第四章-等参元和数值积分
- 格式:pdf
- 大小:676.11 KB
- 文档页数:32
《有限元基础及应用》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:有限元法是求解复杂工程问题进行数值模拟非常有效的方法,是现代数字化科技的一种重要基础性原理。
将它应用于科学研究中,可以成为探究物质客观规律的先进手段;将它应用于工程技术中,可成为工程设计和分析的可靠工具。
有限元法已经成为机械工程、车辆工程、航空航天工程、土木建筑等专业的必修课或选修课,有限元商用软件也是广大工程技术人员从事产品开发、设计、分析,以及生产服务的重要工具。
通过本课程的学习使同学们掌握有限元分析方法的基础知识和原理;掌握大型有限元分析软件(ANSYS)的使用;有限元方法的实际应用:能够针对具有复杂几何形状的变形体完整获取复杂外力作用下它内部准确力学信息,在准确进行力学分析的基础上,可以对所研究对象进行强度、刚度等方面的判断,以便对研究结构进行静态、动态的强度和刚度分析、参数设计以及结构优化设计。
内容由浅入深,通俗易懂,结合实践应用分析,培养学生理论联系实际和解决实际问题的能力。
(二)课程目标:课程目标1:掌握有限元方法的基本原理,分析过程和步骤,形函数的构造方法,以及针对不同维度、不同结构准确选择合适的单元的技巧;课程目标2:掌握有限元分析方法,具有对不同工程问题建立相应力学模型再选取适合的有限元模型离散,最后得到高精度低成本的数值模拟结果;课程目标3:利用有限元原理和应用软件(ANSYS),能够针对车辆结构中具有复杂几何形状的零部件完整获取复杂外力作用下其内部的准确力学信息(位移、应力和应变),并能根据强度、刚度、稳定性及疲劳等进行分析判断结构的安全性,具有分析和解决工程实际问题的能力;课程目标4:掌握大型商用有限元软件(ANSYS)对车辆结构部件的静力学、动力学和多物理场耦合问题进行数值模拟和分析。
能够了解不同单元的适用范围以及有限元方法数值模拟的局限性。
(三)课程目标与毕业要求、课程内容的对应关系本课程支撑专业培养计划中毕业要求1、2、3、5。
等参单元及其应用摘要本文主要讲述等参单元的原理及其对有限元法工程应用的意义。
等参单元的数值积分方法,等参单元刚度矩阵的数值积分方法及确定积分阶的原理。
全积分、减缩积分单元讨论和评价。
线性等参单元和非协调元,全积分、减缩积分线性等参单元和非协调元有关问题的分析讨论。
关键词等参单元; 数值积分; 应用1.引言用有限元法划分单元时,单元的节点数越多,单元精度越高。
因此在这一点上,矩形单元优于简单三角形单元,六面体单元优于四面体单元。
但单独使用矩形或长方体单元都不能模拟任意形状几何体,且网格中单元大小无法过渡。
所有上述单元都是直线边界,处理曲边界几何体误差较大。
解决上述矛盾的途径是突破矩形单元和长方体单元几何上的限制,使其成为平面任意四边形和空间任意六面体单元,如果再增加边中间节点,还可以成为曲边四边形和曲面六面体高精度单元。
任意四边形和任意六面体单元的位移模式和形函数的构造不能沿用前面构造简单单元时采用的总体坐标多项式位移函数插值的方法,必须通过所谓的等参变换建立单元局部坐标,采用相同的插值函数对单元节点的总体坐标和节点位移在单元上进行插值。
这类单元称为等参单元。
等参单元的提出对于有限元法在工程实践中的应用具有重要意义。
2.等参单元的数值积分方法2.1 高斯数值积分的基本概念一维高斯数值积分公式:i ni i H x f dx x f I )()(111∑⎰=-== 其中:积分点-i x ,积分点数目,积分阶-n ,权重系数-i H结论:n 阶高斯积分公式对 2n-1 次多项式被积函数可求得精确积分! 同理,对二维高斯积分:),(),(111111i i j n i nj i F H H d d F I ηξηξηξ∑∑⎰⎰==--==积分公式对ξ,η方向最高方次为 2n-1 的多项式可求得精确值。
2.2 减缩积分的原理实际应用中选取的积分阶往往可以低于被积函数所有项次精确积分所需要的阶数,这种积分方案称为减缩积分。
(3001)《固体力学》专业综合考试内容:一、结构力学1. 静定与静不定杆系结构内力求解-力法;2. 杆系结构的位移解法(直接刚度法);3.薄壁工程梁理论;4. 结构力学中的能量原理及其应用。
包括应变能及余应变能、虚功原理、最小位能原理、最小余能原理、卡氏定理、单位载荷定理、叠加原理与位移互等定理。
二、弹性力学1. 平面问题的基本理论。
包括平面问题的平衡微分方程、几何方程、物理方程、及应力函数、逆解法与半逆解法等;2. 平面问题的直角坐标解答。
包括多项式解答、矩形梁的纯弯曲、简支梁受均布荷载等;3. 平面问题的极坐标解答。
包括极坐标中的平衡微分方程、几何方程、物理方程、轴对称应力和相应的位移等;4. 空间问题的基本理论。
包括空间问题的平衡微分方程、主应力与应力主向、几何方程、物理方程、轴对称问题及球对称问题的基本方程等;5. 弹性力学中的变分解法。
弹性体的位移变分方程及最小势能原理,基于最小势能原理的近似解法,应力变分方程及最小余能原理,基于最小余能原理的近似解法。
三、有限元方法及应用1.有限元法中的变分原理。
包括最小位能原理、最小余能原理、广义变分原理、修正变分原理等。
2. 有限元方法的一般性原理和表达格式; 3. 单元和插值函数的构造;4. 等参元和数值积分。
四、结构振动理论1.单自由度系统自由振动。
包括能量法,无阻尼自由振动,有阻尼衰减振动。
2.单自由度系统强迫振动。
包括简谐激励下的响应,强迫振动的复指数解法,频响函数与频域分析。
3.多自由度系统的振动。
包括拉格朗日方程,实模态分析,复模态分析,假设模态法。
参考书目:1. 结构力学基础,黄其青,王生楠编,西安:西北工业大学出版社2. 飞行器结构力学,王生楠主编,西安:西北工业大学出版社3. 弹性力学,吴家龙编著,北京:高等教育出版社4. 有限元法中的变分原理,王生楠编,西安:西北工业大学出版社5. 有限单元法王勖成编著,北京:清华大学出版社,20036. 振动理论及应用方同,薛璞著,西安:西北工业大学出版社。
⼒学课程课程名:理论⼒学(I)Theoretical Mechanics (I)理论⼒学主要通过讲解⼒学的基本概念、定理及其应⽤,介绍处理⼒学问题的基本⽅法。
核⼼任务是利⽤⽜顿定律和分析⼒学原理建⽴质点、质点系和刚体运动的微分⽅程。
作为理⼯科学⽣的基础⼒学课程,学习理论⼒学务必达到以下要求:准确理解基本概念,熟悉基本定理和公式并能灵活应⽤,学习⼀些研究⼒学问题的基本⽅法。
理论⼒学的课程可以按内容分为运动学、静⼒学和动⼒学三部分,也可以按研究⽅法分为⽜顿⼒学和分析⼒学两部分。
在《理论⼒学(I)》中,主要讲述⽜顿⼒学内容,包括:点的运动学、刚体运动学、复合运动、⼏何静⼒学、质点动⼒学、质点系动⼒学、刚体动⼒学。
课程包括基本理论⼒学实验。
先修要求:微积分、⼤学物理教材及参考书:李俊峰、张雄、任⾰学、⾼云峰,《理论⼒学》,清华⼤学出版社/Springer出版社;⾼云峰、李俊峰,《理论⼒学辅导与习题集》,清华⼤学出版社/Springer出版社。
课程名:理论⼒学(II)Theoretical Mechanics (II)理论⼒学主要通过讲解⼒学的基本概念、定理及其应⽤,介绍处理⼒学问题的基本⽅法。
核⼼任务是利⽤⽜顿定律和分析⼒学原理建⽴质点、质点系和刚体运动的微分⽅程。
作为理⼯科学⽣的基础⼒学课程,学习理论⼒学务必达到以下要求:准确理解基本概念,熟悉基本定理和公式并能灵活应⽤,学习⼀些研究⼒学问题的基本⽅法。
理论⼒学的课程可以按内容分为运动学、静⼒学和动⼒学三部分,也可以按研究⽅法分为⽜顿⼒学和分析⼒学两部分。
在《理论⼒学(I)》中,主要讲述分析⼒学内容,包括:分析⼒学基本概念、变分原理、拉格朗⽇⽅程、哈密顿⽅程。
先修要求:微积分、⼤学物理、理论⼒学(I)教材及参考书:李俊峰、张雄、任⾰学、⾼云峰,《理论⼒学》,清华⼤学出版社Springer出版社;⾼云峰、李俊峰,《理论⼒学辅导与习题集》,清华⼤学出版社/Springer出版社;⾃编补充讲义。