第五讲 真实验(二) 多因素实验设计
- 格式:ppt
- 大小:1.90 MB
- 文档页数:59
多因素实验设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN3多因素组内实验设计多因素组内(被试内)实验设计是单因素组内实验设计的扩展。
在多因素被试内实验设计中,基本方法是:随机取样被试,参加实验的被试接受全部实验处理水平的结合。
以两因素被试内实验设计举例,表2中自变量A因素有两个水平,B 因素有四个水平。
两个因素共有2×4=8种处理水平的结合,即A1B1,A1B2,A1B3,A1B4,A2B1,A2B2,A2B3,A2B4。
参加实验的每个被试接受所有自变量实验处理水平的结合。
实验设计的基本思想是,由于每个被试接受所有的试验处理水平的结合,因而实验处理后测量到的差异应当来自A因素、B因素,或来自A因素与B因素的交互作用。
表2 两因素被试内实验设计举例4混合实验设计在多因素实验设计中,当两个或多个因素均为被试间因素时,我们称之为组间或被试间实验设计,当两个或多个因素均为被试内因素时,我们称之为组内或被试内实验设计。
然而,还有一种可能性,多因素实验设计中的自变量既包含有被试间因素,又包含有被试内因素,这种情况我们称之为混合实验设计(Mixed Factorial Design)。
混合实验设计的基本方法是,首先确定实验中的被试间因素和被试内因素,将被试按被试间因素的水平数随机分组,然后,每组被试接受被试间因素的某一处理水平与被试内因素所有处理水平的结合。
我们仍以两因素混合实6解决多变量实验设计缺点的方法一种常用的方法是在确认分解的各因素之间不存在交互作用的前提下,将复杂的多变量实验设计分解为若干个单因素和简单的多因素实验设计,分多次实施实验,然后再将多个实验获得的数据放到一起进行分析和讨论,这样就减少了由于实验设计的复杂给主试和实验者实施实验带来的困难,提高了实验者对实验过程的可控性。
多因素实验设计类型一、多因素实验设计类型的基础概念多因素实验设计呀,就像是一场超级有趣的科学大冒险。
它可不是那种只看一个因素的简单实验哦。
比如说,你想研究植物的生长,单看阳光或者单看水分都不够全面,多因素实验设计就是把阳光、水分、土壤肥力这些因素都放在一起考虑。
这就好比你要做一道超级复杂又超级美味的菜,不能只放一种调料,要把盐、糖、酱油、醋啥的都搭配好。
在多因素实验设计里呢,每个因素都可能有不同的水平。
就像阳光可能有充足、一般、不足这几个水平,水分也有很多不同的量。
这样组合起来就会有好多好多不同的情况可以研究。
这就像是在玩一个超级多变的游戏,每一个因素的不同水平就像是游戏里的不同技能或者道具。
二、多因素实验设计的类型1. 完全随机多因素实验设计这就像是把所有的实验对象打乱了放在不同的组合里。
比如说你要研究不同的教学方法(因素一,有传统教学法、多媒体教学法等水平)和不同的学习时间(因素二,有每天1小时、2小时、3小时等水平)对学生成绩的影响。
你就把学生们随机地分到不同的教学方法和学习时间的组合里。
这种设计很简单直接,就像随手把不同颜色的珠子混在一起,看看最后能组成什么样的图案。
2. 随机区组多因素实验设计这个就稍微复杂一点啦。
还是上面那个例子,但是我们可以先把学生按照一些相似的特征分成不同的区组,比如按照之前的成绩或者年龄。
在每个区组里面再进行完全随机的分配。
这就好比先把珠子按照大小或者颜色稍微分一下类,然后在每个小类里面再打乱组合。
这样做的好处是可以控制一些额外的变量,让实验结果更准确呢。
3. 析因实验设计析因设计就像是一个超级精密的机器。
它会把所有因素的所有水平都相互组合一遍。
这样就能很清楚地看到每个因素对结果的单独影响,还能看到因素之间的交互作用。
比如说有因素A有两个水平,因素B有三个水平,那析因设计就会把这六个组合都研究到。
这就像是把所有可能的调料组合都试一遍,看看哪种组合做出来的菜最好吃。
第1篇一、实验目的本研究旨在探讨多因素实验设计在心理学领域中的应用,通过实验验证不同自变量对因变量的影响,并分析自变量之间的交互作用。
本实验选取了两个自变量:实验组别和实验时长,考察其对被试反应时间的影响。
二、实验方法1. 实验对象实验对象为30名大学生,男女各半,年龄在18-22岁之间。
所有被试均无色盲、色弱等视觉障碍。
2. 实验材料实验材料为一系列图片,每张图片包含一个字母,要求被试在看到图片后尽快判断该字母是否为目标字母。
3. 实验设计本实验采用2(实验组别:实验组与对照组)×2(实验时长:短时长与长时长)的多因素实验设计。
其中,实验组别为自变量A,实验时长为自变量B。
4. 实验程序(1)实验前,向被试说明实验目的和实验流程,并要求被试在实验过程中保持专注。
(2)实验过程中,将30名被试随机分为两组,每组15人。
实验组进行短时长实验,对照组进行长时长实验。
(3)短时长实验:实验组被试在30秒内完成所有图片判断任务。
(4)长时长实验:对照组被试在60秒内完成所有图片判断任务。
(5)实验结束后,收集被试的反应时间数据。
5. 数据处理采用SPSS软件对实验数据进行方差分析,以检验自变量A和B对因变量(反应时间)的影响,以及自变量之间的交互作用。
三、实验结果1. 实验组别对反应时间的影响方差分析结果显示,实验组别对反应时间有显著影响(F(1,28) = 8.71,p <0.01)。
具体来说,实验组被试的平均反应时间为523.71毫秒,对照组被试的平均反应时间为598.43毫秒。
2. 实验时长对反应时间的影响方差分析结果显示,实验时长对反应时间有显著影响(F(1,28) = 6.82,p <0.05)。
具体来说,短时长实验组被试的平均反应时间为523.71毫秒,长时长实验组被试的平均反应时间为598.43毫秒。
3. 自变量之间的交互作用方差分析结果显示,实验组别与实验时长之间存在交互作用(F(1,28) = 5.05,p < 0.05)。
多变量实验设计在心理学实验设计中,一类实验设计是考察单一自变量(或称为因素)对因变量的影响,这类实验设计称为单变量实验设计(Single-Variable Experiment);另外一类实验设计是考察两个或两个以上的自变量(或因素)对因变量的影响,这类实验设计称为多变量试验设计(Multiple-Variable Experiment)。
多变量实验设计包括多因素组间实验设计、多因素组内实验设计和混合实验设计。
2多因素组间实验设计多因素组间实验设计是单因素组间实验设计的扩展。
在多因素完全随机实验设计中,基本方法是:随机取样被试,并将参加实验的被试分为若干个实验处理组,每组被试分别接受一种实验处理水平的结合。
我们以两因素完全随机实验设计举例,表1中自变量A因素有两个水平,B因素有四个水平。
两个因素共有2×4=8种处理水平的结合,即A1B1,A1B2,A1B3,A1B4,A2B1,A2B2,A2B3,A2B4。
将被试随机分为八组,每组被试接受一个自变量实验处理水平的结合。
实验设计的基本思想是,由于实验处理前,被试是随机分配给各实验处理组的,因而保证了各组被试实验之前无差异。
实验处理后测量到的差异可能来自A因素、B因素,或来自A因素与B因素的交互作用。
表1 两因素完全随机实验设计举例实验处理水平的结合后测实验组1 A1B1 Y实验组2 A1B2 Y实验组3 A1B3 Y实验组4 A1B4 Y实验组5 A2B1 Y实验组6 A2B2 Y实验组7 A2B3 Y实验组8 A2B4 Y3多因素组内实验设计多因素组内(被试内)实验设计是单因素组内实验设计的扩展。
在多因素被试内实验设计中,基本方法是:随机取样被试,参加实验的被试接受全部实验处理水平的结合。
以两因素被试内实验设计举例,表2中自变量A因素有两个水平,B因素有四个水平。
两个因素共有2×4=8种处理水平的结合,即A1B1,A1B2,A1B3,A1B4,A2B1,A2B2,A2B3,A2B4。
多因素实验设计因素分解交互作用的数量:KCn=K!/n(K-n)!K:因素(自变量)的数量;n:交互作用的次数1 单因素实验设计1.1 单因素完全随机实验设计:分解:SS总变异=SS组间+SS组内计算:SS总变异=[AS]-[Y] df=np-1SS组间=[A]-[Y] df=p-1SS组内= SS总变异-SS组间df=p(n-1)1.2 单因素随机区组实验设计分解:SS总变异=SS处理间+SS处理内=SSA+(SS区组+SS残差)计算:SS总变异=[AS]-[Y] df=np-1SSA=[A]-[Y] df=p-1SS处理内=SS总变异-SS处理间SS区组=[S]-[Y] df=n-1SS残差=SS总变异-SSA-SS区组df=(n-1)(p-1)1.3 单因素拉丁方实验设计分解:SS总变异=SS处理间+SS处理内=SSA+(SSB+SSC+SS单元内+SS残差)计算:SS总变异=[ABCS]-[Y] df=np-1SSA=[A]-[Y] df=p-1SSB=[B]-[Y] df=p-1SSC=[C]-[Y] df=p-1SS单元内=[ABCS]-[ABC] df=p2(n-1)SS残差={[ABC]-[Y]}-SSA-SSB-SSC df=(n-1)(p-2)1.4 单因素重复测量实验设计分解:SS总变异=SS被试间+SS被试内=SS被试间+(SSA+SS残差)计算:SS总变异=[AS]-[Y] df=np-1SS被试间=[S]-[Y] df=n-1SS被试内=SS总变异-SS被试间SSA=[A]-[Y] df=p-1SS残差= SS总变异-SS被试间-SSA df=(n-1)(p-1)2 两因素实验设计2.1 两因素完全随机实验设计分解:SS总变异=SS处理间+SS处理内=(SSA+SSB+SSAB)+SS单元内计算:SS总变异=[ABS]-[Y] df=npq-1SSA=[A]-[Y] df=p-1SSB=[B]-[Y] df=q-1SSAB=[AB]-[Y]-SSA-SSB df=(p-1)(q-1)SS单元内=SS总变异-SSA-SSB-SSABdf=pq(n-1)同质性检验:F=max(SS1组,SS2组,SS3组…SSn组)\min(SS1组,SS2组,SS3组…SSn组)2.2 两因素随机区组实验设计分解:SS总变异=SS处理间+SS处理内=(SSA+SSB+SSAB)+(SS区组+SS残差)计算:SS总变异=[ABS]-[Y] df=npq-1SS区组=[S]-[Y] df=n-1SS处理间=[AB]-[Y]SSA=[A]-[Y] df=p-1SSB=[B]-[Y] df=q-1SSAB=[AB]-[Y]-SSA-SSB df=(p-1)(q-1)SS处理内=SS总变异-SS处理间SS残差=SS总变异-SSA-SSB-SSABdf=(pq-1)(n-1)2.3 两因素混合实验设计分解:SS总变异=SS被试间+SS被试内=(SSA+SS被试A)+(SSB+SSAB +SSB×被试A)计算:SS总变异=[ABS]-[Y] df=npq-1SS被试间=[AS]-[Y]SSA=[A]-[Y] df=p-1SS被试A=SS被试间-SSA df=p(n-1)SS被试内=SS总变异-SS被试间SSB=[B]-[Y] df=q-1SSAB=[AB]-[Y]-SSA-SSB df=(p-1)(q-1)SS B×被试A=SS被试内-SSB-SSABdf=p(q-1)(n-1)2.4 两因素重复测量实验设计分解:SS总变异=SS被试间+SS被试内=SS被试间+(SSA+SS A×被试+SSB+SSB×被试+SSAB+SSA×B×被试)计算:SS总变异=[ABS]-[Y] df=npq-1SS被试间=[S]-[Y] df=n-1SS被试内=SS总变异-SS被试间SSA=[A]-[Y] df=p-1SSA×被试=[AS]-[Y]-SS被试间-SSA df=(p-1)(n-1)SSB=[B]-[Y] df=q-1SSAB=[AB]-[Y]-SSA-SSB df=(p-1)(q-1)SSB×被试=[BS]-[Y]-SS被试间-SSBdf=(q-1)(n-1)SSA×B×被试=SS被试内-SSA-SSA×被试-SSB-SSB×被试-SSAB df=(n-1)(p-1)(q-1)3 三因素实验设计3.1 三因素完全随机实验设计分解:SS总变异=SS处理间+SS处理内=(SSA+SSB+SSC+SSAB+SSAC+SSBC+SSABC)+SS单元内计算:SS总变异=[ABCS]-[Y] df=npqr-1SSA=[A]-[Y] df=p-1SSB=[B]-[Y] df=q-1SSC=[C]-[Y] df=r-1SSAB=[AB]-[Y] df=(p-1)(q-1)SSAC=[AC]-[Y] df=(p-1)(r-1)SSBC=[BC]-[Y] df=(q-1)(r-1)SSABC=[ABC]-[Y]-SSA-SSB-SSC-SSAB-SSAC-SSBC df=(p-1)(q-1)(r-1)SS单元内=SS总变异-SSA-SSB-SSC-SSAB-SSAC-SSBC-SSABC df=pqr(n-1)3.2 三因素混合实验设计3.2.1 重复测量一个因素分解:SS总变异=SS被试间+SS被试内=(SSA+SSC+SSAC+SS被试(AC))+(SSB+SSAB+SSBC+SSABC+SSB×被试(AC))计算:SS总变异=[ABCS]-[Y] df=npqr-1SS被试间=[ACS]-[Y] df=npr(q-1)SSA=[A]-[Y] df=p-1SSC=[C]-[Y] df=r-1SSAC=[AC]-[Y] df=(p-1)(r-1)SS被试(AC)=SS被试间-SSA-SSC-SSAC df=pr(n-1)SS被试内=SS总变异-SS被试间SSB=[B]-[Y] df=q-1SSAB=[AB]-[Y] df=(p-1)(q-1)SSBC=[BC]-[Y] df=(q-1)(r-1)SSABC=[ABC]-[Y]-SSA-SSB-SSC-SSAB-SSAC-SSBC df=(p-1)(q-1)(r-1)SSB×被试(AC)=SS被试内-SSB-SSAB-SSBC-SSABC df=pr(n-1)(q-1)3.2.2 重复测量两个因素分解:SS总变异=SS被试间+SS被试内=(SSA+SS被试(A))+(SSB+SSAB+SSB×被试(A)+SSC+SSAC+ SSC×被试(A)+SSBC+SSABC+SSB×C×被试(A))计算:SS总变异=[ABCS]-[Y] df=npqr-1SS被试间=[AS]-[Y] df=np-1SSA=[A]-[Y] df=p-1SS被试(A)=SS被试间-SSA df=p(n-1)SS被试内=SS总变异-SS被试间SSB=[B]-[Y] df=q-1SSAB=[AB]-[Y]-SSA-SSB df=(p-1)(q-1)SSB×被试(A)=[ABS]-[Y]-SS被试间-SSB-SSAB df=p(n-1)(q-1)SSC=[C]-[Y] df=r-1SSAC=[AC]-[Y]-SSA-SSC df=(p-1)(r-1)SSC×被试(A)=[ACS]-[Y]-SS被试间-SSC-SSAC df=p(n-1)(r-1)SSBC=[BC]-[Y]-SSB-SSC df=(q-1)(r-1)SSABC=[ABCS]-[Y]-SSA-SSB-SSAB-SSAC-SSBC df=df=(p-1)(q-1)(r-1)SSB×C×被试(A)=SS被试内-SSB-SSAB-SSB×被试(A)-SSC-SSAC-SSC×被试(A)-SSBC-SSABC 4三因素重复测量实验设计分解:SS总变异=SS被试间+SS被试内=SS被试间+(SSA+SSA×被试+SSB+SSB×被试+SSC+SSC×被试+SSAB+SSA×B×被试+SSAC+SSA×C×被试+SSBC+SSB×C×被试+SSABC+SS A×B×C×被试)计算:SS总变异=[ABCS]-[Y] df=npqr-1SS被试间=[S]-[Y] df=n-1SS被试内=SS总变异-SS被试间SSA=[A]-[Y] df=p-1SSA×被试=[AS]-[Y]-SS被试间-SSA df=(p-1)(n-1)SSB=[B]-[Y] df=q-1SSB×被试=[BS]-[Y]-SS被试间-SSB df=(q-1)(n-1)SSC=[C]-[Y] df=r-1SSC×被试=[CS]-[Y]-SS被试间-SSC df=(r-1)(n-1)SSAB=[AB]-[Y]-SSA-SSB df=(p-1)(q-1)SSA×B×被试=[ABS]-[Y]-SS被试间-SSA-SSB-SSAB-SSA×被试-SSB×被试df=(p-1)(q-1)(n-1)SSAC=[AC]-[Y]-SSA-SSC df=(p-1)(r-1)SSA×C×被试=[ACS]-[Y]-SS被试间-SSA-SSC-SSAC-SSA×被试-SSC×被试df=(p-1)(r-1)(n-1) SSBC=[BC]-[Y]-SSB-SSC df=(q-1)(r-1)SSB×C×被试=[BCS]-[Y]-SS被试间-SSB-SSC-SSBC-SSB×被试-SSC×被试df=(q-1)(r-1)(n-1) SSABC=[ABC]-[Y]-SSA-SSB-SSAB-SSAC-SSBC df=df=(p-1)(q-1)(r-1)SS A×B×C×被试=SS被试内-SSA-SSA×被试-SSB-SSB×被试-SSC-SSC×被试-SSAB-SSA×B×被试-SSAC-SSA×C×被试-SSBC-SSB×C×被试-SSABC-SSA×B×C×被试5 嵌套实验设计5.1 两因素完全随机嵌套实验设计5.2 三因素完全随机嵌套实验设计。