高等数学-第八章 多元函数微分学
- 格式:ppt
- 大小:1.22 MB
- 文档页数:54
高等数学a1上教材第八章第八章:多元函数微分学第一节:二元函数的极限和连续性在高等数学A1上教材的第八章中,我们将学习多元函数微分学的基础知识。
本章的第一节将介绍二元函数的极限和连续性。
1. 二元函数的极限在前几章中,我们已经学习了一元函数的极限,而二元函数的极限则更加复杂一些。
对于二元函数f(x,y),当自变量的取值趋近于某个点(x0,y0)时,如果函数值f(x,y)也趋近于一个确定的值L,我们就说函数在点(x0,y0)处有极限,并记作lim_{(x,y)→(x0,y0)}f(x,y)=L。
2. 二元函数的连续性当一个二元函数在其定义域上的每一点处都有极限,并且极限与函数值相等时,我们称该二元函数在定义域上连续。
在这种情况下,我们可以简单地说,对于函数f(x,y),当(x,y)→(x0,y0)时,f(x,y)→f(x0,y0)。
第二节:二元函数的偏导数与全微分在第八章的第二节中,我们将继续探讨二元函数的偏导数与全微分。
1. 二元函数的偏导数对于一个二元函数f(x,y),我们可以对其分别关于x和y求偏导数。
偏导数衡量了函数在某一点上沿着某个方向的变化率。
偏导数分为偏导数和哥伦布第二积分。
2. 二元函数的全微分全微分指的是二元函数在某一点附近的线性逼近。
通过全微分,我们可以用一个线性函数来近似描述二元函数的变化。
全微分也可以通过偏导数来计算。
第三节:多元函数的极值与条件极值第八章的第三节将详细介绍多元函数的极值和条件极值。
1. 多元函数的极值对于一个多元函数f(x1,x2,...,xn),如果存在一个点(x1,x2,...,xn),使得在其附近的任意点(x1+Δx1,x2+Δx2,...,xn+Δxn)上,函数值均小于等于f(x1,x2,...,xn),则称该点为函数f的极小值点。
同理,如果在其附近的任意点上,函数值均大于等于f(x1,x2,...,xn),则称该点为函数f的极大值点。
2. 多元函数的条件极值有时,我们需要在一定条件下寻找多元函数的极值点。
(完整版)高等数学(同济版)多元函数微分学练习题册.doc第八章多元函数微分法及其应用第一作一、填空:1. 函数 z ln(1 2 )y x23x y 的定义域为x12. 函数 f (x, y, z) arccosz的定义域为y 2x 23. 设 f ( x, y) x 2 y 2 , (x) cos x, ( x) sin x, 则f [ (x), (x)].sin xy .4. lim xx 0二、(): 1. 函数1的所有断点是 :sin x sin y(A) x=y=2n π( n=1,2,3,?);(B) x=y=n π (n=1,2,3, ?) ; (C) x=y=m π (m=0, ±1,± 2,? );(D) x=n π ,y=m π (n=0, ± 1,± 2,?,m=0,± 1,± 2,? )。
答:()sin 2( x 2 y 2 , x 2y 22. 函数 f (x, y)x 2 y 2在点( 0, 0):2 ,x 2 y 2( A )无定;(B )无极限;( C )有极限但不;( D )。
答:()三、求 lim2xy 4 .x 0 xyya四、明极限 limx 2 y 22 不存在。
2 2xx y ( x y)y 0第二节作业一、填空题:1 sin( x2 y), xy 01. 设 f ( x, y)xy ,则 f x (0,1) .x 2 ,xy2. 设 f (x, y)x ( y 1) arcsinx, 则 f x ( x,1).y二、选择题(单选):设 z 2x y 2 , 则 z y 等于 :( A) y 2 x y 2 ln 4; (B) (x y 2 ) 2 y ln 4; (C ) 2 y( x y 2 ) e x y 2 ;(D ) 2 y 4 x y 2 .答:()三、试解下列各题:1. 设 z ln tan x , 求 z, z .2. 设 z arctan y, 求2z .y x yxx y四、验证 rx 2 y 2 z 2 满足2r2r2r 2 .x 2 y 2 z 2r第三节作业一、填空题:1. 函数 zy 当x 2, y时的全增量z全微分值x 1, x 0.1, y0.2dz.y2. 设z e x , 则dz.二、选择题(单选):1. 函数 z=f(x,y) 在点 P 0( x 0,y 0)两偏导数存在是函数在该点全微分存在的:( A )充分条件;( B )充要条件;( C )必要条件;( D )无关条件。
高等数学教材第八章第八章:多元函数的微分学第一节:多元函数的极限与连续性在高等数学中,多元函数是指与多个自变量相关的函数。
多元函数的微分学则是研究多元函数的导数、极限和连续性的数学分支。
多元函数的极限是指当自变量趋于某一点时,函数值的变化趋势。
与一元函数类似,我们也可以讨论多元函数在某一点处的左极限、右极限,以及无穷远处的极限。
根据多元函数极限的定义,我们可以得到一元函数极限的特例。
多元函数的连续性则是指函数在某一点的极限等于函数在该点的函数值。
如果一个多元函数在定义域的每一点都是连续的,我们称其为连续函数。
与一元函数连续性的概念类似,多元函数的连续性包括点连续性和区间连续性两种情况。
第二节:多元函数的偏导数和全微分在研究多元函数的微分学时,最重要的概念之一就是偏导数。
偏导数是多元函数对于某个自变量的导数,而将其他自变量视为常数。
通过偏导数,我们可以研究多元函数在不同自变量方向上的变化情况。
与偏导数相关的概念是全导数和全微分。
全导数是指多元函数对于所有自变量的导数,而全微分则是全导数与自变量的微小增量之积。
全微分在多元函数微分学中具有重要的应用价值。
第三节:多元函数的微分多元函数的微分是指函数在某一点处的局部线性近似。
通过微分,我们可以求得函数在某点处的切线、法线以及在该点附近的变化情况。
多元函数的微分是通过偏导数和全微分推导而来的。
通过求得多变量的微分,我们可以进一步研究函数的最值、优化问题等。
第四节:多元函数的导数多元函数的导数是指函数在某一点处的变化率。
与一元函数的导数类比,多元函数的导数也可以用于求得函数的极值、切线与法线方程等问题。
多元函数的导数是通过偏导数推导而来的。
通过求得各个自变量的偏导数,并将其组合成一个向量,我们可以得到多元函数的导数。
第五节:多元函数的高阶导数多元函数的高阶导数是对多层次的导数求导的结果。
与一元函数的高阶导数类似,多元函数的高阶导数可以用于求函数的高阶变化率,进一步研究函数的性质和行为。
高等数学下册复习提纲第八章 多元函数微分学本章知识点(按历年考试出现次数从高到低排列):复合函数求导(☆☆☆☆☆)条件极值-——拉格朗日乘数法(☆☆☆☆) 无条件极值(☆☆☆☆)曲面切平面、曲线切线(☆☆☆☆) 隐函数(组)求导(☆☆☆)一阶偏导数、全微分计算(☆☆☆) 方向导数、梯度计算(☆☆) 重极限、累次极限计算(☆☆) 函数定义域求法(☆)1. 多元复合函数高阶导数例 设),,cos ,(sin yx e y x f z +=其中f 具有二阶连续偏导数,求xy zx z ∂∂∂∂∂2及。
解y x e f x f xz+⋅'+⋅'=∂∂31cos , y x y x y x y x e e f y f f e x e f y f y x zx y z ++++⋅''+-⋅''+'+⋅''+-⋅''=∂∂∂=∂∂∂])sin ([cos ])sin ([33323131222析 1)明确函数的结构(树形图)这里yx e w y v x u +===,cos ,sin ,那么复合之后z 是关于y x ,的二元函数.根据结构图,可以知道:对x的导数,有几条线通到“树梢”上的x ,结果中就应该有几项,而每一项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,“按线相乘,分线相加”.2)31,f f ''是),cos ,(sin ),,cos ,(sin 31yx y x e y x f e y x f ++''的简写形式,它们与z 的结构相同,仍然是y x e y x +,cos ,sin 的函数。
所以1f '对y 求导数为zu vwxx y yy x e f y f yf +⋅''+-⋅''=∂'∂13121)sin (。
第八章 多元函数微分法及其应用一、多元函数的基本概念1平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概 念 2、多元函数的极限lim f(x, y)=A (或 lim f(x,y)=A )的;-' 定义(x,y)「(x °,y o)P「P )掌握判定多元函数极限不存在的方法:(1) 令P(x, y)沿y 二kx 趋向P(x o ,y o ),若极限值与k 有关,则可断言 函数极限不存在;(2) 找两种不同趋近方式,若 lim f (x, y)存在,但两者不相等,(x,y )Tx o ,y o )此时也可断言极限不存在。
多元函数的极限的运算法则(包括和差积商,连续函数的和差积商, 等价无穷小替换,夹逼法则等)与一元类似:例1•用…定义证明(侧0,0)(x 2+y 2)sin 击=02 + 2例2(03年期末考试三、15 分当X>0,y >0时,函数x2;(;2_y)2的极限是否存在?证明你的结论。
xy 2 2 2 2 , x y = 0x y ,讨论 lim f (x, y)是否存在?(x,y )T(0,0)3卫, x 2+ y 2=0(JiH ,。
)f (X,y )是否存在?例 3 设 f (x, y) =2 例4(07年期末考试 一、2,3分)设f(x, y)=Q2 xy2 .4x y2 2小,x y =0 ,讨论x 2y 2二 0x3、多元函数的连续性台(Jim )f (x, y)= f (X o ,y o )(x,y) --- (X 0,y 0 )一切多元初等函数在其定义区域内都是连续的,定义区域是指包含 在定义域内的区域或闭区域。
在定义区域内的连续点求极限可用“代入法”点(0,0)不连续,但存在一阶偏导数。
4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理二、多元函数的偏导数 1、二元函数z = f (x, y)关于x, y 的一阶偏导数的定义(二元以上类似定义)f(X0pX,y 0)— f(X 0,y 0)存在,则有y 看成常数!所以求偏导数本质是求一元函数的导数。
《高等数学B》第八章多元函数微分学第五节隐函数的求导公式隐函数的求导公式是多元函数微分学中的重要内容,它用于求解由隐函数所表示的依赖关系中各个变量之间的导数关系。
在高等数学B的第八章多元函数微分学的第五节中,我们将对隐函数的求导公式进行详细的讲解。
隐函数求导的基本概念是指,当我们无法将一个方程直接表示为一些变量的函数形式时,采用隐函数的方法来表示。
例如,研究一个平面上的曲线,其方程可能为x^2+y^2=1,这时我们无法将y表示为x的函数形式,需要通过隐函数的方法来描述。
假设我们有一个方程F(x,y)=0。
为了求解这个方程中各个变量之间的导数关系,我们需要使用隐函数的求导公式。
隐函数的求导公式有两个主要的表达形式,分别是全导数形式和偏导数形式。
全导数形式的隐函数求导公式如下:如果F(x,y)=0确定了y作为x的隐函数,则有dy/dx = (-∂F/∂x) / (∂F/∂y)偏导数形式的隐函数求导公式如下:如果F(x,y)=0确定了y作为x的隐函数,则有∂F/∂x + ∂F/∂y * dy/dx = 0这两个形式的隐函数求导公式本质上是等价的,只是表达方式不同。
在实际使用中,我们可以根据具体的问题需求选择使用哪种形式。
一般情况下,全导数形式的隐函数求导公式更加方便使用,因为它可以直接得到dy/dx的表达式。
在使用隐函数的求导公式时,需要注意以下几点:1.隐函数的求导公式适用于隐函数与自变量之间存在函数依赖关系的情况。
如果隐函数表达式中各个变量之间不存在函数依赖关系,即不能确定y作为x的隐函数,那么隐函数的求导公式不成立。
2.在使用隐函数的求导公式时,需保证方程F(x,y)=0是连续可导的。
如果方程不满足这个条件,则隐函数的求导公式不适用。
3.在具体计算的过程中,需要注意使用链式法则等导数计算法则进行化简。
隐函数的求导公式是多元函数微分学中的重要工具,它在数学和物理等领域中有广泛的应用。
通过隐函数的求导公式,我们可以推导出很多重要的结果和定理,例如隐函数存在定理、隐函数的导数等。