单相PWM整流电路设计(电力电子课程设计)
- 格式:doc
- 大小:790.00 KB
- 文档页数:18
单相桥式PWM逆变电路设计一、设计原理单相桥式PWM逆变电路由整流桥、滤波电路、逆变桥和控制电路组成。
整流桥将输入的交流电转换为直流电,滤波电路对直流电进行平滑处理,逆变桥将直流电转换为交流电输出,控制电路对逆变桥进行PWM控制,调节输出电压的幅值和频率。
二、设计方法1.选择逆变桥和整流桥元件:根据输出功率的要求选择合适的逆变桥和整流桥元件,常见的有MOSFET、IGBT和二极管等。
2.设计滤波电路:通过选择合适的电容和电感元件,设计滤波电路对直流电进行平滑处理。
常见的滤波电路有LC滤波电路和RC滤波电路,可以根据具体情况选择合适的滤波电路。
3.设计控制电路:控制电路是单相桥式PWM逆变电路的关键部分,通过控制电路对逆变桥进行PWM调制,实现对输出电压的控制。
常见的控制方法有脉宽调制(PWM)和脉振宽调制(PPWM),可以根据实际需求选择合适的控制方法。
4.稳定性分析和保护措施:在设计过程中需要考虑逆变电路的稳定性和保护措施。
通过稳定度分析和保护措施的选择,可以提高逆变电路的可靠性和安全性。
5.实验验证和调试:设计完成后需要进行实验验证和调试,对电路进行性能测试和参数调节,确保逆变电路的正常工作。
三、设计注意事项1.选择合适的元件:在设计过程中需要根据具体要求选择合适的元件,包括逆变桥、整流桥、滤波电路和控制电路等。
合理选择元件能够提高电路的性能和可靠性。
2.稳定性和保护措施:在设计过程中需要考虑逆变电路的稳定性和保护措施。
通过分析稳定性和选择保护措施,可以防止电路因过电流、过压等故障而损坏。
3.实验验证和调试:设计完成后需要进行实验验证和调试,对电路进行性能测试和参数调节,确保逆变电路的正常工作。
及时调试和修改电路中存在的问题,确保电路的性能满足设计要求。
四、总结单相桥式PWM逆变电路是一种常见的电力电子转换电路,设计涉及到逆变桥、整流桥、滤波电路和控制电路等方面。
通过选择合适的元件、稳定性分析和保护措施以及实验验证和调试,可以设计出性能优良、稳定可靠的逆变电路。
单相桥式PWM逆变电路设计介绍单相桥式PWM逆变电路的背景和重要性单相桥式PWM逆变电路是一种常见的电力电子技术应用,广泛用于交流电能转换为直流电能的场合。
由于其高效、可靠的特点,被广泛运用于电力系统中的UPS(不间断电源)、电机驱动和太阳能逆变器等领域。
在现代电力系统中,交流电能的应用日益增多,而很多电子设备却需要使用直流电能。
因此,采用桥式PWM逆变电路来实现交流电与直流电的转换是非常必要和重要的。
本文将详细讨论单相桥式PWM逆变电路的设计原理和关键技术。
首先,将介绍PWM技术的基本原理,并解释为什么选择桥式逆变器。
其次,将详细讲解桥式逆变器的工作原理和电路结构。
最后,将给出一种基于控制策略的桥式逆变器设计方案。
通过本文的研究,读者将能够深入了解单相桥式PWM逆变电路的设计原理和实践应用,为电力系统和电子设备的设计提供有益的参考。
单相桥式PWM逆变电路是一种常用的电力电子变换器。
它通过控制开关器件的开关周期和占空比,将直流电源转换为交流电源,实现电能的变换和调节。
该逆变电路的基本组成包括:单相桥式整流电路:它由四个可控开关器件组成,通常使用MOSFET或IGBT等器件,用于将交流电源转换为直流电源。
PWM调制电路:PWM调制电路通过控制开关器件的开关周期和工作占空比,可以实现输出电压的调节和波形控制。
滤波电路:滤波电路用于平滑输出电压,去除输出电压中的高频噪声和谐波。
输出变压器:输出变压器用于将逆变电路的输出电压变换为所需的电压等级。
单相桥式PWM逆变电路的工作原理是:首先,经过单相桥式整流电路的整流,将交流电源转换为直流电源;然后,通过PWM 调制电路控制开关器件的开关周期和工作占空比,将直流电源转换为交流电源;最后,经过滤波电路的处理,输出平滑的交流电压。
这样,单相桥式PWM逆变电路实现了将直流电源转换为交流电源的功能,可以广泛应用于电力电子变换器、逆变电源、变频调速等领域。
本文讨论了单相桥式PWM逆变电路的设计步骤和注意事项。
目录第1章绪论 (1)1.1 什么是整流电路 (1)1.2 整流电路的发展与应用 (1)1.3 本设计的简介 (1)第二章总体设计方案介绍 (2)2.1总的设计方案 (2)2.2 单相桥式全控整流电路主电路设计 (3)2.3保护电路的设计 (5)2.4触发电路的设计 (9)第三章整流电路的参数计算与元件选取 (12)3.1 整流电路参数计算 (12)3.2 元件选取 (13)第四章设计总结 (15)4.1设计总结 (15)第五章心得体会 (16)参考文献 (17)第1章绪论1.1 什么是整流电路整流电路(rectifying circuit)把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。
可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路.1.2 整流电路的发展与应用电力电子器件的发展对电力电子的发展起着决定性的作用,因此不管是整流器还是电力电子技术的发展都是以电力电子器件的发展为纲的,1947年美国贝尔实验室发明了晶体管,引发了电子技术的一次革命;1957年美国通用公司研制了第一个晶闸管,标志着电力电子技术的诞生;70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件迅速发展,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。
第一题说明全控型整流电路的工作原理,并设计出一个单相全控整流电路及其控制电路(开环)1.单相全控型PWM整流电路的结构单相电压型桥式PWM整流电路最初出现在交流机车传动系统中,为间接式变频电源提供直流中间环节,电路结构如图1-1所示。
每个桥臂由一个全控器件和反并联的整流二极管组成。
u s是正弦波电网电压,u d是整流器的直流侧输出电压,Ls为交流侧附加的电抗器,Ls包括外接电抗器的电感和交流电源内部电感,是电路正常工作所必须的。
起平衡电压,支撑无功功率和储存能量的作用。
全桥电路直流侧电容只要一个就可以。
由图1-1所示,能量可以通过构成桥式整流的二极管VD1-VD4完成从滞留测到交流侧的传递,也可以经过全控型器件V1-V4从直流侧你变为交流,反馈给电网。
图1-1所以PWM整流器的能量变换是可逆的,而能量的传递趋势是整流还是逆变,主要视V1-V4的脉宽调制方式而定。
2.单相全控型PWM整流电路的工作原理用正弦信号波和三角波相比较的方法对图1-1中的V1-V4进行SPWM控制,就可以在桥的交流输入端AB产生一个SPWM波u AB。
u AB中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,不含有低次谐波。
当正弦信号波频率和电源频率相同时,i s也为与电源频率相同的正弦波。
由于Ls的滤波作用,谐波电压只使i s产生很小的脉动。
u s一定时,i s 幅值和相位仅由u AB中基波u ABf的幅值及其与u s的相位差决定。
改变u ABf的幅值和相位,可使i s和u s同相或反相,i s比u s超前90°,或使i s与u s相位差为所需角度。
u s> 0时,(V2、VD4、VD1、Ls)和(V3、VD1、VD4、Ls)分别组成两个升压斩波电路,以(V2、VD4、VD1、Ls)为例。
V2通时,u s通过V2、VD4向Ls储能。
V2关断时,Ls中的储能通过VD1、VD4向C充电。
电力电子课程设计报告采用双PWM控制的风力发电并网变流器时间:2011年6月目录摘要 (3)第0章绪论 (4)0.1.课程设计要求 (4)0.2.风力发电并网系统简介 (4)0.3.课程设计流程 (5)第1章主电路选型 (6)1.1整流电路选型 (7)1.2后级变换电路选型 (8)第2章主电路有源器件参数计算 (11)2.1主电路开关器件选择 (11)2.1.1智能功率模块 MIG50Q201H 简介 (11)第3章主电路无源器件参数计算 (14)3.1直流电压的确定 (14)3.2交流侧电感的选择 (14)3.3直流侧稳压电容选择 (15)第4章有源电路的驱动、保护原理设计 (16)4.1有源IPM驱动电路设计 (16)4.2IPM 驱动电路设计 (18)4.3保护电路设计 (19)第5章控制、检测电路原理设计 (21)5.1控制电路设计 (21)5.1.1基于TMS320F2812 控制电路的设计 (21)5.1.2TMS320F2812 的主要特点 (22)5.1.3基于TMS320F2812 的控制电路板的设计 (23)5.2信号检测电路设计 (25)5.2.1电网电压相位过零点检测电路 (25)5.2.2直流母线电压检测 (26)5.2.3电流检测电路 (28)第6章散热设计 (30)6.1散热基础设计 (30)6.2IGBT散热计算 (32)第7章仿真 (33)7.1设计技术参数及要求 (33)7.2系统仿真设计 (33)7.3仿真结果 (34)第8章参考文献 (37)摘要随着全球能源危机和环境污染的日益严重,风能和太阳能作为当前最理想的绿色能源越来越受到各国的重视。
但是由于风力发电的波动性和分散性,如果直接并入电网会对电网产生冲击,所以必须使风力发电的输出电压稳定在一定的电压和频率值之后才能并入电网,实现柔性并网。
解决这一问题的核心就是风力发电并网变流器。
在本次课程设计中,我们组设计了双PWM脉宽调制技术控制的并网变流器。
课程设计名称:电力电子技术题目:单相桥式全控整流电路(带阻感负载)专业:班级:姓名:学号:辽宁工程技术大学课程设计成绩评定表在电力电子技术中,单相桥式全控整流电路是单相整流电路中应用较多的电路,本设计是通过利用晶闸管来控制单相桥式全控带阻感负载的整流电路,理解整流电路的工作原理和基本计算方法,设计驱动电路和保护电路。
关键词:电力电子技术;单相桥式;晶闸管;驱动电路;保护电路引言 (1)1 整流电路 (2)1.1 单相半波可控整流电路 (2)1.2 单相全波可控整流电路 (2)1.3 单相桥式半控整流电路 (3)1.4 单相桥式全控整流电路 (3)2 系统总体设计 (5)2.1 系统原理方框图 (5)2.2 主电路设计 (5)2.2.1工作原理分析 (5)2.2.2 参数计算 (6)3 驱动电路的设计 (7)3.1 晶闸管触发电路工作原理 (7)3.2 晶闸管对触发电路的要求 (7)4 保护电路的设计 (8)4.1 过流保护 (8)4.2 过压保护 (8)结论 (10)心得体会 (11)参考文献 (12)辽宁工程技术大学课程设计引言整流电路是电力电子电路中的一种,它的作用是将交流电力变为直流电力供给直流用电设备,如直流电动机,电镀、电解电源,同步发电机励磁,通信系统等,在生产生活中应用十分广泛。
整流电路在不同角度有不同的分类方法,按组成电路的器件分:不可空、半空、全控和高功率PWM四种,按电路结构可分为:半波、全波、桥式三种,按交流输入相数分:单相、三相、多相多重三种,按控制方式分:相控式、PWM控制式两种,按变压器二次测电流方向分:单拍、双拍电路两种。
整流电路通常由主电路、滤波器和变压器组成。
单相桥式全控整流电路是单相整流电路中应用较为广泛的整流电路。
单相桥式全控整流电路(带阻感负载)1 整流电路单相整流器的电路形式是多种多样的,整流的结构也是比较多,各有优缺点,因此在做设计之前我们主要考虑了以下几种方案:单相半波可控整流电路,单相全波可控整流电路,单相桥式半控整流电路,单相桥式全控整流电路 。
2022年 1月 January 2022Digital Technology &Application 第40卷 第1期Vol.40 No.1数字技术与应用207中图分类号:TP368.1 文献标识码:A 文章编号:1007-9416(2022)01-0207-03DOI:10.19695/12-1369.2022.01.66基于TMS320F28377D的单相PWM整流器控制系统设计四川工程职业技术学院电气信息工程系 杨晓艳 施芸相比于传统的二极管、可控硅整流器,单相脉冲宽度调制(Pulse Width Modulation, PWM)整流器具有高功率因素、低电流谐波、能量双向流动等优点,已广泛用于新能源[1-2]、不间断供电电源(Uninterrupted Power Supply, UPS)[3-4]、电力机车牵引系统[5]等工业领域。
高性能单相PWM整流器控制存在采样、数据处理、电压/电流环控制、占空比更新等多重任务,采用双核DSP架构的微处理器可并行执行代码,从而可将控制任务进行分解处理,以减小系统的控制时延,提高系统的控制精度[6]。
双核架构微处理器TMS320F28377D 在混合脉宽调制[7]、绝对值光电编码[8]等方面已有应用,可有效提高程序的运行效率。
本文以TMS320F28377D 为核心,实现已广泛应用于单相两电平PWM整流器的基于PI的直接电流控制(PI-based Direct Current Control, PI-based DCC)算法,以期提升程序执行效率,减小控制时延。
1 TMS320F28377D简介相比于单核浮点DSP架构的TMS320F28335微控制器,双核TMS320F28377D微控制在单相PWM整流器控制方面具备的主要优势如下:(1)集成了两个具备200MHz的信号处理能力32位浮点DSP核心。
单核性能相比于150MHz信号处理能力的TMS320F28335,处理能力提升33%左右。
辽宁工业大学电力电子技术课程设计(论文)题目:单相桥式整流/逆变电路的设计及仿真院(系):电气工程学院专业班级:自动化111班学号: *********学生姓名:指导教师:(签字)起止时间:2013.12.30-2014.1.10课程设计(论文)任务及评语院(系):电气工程学院 教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算学 号 1103020 学生姓名 专业班级课程设计(论文)题目单相桥式整流/逆变电路的设计及仿真课程设计(论文)任务 课题完成的功能、设计任务及要求、技术参数 实现功能整流电路是将交流电能变成直流电供给直流用电设备,在生产实际中,用于电阻加热炉、电解、电镀中,这类负载属于电阻类负载。
逆变电路是把直流电变成交流电。
逆变电路应用广泛,在各种直流电源中广泛使用。
设计任务及要求 1、确定系统设计方案,各器件的选型 2、设计主电路、控制电路、保护电路; 3、各参数的计算;4、建立仿真模型,验证设计结果。
5、撰写、打印设计说明书一份;设计说明书应在4000字以上。
技术参数整流电路:单相电网220V ,输出电压0~100V ,电阻性负载,,R=20欧姆 逆变电路:单相全桥无源逆变,输出功率200W ,输出电压100Hz 方波 进度计划1、 布置任务,查阅资料,确定系统方案(1天)2、 系统功能分析及系统方案确定(2天)3、 主电路、控制电路等设计(1天)4、 各参数计算(1天)5、 仿真分析与研究(3天)6、 撰写、打印设计说明书(1天)答辩(1天)指导教师评语及成绩平时: 论文质量: 答辩:总成绩: 指导教师签字: 年 月 日摘要整流电路是把交流电转换为直流电的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
逆变电路是把直流电变成交流电的电路,与整流电路相对应。
无源逆变电路则是将交流侧直接和负载连接的电路。
此次设计的单相桥式整流电路是利用二极管来连接成“桥”式结构,达到电能的充分利用,是使用最多的一种整流电路。
武汉理工大学毕业设计(论文)基于APFC的单相PWM整流器的设计学院(系):自动化学院专业班级:电气学生姓名:XXXXXXXX指导教师:XXXXXXX摘要 (I)第1章绪论 (1)概述 (1)本课题研究的意义 (2)整流技术的发展 (3)本论文主要工作 (4)第2章 PWM控制技术 (5)PWM简介 (5)PWM控制原理和应用 (5)PWM控制的基本原理 (5)PWM计算法和调制法 (7)第3章功率因素校正技术 (10)发展历史 (10)Boost PFC电路与Buck电路的对偶性 (11)PFC技术分类及研究方向 (13)PFC技术分类 (14)基本的两种功率因素校正技术 (16)第4章有源功率因素校正(APFC)技术 (19)功率因数(PF)的定义 (19)功率因数校正 (19)功率因数校正实现方法 (20)有源功率因数校正方法分类 (20)功率因数校正技术的发展趋势 (25)第5章 MATLAB仿真实验 (27)电路的工作原理 (27)Matlab仿真 (29)仿真图 (29)第6章结论与展望 (32)结论 (32)基于滞环比较法控制系统的研究 (32)基于功率因素校正技术的研究 (32)展望 (32)参考文献 (34)致谢 (35)摘要分析单相电压型PWM整流电路(功率因素校正电路)的工作原理和工作模式, 功率因数校正(PFC)技术诞生与20世纪80年代,它采用的是高频开关工作方式,具有体积小,重量轻,效率高,输入功率因素(PF)接近1的优点,采用 PWM 进行控制,其中控制方法采用的是电流滞环比较法,因硬件电路简单,属于实时控制,电流响应快,对负载的适应性强,由于不需要载波,所以输出电压不含特定频率的谐波分量,另外,这种控制方式,有利于提高电压利用率选择适当的工作模式和工作时序,可使PWM整流电路的输出直流电压得到有效的稳定值。
同时也调节了交流侧电流的大小和相位,实现能量在交流侧和直流侧的双向流动,并使变流装置获得良好的功率因数。
- -- 重庆大学电气工程学院电力电子技术课程设计设计题目:单相桥式可控整流电路设计年级专业:****级电气工程与自动化学生姓名:*****学号:****成绩评定:完成日期:2013年6月23 日课程设计指导教师评定成绩表指导教师签名:年月日重庆大学本科学生电力电子课程设计任务书单相桥式可控整流电路设计摘要:本文主要研究单相桥式PWM整流电路的原理,并运用IGBT去实现电路的设计。
概括地讲述了单相电压型PWM整流电路的工作原理,用双极性调制方式去控制IGBT的通断。
在元器件选型上,较为详细地介绍了IGBT的选型,分析了交流侧电感和直流侧电容的作用,以及它们的选型。
最后根据实际充电机的需求,选择元器件具体的参数,并用simulink进行仿真,以验证所设计的单相电压型PWM整流器的性能。
实现了单相电压型PWM整流器的高功率因数,低纹波输出等功能。
关键词:PWM整流simulink 双极性调制IGBT目录1.引言 ............................................................................... - 5 -1.1 PWM整流器产生的背景................................................ - 5 -1.2 PWM整流器的发展状况................................................ - 5 -1.3 本文所研究的主要内容 .................................................. - 6 -2.单相电压型PWM整流电路的工作原理 ....................................... - 7 -2.1电路工作状态分析 ........................................................ - 8 -2.2 PWM控制信号分析 ....................................................... - 9 -2.3 交流测电压电流的矢量关系............................................ - 9 -3.单相电压型PWM整流电路的设计............................................ - 11 -3.1 主电路系统设计 ......................................................... - 11 -3.2 IGBT和二极管的选型设计 .............................................. - 11 -3.3 交流侧电感的选型设计 ................................................. - 11 -3.4 直流侧电容的选型设计 ................................................. - 12 -3.5 直流侧LC滤波电路的设计............................................. - 13 -4.单相PWM整流电路的仿真及分析............................................ - 14 -4.1 整流电路的simulink仿真............................................. - 14 -4.2 对simulink仿真结果的分析 .......................................... - 17 - 5.工作展望 ....................................................................... - 17 - 参考文献 ........................................................................... - 18 -1.引言1.1 PWM整流器产生的背景电力电子技术是现代电工技术中最活跃的领域,并且在电力系统中得到日益广泛的应用,它是使用电力电子器件对电能进行变换和控制的技术。
电力电子的课程设计报告一、课程目标知识目标:1. 让学生掌握电力电子器件的基本原理、分类及特性,了解其在电力转换中的应用。
2. 使学生了解电力电子电路的基本拓扑结构,能分析简单电力电子电路的工作原理。
3. 引导学生理解电力电子装置的控制策略,了解不同控制方法对电力转换性能的影响。
技能目标:1. 培养学生运用电力电子器件和电路知识,解决实际电力转换问题的能力。
2. 提高学生分析、设计和调试简单电力电子电路的能力。
3. 培养学生运用电力电子控制策略,优化电力转换系统性能的技能。
情感态度价值观目标:1. 培养学生对电力电子技术的兴趣和热情,激发学生学习主动性和创新精神。
2. 培养学生严谨的科学态度,注重实践操作的安全性和可靠性。
3. 引导学生关注电力电子技术在节能减排、可持续发展等方面的应用,培养环保意识和责任感。
本课程针对高年级学生,结合电力电子学科特点,注重理论与实践相结合,旨在提高学生的专业知识水平和实践能力。
课程目标具体、可衡量,便于教师进行教学设计和评估,同时充分考虑学生的认知特点,使学生在掌握电力电子技术基本原理的基础上,能够解决实际问题,培养创新精神和实践操作能力。
二、教学内容本章节教学内容主要包括以下三个方面:1. 电力电子器件原理与特性- 基本电力电子器件(如:二极管、晶体管、晶闸管等)的工作原理、特性参数及应用。
- 教材章节:第1章《电力电子器件》。
2. 电力电子电路拓扑结构与分析- 常见电力电子电路拓扑(如:整流电路、逆变电路、斩波电路等)的组成、工作原理及性能分析。
- 教材章节:第2章《电力电子电路》。
3. 电力电子装置控制策略与应用- 电力电子装置控制策略(如:相控、PWM控制等)的原理、实现方法及其对电力转换性能的影响。
- 教材章节:第3章《电力电子装置的控制》。
教学进度安排:1. 课时分配:共12课时,每个部分各4课时。
2. 教学内容逐步深入,从基本器件原理到电路拓扑分析,最后探讨控制策略及其应用。
《电力电子技术》课程标准(完整版)资料(可以直接使用,可编辑优秀版资料,欢迎下载)《电力电子技术》课程标准一、教学对象电气技术应用专业、机电技术应用专业的学生二、课程的性质和定位电力电子技术课程是电气技术、机电技术专业的一门专业必修课程,也是一门实践应用性强的专业技术课。
根据该本专业的人才培养目标,学生通过对本课程的学习,了解各种电力电子器件的结构、型号、分类、符号和工作特性,了解电力电子器件的驱动和保护电路。
熟悉可控整流电路的结构、工作原理、性能特点和简单计算,学会可控整流电路的安装接线、通电调试和故障处理的技能;了解有源逆变的条件和无源逆变的用途;熟悉PWM技术在各种电力电子变换电路的应用;熟悉交流变频电路的种类、结构和工作原理;了解交流调压电路的工作原理,学会交流调压电路的安装接线和通电调试技能。
了解开关电源、UPS、中频电源等典型电力电子设备的工作原理、性能特点和应用场合。
了解电力电子技术的新器件、新电路和新用途,为今后从事专业工作打下较坚实的基础。
它以《电气安装与实施》课程的学习为基础,也是进一步学习《PLC控制系统的设计与维护》、《交直流调速系统运行与维护》课程的基础。
三、教学目的1. 了解电力电子技术的应用领域,电力电子器件和电力电子新技术的发展方向。
2. 掌握各种电力电子器件的结构、型号、符号、性能特点和用途的有关知识。
3. 掌握电力电子器件的驱动和保护方法。
4. 掌握可控整流电路电气原理、工作波形和性能特点的分析方法,可控整流电路的简单计算方法。
5. 掌握有源逆变的电路和使用条件,无源逆变电路的分类、特点和应用的有关知识。
6. 掌握SPWM技术的有关知识。
7. 掌握交流调压电路的应用知识。
8. 掌握典型电力电子设备的电路和技术参数。
9. 具有创新精神、实践能力和学习、掌握新技术的能力。
四、课程内容和教学要求这门学科的知识与技能要求分为了解、理解、掌握、学会四个层次。
教学内容和要求表中的“√”号表示教学知识和技能的教学要求层次。
单相电压型PWM整流器研究曹栖源;陈汝兵【摘要】现代轨道交通电气化中需要高效、高功率、稳定和可靠的整流电源,而整流电源会产生大量谐波导致网侧低功率因数运行和网侧电流波形畸变.分析单相电压型PWM整流器的拓扑电路结构及数学模型,采用一种基于幅相控制(phase and amplitude control-PAC)策略的间接控制方法,该方法是对桥侧交流电压基波分量的幅值和相位进行控制,从而实现对网侧电流的间接控制.仿真验证了该控制策略网侧功率因数达到0.99以上,网侧电流THD低于5%,同时满足能量双向流动和输出电压可调的要求.%Modern rail electrification need stable and reliable rectification power supply with high efficiency and high powder,and a lot of harmonic caused by the rectification power supply will result in grid-side low power factor operation and grid-side current waveform distortion.Based on this,the circuit topology structure and mathematical model of the single-phase voltage PWM rectifier were analyzed by using an indirect control method based on the phase and amplitude control-PAC strategy in this paper.The method was to control the amplitude and phase of the fundamental component of the bridge side alternating voltage,and thus the grid-side current was indirect controlled.The simulation verified the grid-side power factor of the control strategy was over 0.99,and the gridside current THD is less than 5%,which can meet the requirements of dual energy flow and adjustable output voltage.【期刊名称】《电焊机》【年(卷),期】2018(048)003【总页数】4页(P380-383)【关键词】PWM整流;功率因数;PAC控制【作者】曹栖源;陈汝兵【作者单位】成都七中林荫校区,四川成都610041;西华大学电气与电子信息学院,四川成都610039【正文语种】中文【中图分类】TG434.10 前言近年来,随着我国高铁的快速发展,机车从电网中吸收电能,也就是大量的非线性负载接入电网中,将造成大量无功功率和谐波注入电网中,对电网电能质量造成严重污染,降低电网的稳定性和可靠性。
0 引言众所周知,在传统的整流电路中,晶闸管可控整流装置的功率因数会随着其触发角的增加而变坏,这不但使得电力电子类装置成为电网中的主要谐波因素,也增加了电网中无功功率的消耗。
PWM整流电路是采用脉宽调制技术和全控型器件组成的整流电路,能有效地解决传统整流电路存在的问题。
通过对PWM整流电路进行有效的控制,选择合适的工作模式和工作时序,从而调节了交流侧电流的大小和相位,使之接近正弦波并与电网电压同相或反相,不但有效地控制了电力电子装置的谐波问题,同时也使得变流装置获得良好的功率因数。
1 单相电压型桥式PWM整流电路的结构单相电压型桥式PWM整流电路最初出现在交流机车传动系统中,为间接式变频电源提供直流中间环节,电路结构如图1所示。
每个桥臂由一个全控器件和反并联的整流二极管组成。
L为交流侧附加的电抗器,起平衡电压,支撑无功功率和储存能量的作用。
图1中uN(t)是正弦波电网电压;Ud是整流器的直流侧输出电压;us(t)是交流侧输入电压,为PWM控制方式下的脉冲波,其基波与电网电压同频率,幅值和相位可控;iN(t)是PWM整流器从电网吸收的电流。
由图1所示,能量可以通过构成桥式整流的整流二极管VD1~VD4完成从交流侧向直流侧的传递,也可以经全控器件VT1~VT4从直流侧逆变为交流,反馈给电网。
所以PWM整流器的能量变换是可逆的,而能量的传递趋势是整流还是逆变,主要视VT1~VT4的脉宽调制方式而定。
因为PWM整流器从交流电网吸取跟电网电压同相位的正弦电流,其输入端的功率是电网频率脉动的两倍。
由于理想状况下输出电压恒定,所以此时的输出电流id与输入功率一样也是网频脉动的两倍,于是设置串联型谐振滤波器L2C2,让其谐振输出电流基波频率的2倍,从而短路掉交流侧的2倍频谐波。
2 单相电压型桥式整流电路的工作原理图2是单相PWM电压型整流电路的运行方式相量图,us1(t)设为交流侧电压Us(t)的基波分量,iN1(t)为电流iN(t)的基波分量,忽略电网电阻的条件下,对于基波分量,有下面的相量方程成立,即:可以看出,如果采用合适的PWM方式,使产生的调制电压与网压同频率,并且调节调制电压,以使得流出电网电流的基波分量与网压相位一致或正好相反,从而使得PWM整流器工作在如图2所示的整流或逆变的不同工况,来完成能量的双向流动。
重庆大学电气工程学院电力电子技术课程设计设计题目:单相桥式可控整流电路设计年级专业:****级电气工程与自动化学生姓名:*****学号: ****成绩评定:完成日期:2013年6月 23 日指导教师签名:年月日重庆大学本科学生电力电子课程设计任务书单相桥式可控整流电路设计摘要:本文主要研究单相桥式PWM整流电路的原理,并运用IGBT去实现电路的设计。
概括地讲述了单相电压型PWM整流电路的工作原理,用双极性调制方式去控制IGBT的通断。
在元器件选型上,较为详细地介绍了IGBT的选型,分析了交流侧电感和直流侧电容的作用,以及它们的选型。
最后根据实际充电机的需求,选择元器件具体的参数,并用simulink进行仿真,以验证所设计的单相电压型PWM整流器的性能。
实现了单相电压型PWM整流器的高功率因数,低纹波输出等功能。
关键词:PWM整流simulink 双极性调制IGBT目录1.引言 ......................................................... - 5 -1.1 PWM整流器产生的背景.................................... - 5 -1.2 PWM整流器的发展状况.................................... - 5 -1.3 本文所研究的主要内容.................................... - 6 -2.单相电压型PWM整流电路的工作原理 ............................. - 7 -2.1电路工作状态分析......................................... - 7 -2.2 PWM控制信号分析......................................... - 8 -2.3 交流测电压电流的矢量关系............................... - 9 -3.单相电压型PWM整流电路的设计 ................................ - 10 -3.1 主电路系统设计......................................... - 10 -3.2 IGBT和二极管的选型设计................................. - 11 -3.3 交流侧电感的选型设计................................... - 11 -3.4 直流侧电容的选型设计................................... - 12 -3.5 直流侧LC滤波电路的设计................................ - 13 -4.单相PWM整流电路的仿真及分析 ................................ - 13 -4.1 整流电路的simulink仿真............................... - 13 -4.2 对simulink仿真结果的分析............................. - 16 - 5.工作展望 ................................................... - 16 - 参考文献 ...................................................... - 17 -1.引言1.1 PWM整流器产生的背景电力电子技术是现代电工技术中最活跃的领域,并且在电力系统中得到日益广泛的应用,它是使用电力电子器件对电能进行变换和控制的技术。
电力电子技术根据用户对电能要求的不同,对电能进行不同形式的变换,实现电能更好的满足人们的需求,并通过功能和性能的提高,产生经济和社会效益。
电力电子技术的发展,促进了各种电能变换装置的发展,出现了各种以PWM变换为基础的电力电子装置,例如逆变电源、变频器、超导储能装置、新能源发电装置、有源电力滤波器、统一潮流控制器等等。
这些现代的电力电子装置中,许多都以直流电压为输入,或者中间级需要直流电压。
从最开始的二极管不控整流,到后来出现的晶闸管相控整流方式,这些整流装置都有共同的缺点,都会给电网带来谐波危害,其功率因数也不高。
特别是谐波对于电网是一种污染,谐波会影响线路的稳定运行,影响挂在电网中的变压器工作效率,损坏低压开关设备,对通信设备产生干扰等等[1]。
为了减少谐波危害,许多学者对新型整流装置做了大量的研究分析,为了实现整流装置输入电压与电流都正弦化,并且使其功率因数接近1,学者们研制出了高频PMW 整流器。
高频PWM 整流器不仅能够提供正弦化的输入电流,可控的功率因数,而且能够将直流侧能量逆变至电网侧,实现整流器的四象限运行。
1.2 PWM整流器的发展状况PWM控制技术的应用与发展为整流器性能的改进提供了变革性的思路和手段,结合了PWM控制技术的新型整流器称为PWM整流器。
与传统的整流器相比,PWM整流器不仅获得了可控的AC/DC电能变换性能,而且实现了网侧单位功率因数和正弦电流控制,能使电能双向传输。
从20世纪70年代开始,PWM技术开始应用于采用半控功率开关器件的单相整流电路中。
从80年代开始,随着半导体产业的发展,可关断功率开关器件产品日趋完善,对单相PWM整流器有了更加深入的研究,其应用也更加广泛。
随着连续及离散数学模型的提出、拓扑结构的多样化、控制策略的完善、功率半导体技术以及传感器技术的持续发展,单相PWM整流器的研究发展进入一个新的阶段。
同时单相PWM整流器的应用也成为一个研究热点,如交流传动、UPS 电源、柔性交流电传输、光伏及风能并网发电等,同时,这些应用的研究对单相PWM整流器的研究起到促进作用。
PWM 整流器数学模型的建立,是对PWM 整流器进行研究的基础,A.W.Green 等人提出了基于坐标变换的PWM 整流器连续、离散动态数学模型,这种连续、离散模型的建立极大的扩展了PWM 整流器的发展,可以用数学语言来描述PWM 整流器的工作原理。
R.Wu 和S.B.Dewan 等比较系统的建立起了PWM 整流器时域模型,在此基础上,Hengchun Mao 等人建立了降阶小信号模型。
各种模型的建立,大大促进了人们对于PWM 整流器的认识,对PWM 整流器的工作特性更加清晰,大大促进了对于PWM 整流器的研究。
在此同时新的拓扑结构和控制方法得到了快速的发展,并由此将PWM 整流器的应用拓展到更加广阔的领域,例如风力光伏发电技术、有源电力滤波器、统一潮流控制器、动态电压恢复器、直流输电技术等等[1]。
PWM 整流器非常好的工作特性,其关键在于对整流器输入电流的控制。
为了使PWM 整流器实现单位功率因数和输入电流含有较小的谐波,必须控制整流器输入电流呈现正弦特性,对于整流器的控制策略,关键在于电流内环的设计分析。
1.3 本文所研究的主要内容对于较为复杂的PWM整流器的研究,本文着重在于从课程设计的角度上学习PWM整流原理,并能设计PWM整流电路及其各元器件的参数,最终用simulink仿真验证所设计的效果。
在器件上,本文全控型器件选用IGBT,通过要求计算所需选择IGBT的参数,并简单分析研究其H桥死区问题、损耗问题、开关速度问题。
具体地,本文主要以电动汽车的直流充电机为背景,以直流充电机的所需参数来规范本文的基本参数,选用单相工频交流电源220V/50Hz供电,输出额定功率达到3KW,直流侧电压为400V。
2.单相电压型PWM整流电路的工作原理单相桥式电压型PWM整流电路,其电路如图1所示。
每个桥臂由一个全控器件和反并联的整流二极管组成。
L为交流侧附加的电感,在PWM整流电路中是一个重要的元件,起平衡电压、支撑无功功率和储存能量的作用。
为简化分析,可以忽略L的电阻。
直流侧电容C在全控型器件关断时,为电感电流提供电流路径,缓冲冲击电流,同时该电容还储存能量,稳定直流侧电压,抑制直流侧的谐波电压。
主要功率将消耗在负载R上。
图1单相桥式电压型PWM整流电路除必须具有输入电感外,PWM整流器的电路结构和PWM逆变电路是相同的。
按照正弦信号波和三角波相比较的方法对图1中的V1 ~V4 进行SPWM控制,就可以在桥的交流输入端ab间产生一个SPWM波uab 。
在uab中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,但不含有低次谐波。
2.1电路工作状态分析对于单相电压型PWM整流器而言,其交流侧基波电压控制有两种PWM 控制方式,即双极性调制和单极性调制。
由于双极性控制简单有效,本文主要讲述采用双极性调试的工作原理。
当采用双极性调制时,把直流侧电压看作基本不变,则交流测电压uab(t)将在Vdc和–Vdc 间切换,以实现交流测电压的PWM控制。
因此双极型调制时,单相电压PWM整流过程只存在两种开关模式,并可用双极性二值逻辑开关函数p进行描述,即114422331()()1()()p ⎧=⎨-⎩V VD 、V VD 导通V VD 、V VD 导通两种开关模式见表1。
表 1 单相电压型PWM 双极性调至开关模式开关模式1 2 导通器件V 1(VD 1)、V 4(VD 4)V 2(VD 2)、V 3(VD 3)开关函数 p=1 p=–1需要注意的是,当网侧电流i(t)方向不同时,同一开关模式将存在不同的电流回路。
单相电压型PWM 整流电路双极性不同开关模式时的电流回路如下图2所示。
图 2 双极性调制不同开关模式时的电流回路 a)模式1,且i(t)>0 b)模式2,且i(t)>0c)模式1,且i(t)<0 d)模式2,且i(t)<0电流为正时,VD1 和VD4 导通,交流电源输出能量,直流侧吸收能量,电路处于整流状态;电流为负时,V1 和V4 导通;交流电源吸收能量,直流侧释放能量,处于能量反馈状态。
电流为正时,V2 和V3 导通,交流电源和直流侧都输出能量,L 储能;电流为负时,VD2 和VD3 导通,交流电源和直流侧都吸收能量,L 释放能量。
2.2 PWM 控制信号分析采用双极性PWM 调制方法时,单相PWM 整流器的四个功率开关管通过两个不同的控制信号控制,图1中开关管V1和V4同时开通或关断,而开关管V2和V3同时开通或关断,其调制的PWM 控制信号如下图3。
图 3 双极性SPWM 调制原理 通过双极性SPWM 调制策略,使得交流测的电压在交流测电压u ab (t)将在V dc 和–V dc 间切换。