及输出电压和电流波形的情况。
电力电子技术第章--相控整流电路-课件 (一)
电力电子技术是当今最重要的技术之一,它的应用范围非常广泛,可
以用于发电、输电、配电、用电以及各种电子设备的控制等领域。
在
电力电子技术的课程中,相控整流电路是其中的一个重要章节。
相控整流电路是一种可以将交流电转化为直流电的电路,它可以应用
于各种场合,比如直流电动机控制、电池充电以及电子变压器控制等。
相控整流电路的工作原理是利用正弦波的相位差来控制桥式整流电路
中的各种开关,从而实现了对电路的控制。
相控整流电路可以分为两种类型:单相控整流电路和三相控整流电路。
其中,单相控整流电路是利用单相电网的交流电源来驱动电机或者电
子变压器的电路;而三相控整流电路则是利用三相电网的交流电源来
驱动电机或者变压器的电路。
无论是单相控整流电路还是三相控整流
电路,它们的工作原理都是一样的,只不过是利用不同的电源来驱动
电路而已。
相控整流电路具有许多优点,比如它可以控制交流电源的输出电压,
可以抑制电网的谐波污染,可以实现功率因数的校正,可以提高电路
的效率等等。
在实际应用中,相控整流电路已经被广泛地应用于各种
领域,比如电机控制、电池充电、UPS电源、铁路牵引、风力发电等等。
总之,相控整流电路是电力电子技术中的一个重要章节,它具有广泛
的应用价值和良好的技术前景。
对于学习电力电子技术的学生来说,
掌握相控整流电路的基本原理和应用技巧是非常重要的,只有在深入
理解了它的工作原理和掌握了相关的实验技能之后,才能够在实际工
作中充分发挥出它的优势和特点,为电力电子技术的发展做出更大的
贡献。