小学奥数解题技巧大全100讲
- 格式:doc
- 大小:8.60 MB
- 文档页数:606
小学奥数解题方法1——分类分类是一种很重要的数学思考方法,特别是在计数、数个数的问题中,分类的方法是很常用的;可分为这样几类:1以A为左端点的线段共4条,分别是:AB,AC,AD,AE;2以B为左端点的线段共3条,分别是:BC,BD,BE;3以C为左端点的线段共2条,分别是:CD,CE;4以D为左端点的线段有1条,即DE;一共有线段4+3+2+1=10条;还可以把图中的线段按它们所包含基本线段的条数来分类;1只含1条基本线段的,共4条:AB,BC,CD,DE;2含有2条基本线段的,共3条:AC,BD,CE;3含有3条基本线段的,共2条:AD,BE;4含有4条基本线段的,有1条,即AE;有长度分别为1、2、3、4、5、6、7、8、9、10、11单位:厘米的木棒足够多,选其中三根作为三条边围成三角形;如果所围成的三角形的一条边长为11厘米,那么,共可围成多少个不同的三角形提示:要围成的三角形已经有一条边长度确定了,只需确定另外两条边的长度;设这两条边长度分别为a,b,那么a,b的取值必须受到两条限制:①a、b只能取1~11的自然数;②三角形任意两边之和大于第三边;1、11 一种2、11 2、10 二种3、11 3、10 3、9 三种4、11 4、10 4、9 4、8 四种5、11 5、10 5、9 5、8 5、7 五种6、11 6、10 6、9 6、8 6、7 6、6 六种7、11 7、10 7、9 7、8 7、7 五种8、11 8、10 8、9 8、8 四种9、11 9、10 9、9 三种10、11 10、10 二种11、11 一种1+2+3+4+5+6+5+4+3+2+1=36种小学奥数解题方法2——化大为小找规律对于一些较复杂或数目较大的问题,如果一时感到无从下手,我们不妨把问题尽量简单化,在不改变问题性质的前提下,考虑问题最简单的情况化大为小,从中分析探寻出问题的规律,以获得问题的答案;这就是解数学题常用的一种方法,叫做归纳,我们也可以叫做“化大为小找规律”;10条直线最多可把一个长方形分成多少块提示:先不考虑10条直线,而是先看1条、2条、3条直线能把一个长方形分成几块10条直线最多可把一个长方形分成多少块第一条直线:分成 2 块第二条直线:分成2+2=4 块第三条直线:分成2+2+3=7 块10条直线最多可把一个长方形分成多少块我们发现这样的规律:=2+2+3+4+5+6+7+8+9+10=2+54=56块这就是说,10条直线可把长方形分为56块;小学奥数解题方法3——把未知量具体化一般情况下,题目中的未知量不可以随便假设;有时,问题中所求的未知量与其它相关的未知量具体是多少并没有关系;在这种情况下,可以把这些没有关系的未知量设为具体数;”幼儿园把一筐苹果平均分给大班和小班的小朋友,每个小朋友可分得6个;如果全部分给大班小朋友,那么平均每人可分10个;如果全部分给小班的小朋友,平均每人可分几个全部分给小班的小朋友,每人可分几个,与苹果的总个数有关系,而与人数无论是两班人数,还是大班人数都没有关系;苹果总数=两班总人数×6苹果总数=大班人数×10所以,大班人数×10=两班总人数×6设两班100人大班100×6 ÷ 10=60人小班100-60=40人600 ÷40=15个小学奥数解题方法4——试验将一根长为374厘米的铝合金管截成若干根长36厘米和24厘米的短管;问剩余部分的管子最少是多少厘米提示:从题目的问句看,应抓住“最少”二字来思考,先考虑没有剩余,再考虑剩余1厘米、2厘米……1如果把这根长管截成若干根两种不同规格的短管后没有剩余,那么374应该是4的倍数,因为两种短管的长度36厘米、24厘米都是4的倍数,但374不能被4整除,所以没有剩余不可能;2如果截成若干根两种不同规格的短管后只剩下1厘米,根据36、24都是偶数,“偶数的倍数是偶数”、“偶数与偶数的和是偶数”可推知,原来铝合金管长应为奇数,这与管长374偶数的条件矛盾,所以,剩1厘米也不可能;3如果最后剩下2厘米;这种情况有可能;374÷36+24=6……14;这说明两种都截6根余14厘米,这时需要调整:少截一根24厘米长的,加上14,24+14=36+2,正好合一根36厘米长的,还剩2厘米;小学奥数解题方法5——移多补少在“平均”二字中,“平”就是“拉平”,也就是移多补少,“均”就是相等;“平均”二字的意思,通俗地说,就是用“移多补少”的办法,使每份数量都相等;因此,移多补少是我们解答求平均数应用题的重要思考方法;新光机器厂装配拖拉机,第一天装配50台,第二天比第一天多装配5台,第三、第四两天装配台数是第一天的2倍多3台,平均每天装配多少台用四天装配总台数除以4,综合算式为:50+50+5+50×2+3÷4=52台采用移多补少的方法,假设每天都装配50台,那么四天一共多装配5+3=8台,把这8台平均分成四份,8÷4=2台,因此,平均每天装配50+2=52台综合算式为:50+5+3÷4=52台甲、乙、丙三人一起买了8个面包,平均分着吃,甲拿出5个面包的钱,乙付了3个面包的钱,丙没带钱,等吃完后一算,丙应该拿出4角钱,问甲应收回多少钱以分为单位4角=40分40× 3=120分120÷ 8=15分15× 5-40=35分小学奥数解题方法6——等量代换“曹冲称象”是运用了“等量代换”的思考方法:两个完全相等的量,可以互相代换;解数学题,经常会用到这种思考方法;百货商店运来300双球鞋,分别装在2个木箱、6个纸箱里;如果2个纸箱同1个木箱装的球鞋一样多,每个木箱和每个纸箱各装多少双球鞋提示:我们根据“2个纸箱同一个木箱装的球鞋一样多”,把木箱换成纸箱,也就是说,把300双球鞋全部用纸箱装,不用木箱装;根据已知条件,2个木箱里的球鞋刚好装满4个纸箱,再加上原来已装好的6个纸箱,一共是10个纸箱;这样,题目就变为“把300双球鞋平均装在10个纸箱里,平均每个纸箱装多少双球鞋”可以求出每个纸箱装多少双球鞋;也就能求出一个木箱装多少双球鞋;用两台水泵抽水,小水泵抽6小时,大水泵抽8小时,一共抽水312立方米;小水泵5小时的抽水量等于大水泵2小时的抽水量,两种水泵每小时各抽水多少立方米5小=2大大换小:8 ÷ 2 × 5=20 时小:312 ÷20+6=12立方米大:12 × 5 ÷ 2=30立方米小学奥数解题方法7——画图在数学中,“数”与“形”就像一对形影不离的亲兄弟;几乎所有的数量关系或数学规律都可以用生动形象的示意图来反映;A、B、C、D与小青五位同学一起比赛象棋,每两人都要比赛一盘;到现在为止,A 已经赛了4盘,B赛了3盘,C赛了2盘,D赛了1盘;问小青已经赛了几盘两堆煤,第一堆16吨,第二堆10吨,5天内两堆煤烧掉同样多吨数,这样第一堆剩下的煤正好是第二堆所剩煤的4倍;问5天中两堆煤被烧掉了多少吨小学奥数解题方法8——反过来想当你按习惯思路解决问题困难时,不妨也反过来想想;反过来想,是我们解数学题的一种很好的方法;用淘汰制比赛从200名乒乓球选手中产生一名冠军,问应进行多少场比赛淘汰199人需要比赛199场1至100的自然数中,不能被9整除的自然数的和是多少从1至100的和中去掉9的倍数,就是不能被9整除的数的和了1+2+3+;;;+100=50509 ×1+2+3+…+11=5945050-594=4456小学奥数解题方法9——分析因果关系分析,也就是抓住结果找原因;我们解数学题,也应当学会这种顺藤摸瓜,分析因果关系的本领;用一个杯子向一个空瓶里倒水;如果倒进3杯水,连瓶共重440克;如果倒进5杯水,连瓶共重600克;一杯水和一个空瓶各重多少我们先把两次倒水的情况作一次比较;从连瓶重量来看,第二次比第一次重了“600-440=160克”,怎么会多160克的呢因为第二次比第一次多倒了“5-3=2杯”水;这样,我们就容易求出每杯水的重量为:160÷2=80克;空瓶重量600- 80×5=200 克这类应用题的一般思路:1先比较两种情形,从数量上看出差别;2分析造成这种数量差别的原因;3利用这种因果关系来沟通题目中已知量与未知量的关系,并求出正确答案;兴旺养猪场,如果每间猪圈养猪8头,就还有4头猪没有猪圈养;如果每间猪圈养猪10头,将空出2间猪圈;问这个养猪场有多少间猪圈共养了多少头猪10×2+4÷10-8=12间8×12+4=100头或10×12-10×2=100头小学奥数解题方法10——假设小华解答数学判断题,答对一题给4分,答错一题扣4分,她答了20道判断题,结果只得56分;小华答对了几题假设小华全部答对:该得4×20=80分,现在实际只得了56分,相差80-56=24分,因为答对一题得4分,答错一题扣4分,这样,一对一错相比,一题就差8分4+4=8,根据总共相差的分数以及做错一题相差的分数,就可以求出做错的题数:24÷8=3题,一共做20题,答错3题,答对的应该是:20-3=17题4×17=68分答对的应得分4×3=12分答错的应扣分68-12=56分实际得分某校有100名学生参加数学竞赛,平均得63分,其中男生平均得60分,女生平均得70分,那么,男生比女生多多少名假设100名同学都是男生,那么应得分60×100=6000分比实际少得63×100-6000=300分原因是男生平均分比女生少70-60=10分求出女生人数为300 ÷ 10=30名小学奥数解题方法11——转化数学题常用的也是十分重要的一种方法——转化;这种转化通常是指转化条件或问题,特别是转化题中的数量关系;一个两位小数,去掉小数点后比原来的数大;这个两位小数是多少一个数的99倍是,求这个数;两个数相除的商是21,余数是3;如果把被除数、除数、商和余数相加,它们的和是225;被除数、除数各是多少题目中前一句话换个说法就是:被除数比除数的21倍还多3;再换个说法就是:被除数与除数的和比除数的“21+1”倍还多3;题目中第二句话换个说法是:被除数与除数的和是225-21+3=201;整个题目的意思换个说法就是:201比除数的22倍多3;从而可以先求出除数是:201-3÷22=9可求出被除数是:21×9+3=192小学奥数解题方法12——抓不变量数学题中,常常会出现数量的增减变化,但这些量变化时,与它们相关的另外一些量却没有改变;这种“不变量”往往在分析数量关系时起到重要作用;例一今年小明8岁,小强14岁;几年后小明和小强岁数的和是40岁从年龄上不变来找解题的“突破口”小明和小强的年龄差是:14-8=6岁小明那一年是:40-6÷2=17岁是在几年之后呢17-8=9年例二王进和张明计算甲、乙两个自然数的积这两个自然数都比1大;王进把甲数的个位数字看错了,计算结果为91,张明却把甲数的十位数字看错了,计算的结果为175;两个数的积究竟是多少91=7×13 =1×91 ,所以175和91的公约数是1或7,因为乙数比1大,所以乙数一定是7;抓住:一个因数乙数没有变,乙是91和175的公约数91÷7=13……王进看错了的甲数175÷7=25……张明看错了的甲数;15×7=105小学奥数解题方法13——找隐蔽条件应用题中的隐蔽条件,往往是分析问题的突破口或者是最关键的一步;所以,审题时如果感到缺少条件,你不妨提醒自己:有没有什么隐蔽条件一个家庭由丈夫、妻子、女儿和儿子组成,他们的年龄和是73岁;丈夫比妻子大3岁,女儿比儿子大2岁;4年前这个家庭成员的年龄和是58岁;请问:这个家庭成员现在的年龄各是多少岁隐蔽条件,可以推知:儿子今年才3岁;由“女儿比儿子大2岁”可以算出女儿今年是:3+2=5岁从而可知,丈夫与妻子现在的年龄和是:73-5+3=65岁由他们的年龄差是3岁,容易算出丈夫今年是:65+3÷2=34岁妻子今年是:65-34=31岁一个等腰三角形的周长是24厘米,其中有一条边长是6厘米,求另外两条边的长;等腰三角形的腰不能是6厘米,所以只能底是6厘米另两条边:24- 6÷2=9厘米小学奥数解题方法14——整体看问题从整体上观察思考,全面地审题;例一有甲、乙、丙三种货物;如果买甲3件,乙7件,丙1件,共花去元;如果买甲4件,乙10件,丙1件,共花去元;现在买甲、乙、丙各1件,需要花多少钱买甲3件,乙7件,丙1件,花元①买甲4件,乙10件,丙1件,花元②要想求出买甲1件,乙1件,丙1件,共需花多少钱,必须使上述①与②中对应的“件数”相差1;为此,可转化已知条件:将条件①中的每个量都扩大3倍,得:买甲9件,乙21件,丙3件,花元③将条件②中的每个量都扩大2倍,得:买甲8件,乙20件,丙2件,花元④所以,买甲、乙、丙各一件,共需要花的钱数为元例二一条马路长2000米,老张在马路的一端,老李在马路的另一端;他们分别从这条马路的两端同时出发,相对而行;老张每分钟走60米,老李每分钟走40米;老张带着一条狗,狗每分钟跑120米;这条狗与老张一同出发,碰到老李时就向老张跑,碰到老张又向老李跑,……直到老张与老李相遇;问这条狗从出发到老张与老李相遇时共跑了多少米提示:不需要把狗每趟所跑的路分别算出来,只要用它的速度乘一共所跑的时间就可以了;小学奥数解题方法15——分情况讨论对于那些缺少条件,看上去无法回答的问题,经过全面深入的思考,分几种情况来讨论,是可以找到问题的完整全部答案的;例一甲地到乙地的公路长400千米,两辆汽车从两地同时出发对开,甲车每小时行38千米,乙车每小时行42千米;出发几小时后两车相距80千米例二在连续的49年中,最多可以有多少个闰年最少应该有多少个闰年49年中有几个4年,一般就有几个闰年在通常情况下,连续49年中有12个闰年;49年必须是连续的;但它没有规定这49年的起止时间;但,当第一年是闰年时,最后一年也正好是闰年例三把一根竹竿垂直插入水中,在竹竿上刻上一个记号表示水深;再把这根竹竿掉过头来插入水中,也刻上一个记号表示水深;已知两个记号相距10厘米,是水深的十分之一;求竹竿的长;一种:水深:10×10=100厘米竿长:100+100+10=210 厘米另一种:水深:10×10=100厘米竿长:100+100-10=190 厘米例四一根铁丝可以弯成长、宽分别是4厘米、3厘米的长方形;如果用这根铁丝弯成两个相同的正方形,每个正方形面积是多少4+3×2=14厘米14 ÷8=厘米× =平方厘米4+3×2=14厘米14 ÷7=2厘米2 × 2=4平方厘米小学奥数解题方法16——逐步调整你可以根据题中的部分条件,找到一个与正确答案比较接近的“准答案”,然后再对它进行修改或调整;这样一步一步地逼近,最后一定会得到符合题中所有条件的正确答案的;小学奥数解题方法17——合理变形把算式合理变形,是我们进行简便计算最常用的方法;99×99+199=100-1x100-1+200-1 =100x+1+200-1 =10000合理的变形可以使解题过程变得简捷而灵活;怎样的变形才是“合理”的呢1题目变形之后,要使隐蔽的简算特点暴露出来;2只能变“形”,而不能改变数的大小;小学奥数解题方法18——用字母表示数方方、圆圆、丁丁、宁宁四个小朋友共有45本书,但是不知道每人各有几本书;如果变动一下:方方的减少2本,圆圆的增加2本,丁丁的增加一倍,宁宁的减少一半,那么四个小朋友的书就一样多;问:每个小朋友原来各有几本书解:设一样多是x本;X+2+X-2+X ÷ 2+2X=45X=10小学奥数解题方法19——借来还去我国民间流传着这样一个故事,一位老人临终时决定把家里的17头牛全部分给三个儿子;其中大儿子分得二分之一,二儿子分得三分之一,小儿子分得九分之一,但不能把牛杀掉或卖掉;三个儿子按照老人的要求怎么也不好分;后来一位邻居用“借来还去”法顺利地把17头牛分完了;某汽水厂规定:用3个空汽水瓶可换一瓶汽水,某人买了10瓶汽水,问他总共可喝到几瓶汽水如果3个空瓶可换1瓶汽水,那么有2个空瓶就可喝到1瓶汽水;这是因为:有了2个空瓶,再到别人那里“借来”1个空瓶,就可换来1瓶汽水,喝完把空瓶给别人“还去”,这时不欠不余;10瓶汽水喝完后得10个空瓶, 10个空瓶又可换来5瓶汽水,总共可喝到“ 10+5=15”瓶汽水;。
小学奥数解题方法完整版一、引言小学奥数是培养孩子数学思维和解题能力的重要途径。
在面对各种题型和难度的奥数题目时,学生需要了解正确的解题方法。
本文将介绍小学奥数常见的解题方法,帮助学生更好地应对奥数考试。
二、奥数解题方法1. 四则运算四则运算是小学奥数题目中最基本的类型。
在解题时,需要掌握加法、减法、乘法和除法的运算规则。
此外,学生还需了解运算顺序,即先乘除后加减。
2. 分数运算分数运算在小学奥数中也是常见的题型。
在解决分数运算题时,可以使用找最小公倍数、通分、约分等方法来简化计算过程。
同时,还需要熟练掌握分数的加减乘除规则。
3. 算式变换奥数题目中常会涉及算式的变换。
在解题时,可以通过交换律、结合律、分配律等运算法则,将原始算式转化为更简单的形式。
这样能够加快解题速度,提高解题效率。
4. 排列组合排列组合是奥数中的重要概念。
当遇到排列组合问题时,可以运用阶乘、组合数等数学方法来求解。
同时,可以通过画图、列式等方式辅助理解问题,找到更简洁的解题方法。
5. 逻辑推理逻辑推理题目在小学奥数中也经常出现。
解决这类题目时,学生需要运用逻辑思维和分析能力。
可以通过分情况讨论、排除法等方式来找到正确答案。
6. 图形推理图形推理题是小学奥数中较为复杂的题型之一。
解决这类题目需要运用几何知识和图形分析能力。
学生可以通过观察图形的形状、对称性、旋转等特点,找到规律并推理出正确答案。
三、解题技巧除了上述的解题方法外,还有一些解题技巧可以帮助学生更好地解决奥数题目。
1. 多做题目做更多的奥数题目有助于提高解题能力和熟练度。
通过大量练习,学生可以熟悉各类题型的解题方法,掌握常用的技巧和思路。
2. 学会总结每次做完一道题目后,及时总结解题过程中使用的方法和思路。
这样可以帮助学生记住解题思路并且提高解题能力。
3. 理解题意在解题过程中,要仔细阅读题目,理解其中的条件和要求。
只有正确理解题意,才能有针对性地运用相应的解题方法。
推荐小学奥数问题精讲(精心整理) XXX奥数教学如何学好奥数?1、直观画图法:解奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。
2、倒推法:从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。
3、枚举法:奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。
我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的答案。
4、正难则反:有些数学问题如果你从条件正面出发考虑有困难,那么你可以改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。
5、巧妙转化:在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
6、整体把握:有些奥数题,如果从细节上考虑,很繁杂,也没有必要,如果能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、局部与整体的内在联系,“只见森林,不见树木”,来求得问题的解决。
第一讲第一题:时钟问题有一个一直每小时快20秒,它3月1日中午12点准确,下一次准确的时间是什么时间?(5月30日12时)答:一圈快20x12=240秒=4分,一共要快几圈才会正好对准标准时间12x60÷4=180(圈),换算成是几日180x12=2160时=90日,3月1日中午12时+90日=5月30日12时第二题:几何问题如图,ABC是等腰直角三角形,D是半圆周的中点,BC 是半圆的直径.AB=BC=10,那么阴影局部的面积是几何?(圆周率取3.14)1 -答:第三题:和差倍问题答:假设杨树、柳树和槐树棵树分别为:a、b和c,由题意可得:易获得三种树分别为:825、XXX、315棵第四题:行程问题甲、乙二人进行游泳追逐赛,规定两人分别从游泳池50米泳道的两头同时开始游,直到一方追上另一方为止,追上者为胜。
小学奥数高分答题技巧小学奥数是一项旨在培养学生数学思维和解题能力的竞赛。
在这个竞争激烈的赛场上,想要获得高分需要一定的技巧和策略。
本文将介绍一些小学奥数高分答题技巧,帮助学生在比赛中取得优异成绩。
一、熟练掌握基础知识要想在小学奥数中取得高分,首先需要熟练掌握基础知识。
这包括数学的四则运算、分数、百分数、小数、比例、面积和周长等概念的理解和掌握。
建议学生在平时的学习中注重对基础知识的反复强化,通过做大量的基础题来提高自己的熟练度和解题速度。
二、积累题目类型小学奥数的题目类型较多,包括选择题、填空题、计算题和解答题等。
不同类型的题目要求解答的方法和思路也不尽相同。
因此,学生需要在平时的学习中积累各种类型的题目,熟悉解题思路和方法。
通过大量的练习,学生能够迅速识别题目类型,从而更加高效地解题。
三、注重分析问题解题过程中,学生需要养成注重分析问题的习惯。
在阅读题目时,要仔细理解题目的意思,明确题目所要求解决的问题。
分析问题的关键点,捕捉题目中的关键信息。
这样能够帮助学生更好地把握解题思路,避免偏离方向导致解题错误。
四、灵活运用策略在小学奥数中,灵活运用策略是取得高分的关键。
一些常用的策略包括:找规律、逆向思维、代数方法、图形转化等。
通过学习和练习,学生可以掌握这些策略,并在解题过程中运用到实际操作中。
对于一些复杂的题目,应该采用合适的策略进行解答,提高解题的效率和准确性。
五、尝试多种解法在解答小学奥数题目时,尝试多种解法是一个有效的策略。
有些问题可以有多种解法,通过尝试不同的方法,可以提高思维的灵活性和解决问题的能力。
同时,多种解法的比较也能够加深对数学概念和原理的理解,培养学生的数学思维能力。
六、注重时间管理在小学奥数的比赛中,时间是一项重要的考验。
学生需要合理安排时间,控制解题的速度。
不同题目的难度和所需时间各不相同,需要学生在比赛过程中根据题目难度合理安排时间。
对于一些难度较大的题目,可以先跳过,待时间充裕时再回过头来解答。
第一讲观察法在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。
书中除图1-1的图形外没有文字说明。
这道题旨在引导儿童观察、思考,初步培养他们的观察能力。
这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。
实质上,这是一种幻方,或者说是一种方阵。
解:现在通过观察、思考,看小方格中应填入什么数字。
从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。
从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。
从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。
从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。
从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。
又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。
图1-5是填完数字后的幻方。
例2看每一行的前三个数,想一想接下去应该填什么数。
(适于二年级程度)6、16、26、____、____、____、____。
小学奥数辅导35个专题汇总2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
举一反三小学奥数解题技巧大全100讲(十)51、割补、拼接、截割【割补】在数学中,把图形的某个部分割下,补到某一个新的位置,往往可以使新的图形,更便于发现数量关系,从而较快地解答出数学题目。
例如,在图4.38中,三个圆的面积都是12.56平方厘米,且三个圆两两相交,三个交点都是圆心,求三块阴影部分的面积。
从表面上看,题目是无法解答的。
但只要仔细观察就能发现,根据轴对称性及割补方法,题目可作如下的解答:如图4.39,将图形1翻折到图形2的位置;再将图形3和4割下来,合并在一起,补到图形5的位置上。
于是,原来的阴影部分就正好拼成了一个半圆。
所以,三块阴影部分的面积是12.56÷2=6.28(平方厘米)【拼接,截割】(1)平面图形的拼接、截割。
拼接和截割,是两个相反的过程。
平面图形的拼接是把两个或两个以上的图形拼接在一起;平面图形的截割,是把一个图形截割成两个或两个以上的图形。
平面几何图形拼接或截割以后,面积和周长的变化有以下规律:①两个或两个以上的图形拼接成一个新的几何图形,它的面积等于原来若干个几何图形的面积之和;而周长却会比原图形周长之和要短。
如果拼接部分的总长度为a,那么拼接后减少的周长就是2a。
②把一个平面几何图形截割以后,各小块图形的面积之和,等于原图形的面积;但截割后各小块几何图形的周长之和,要比原图形的周长要长。
若所有截割部分长度为a,那么截割后增加的长度就是2a。
依据这一规律,可快速地解答一些几何问题。
例如,如图4.40,正方形被均分为大小、形状完全相同的三个长方形,每个长方形周长都是48厘米,求正方形的周长。
解题时,可以把大正方形看成是三个小长方形拼接而成的,三个小长方形的拼接部分,都是小长方形的长,长度等于大正方形的“边长”。
拼接以后的图形(大正方形)的周长,比原来的三个小长方形的周长之和,要减少4个“边长”,而这4个“边长”正好相当于大正方形的周长。
这就是说,三个小长方形的周长之和里,刚好包含有两个大正方形的周长。
41、简单方程的解法【一元一次方程解法】求方程的解(或根)的过程,叫做解方程。
解一元一次方程的一般步骤(或解法)是:去分母,去括号,移项,合并同类项,两边同除以未知数x的系数。
解去分母,两边同乘以6,得3(x-9)-2(11-x)=12去括号,得3x-27-22+2x=12移项,得3x+2x=12+27+22合并同类项,得5x=61【分式方程解法】分母中含未知数的方程是“分式方程”。
解分式方程的一般步骤(或方法)是:(1)方程两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根,是原方程的增根,必须舍去。
解方程两边都乘以x(x-2),约去分母,得5(x-2)=7x解这个整式方程,得x=-5,检验:当x=-5时,x(x-2)=(-5)(-5-2)=35≠0,所以,-5是原方程的根。
解方程两边都乘以(x+2)(x-2),即都乘以(x2-4),约去分母,得(x-2)2-16=(x+2)2解这个整式方程,得x=-2。
检验:当x=-2时,(x+2)(x-2)=0,所以,-2是增根,原方程无解。
42、加法运算定律【加法交换律】两个数相加,交换加数的位置,它们的和不变。
这叫做“加法的交换定律”,简称“加法交换律”。
加法交换律用字母表达,可以是a+b=b+a。
例如:864+1,236=1,236+864=2,100【加法结合律】三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加,它们的和不变。
这叫做“加法的结合定律”,简称“加法结合律”。
加法结合律用字母表达,可以是(a+b)+c=a+(b+c)。
例如:(48928+2735)+7265=48928+(2735+7265)=48928+10000= 5892843、几何图形旋转【长方形(或正方形)旋转】将一个长方形(或正方形)绕其一边旋转一周,得到的几何体是“圆柱”。
小学奥数辅导35个专题汇总1.和差倍问题2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
小学奥数精讲:对策问题之必胜策略知识点总结:一取余制胜(取棋子,报数游戏)1.每次取1~n个棋子,总数,取最后一个赢策略:总数÷(1+n)有余则先,拿掉余数,之后总与对手凑成1+n即可无余则后,总与对手凑成1+n即可2. 每次取1~n个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。
所以想赢的关键就在于能不能取到倒数第二枚棋子。
问题转化为:每次取1~n个棋子,总数,取倒数第二枚棋子赢。
(总数-1)÷(1+n),之后同1中做法。
二.抢占制胜点(倒推法)1. 能一步到棋子的位置均是不能走的地方即负位2. 处处为别人着想。
自己不能走的地方逼别人走进去即可,即确定制胜点。
三.对称法1. 同等情况下,模仿对方步骤可以达到制胜目的。
2. 不同等情况下,创造对等局面方可制胜。
1.桌子上放着100根火柴,甲、乙二人轮流每次取走1~5根。
规定谁取走最后一根火柴谁获胜。
如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:100÷(1+5)=16 (4)有余数,先拿必胜,甲必胜。
(1)甲先拿4个;(2)乙拿a个,甲就拿6-a个2.甲乙两人轮流报数,报出的数只能是1~7的自然数。
同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜。
请问必胜的策略是什么?分析:80÷(1+7)=10无余数,后拿必胜。
甲拿a个,乙就拿8-a个必胜3.1000个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。
规定将棋子移到最后一格者谁赢。
甲为了获胜,第一步必须向右移多少格?分析:(1000-1)÷(1+7)=124 (7)有余,先走必胜。
(1)甲先走7格(2)乙走a格,甲就拿8-a个必胜4.5张扑克牌,每人每次只能拿1张到4张。
谁取最后一张谁输。
必胜的策略是什么?分析:先拿4张,留给别人1张就行。
5.现有1000根火柴,甲乙两人轮流去拿,每人每次最少拿1根,最多拿7根,谁取最后一根谁输。