膜片钳技术资料汇编
- 格式:pdf
- 大小:222.40 KB
- 文档页数:64
丁香园膜片钳技术讨论区资料汇编整理人:xiaoxuanzi发起人:tianx7752006年6月目录第一节膜片钳技术介绍 (1)应用 (1)基本概念 (2)第二节仪器操作和维护 (3)仪器的使用 (3)噪声 (4)玻璃微电极的制备 (5)第三节实验操作 (7)1.细胞的分离、培养 (7)(1)心肌细胞 (7)(2)平滑肌细胞 (17)(3)其他细胞 (19)2.电极的拉制与电镀 (23)3.电极内外液与渗透压 (25)4.串联、封接、电极电阻 (28)5.补偿 (37)6.刺激方案 (40)7.动作电位记录 (42)8.电流记录 (42)(1)钙电流 (42)(2)钾电流 (45)(3)钠电流 (47)(4)其他电流 (48)9.穿孔 (50)10.单通道记录 (51)11.脑片 (54)12.数据分析与处理 (55)第四节 相关电子文献及书籍 (61)第一节 膜片钳技术介绍一、应用1.全细胞记录技术的应用[Cactuswzw](1)离子通道宏观性质的分析,例如,离子通道的性质和分类(电压门控通道、膜受体激活通道、配体门控通道、胞内第二信使激活通道等)(2)离子通道微观性质分析,例如单一离子通道活动的测定的测定,离子通道的构造,分布和机能的分析等。
(3)膜电容的测量及其对细胞分泌活动的研究。
(4)胞内钙离子浓度和钙通道电流的同时定量检测。
(5)组织切片的全细胞记录。
(6)植物细胞的电生理研究。
二、基本概念1.刚刚接触patch,有些概念都很模糊holding potential与command potential?Axon200B的放大器控制面板上有ext. command,又是什么东东?都分别什么时候给予?在我理解,pipette capacity compesation就是快电容补偿,而Cm补偿为慢电容补偿,那为何Axon200B的面板上在pipette capacitance compensation下面列了FAST和SLOW的magnitude以及时间常数的调节扭?[baxiansheng]Holding potential 是钳制电压,这是实验中从头至尾通过电极用于钳制细胞的一个电压,和膜电位的关系取决于采用的实验模式。
膜片钳技术参数一、膜片钳放大器系统(1)膜片钳放大器*1. 双电极膜片钳放大器用于细胞内和细胞外记录、膜片钳记录(全细胞、巨膜片、游离膜片)、电流测定法/伏安法、离子选择电极的测量、人工脂双层记录2. 电压钳模式下提供4种反馈电阻(50 MΩ、500 MΩ、5 GΩ、50 GΩ),可以测定0.2 pA~200 nA范围的电流。
电流钳模式下提供3种反馈电阻(50 MΩ、500 MΩ、5 GΩ),可以测定2 nA~200 nA 范围的电流。
3. 膜片钳放大器具有两个相同且独立的探头,为计算机控制,多数功能可通过点击鼠标而自动完成。
4. 全细胞膜电容补偿范围:Rf=500M时,Cm 1-100pF/Rs 400k-1000M串联电阻补偿范围:带宽:0.32-16kHz;校正值:0.4-1000M(500M时)5. 输出增益范围:主输出:1,2,5,10,20,50,100,200, 500, 1000, 2000;主输出滤波频率范围:4-极Bessel低通滤波(Hz):2Hz-30kHz (2)数模转换器1转换器为即插即用型设备,能被Windows系统自动识别。
*2 为一台单独的仪器,不跟膜片钳放大器组合为一台仪器。
具有丰富数量的模拟/数字输入/输出端口,方便在软件中进行额外的附加控制。
3 16位高分辨率、低噪声转换器。
模拟信号输入通道数:8;模拟信号输出通道数:8;数字输出通道数:8。
4 采样速率:1 Hz - 500 kHz。
5 输入电阻: 1 MΩ;输入型号;TTL兼容制系统,方便外接其他刺激器,隔离器等。
输出电阻:< 0.5Ω6 输出电流:±4mA;数字化噪音< 1 mV7 系统自带消除噪音功能。
最大输入信号±10 V;消除最大噪音幅度20 V;噪音消除:线频率50Hz和谐波至10 kHz;取消相应时间< 1 s(3)记录和分析软件*1. 分析程序可对数据脱机处理,不需要使用密码锁2. 既包含采样程序又包含分析程序3. 膜测试功能在记录每条扫描线时可计算串联电阻Ra和膜电容4. 如果施加了漏减功能,则可同时自动记录下漏减前后的电流5. 在对每条扫描线进行记录时,可采用两个不同的采样频率进行6. 可以设置灵活的基础刺激和条件刺激方式用来不间断记录长时程增强效应和长时程抑制效应(LTP/LTD)。
膜片钳技术膜片钳技术是一种用于夹持和夹持薄膜材料的高精度工具。
它被广泛应用于各种领域,包括医疗、电子、航空航天、光学等。
本文将介绍膜片钳技术的原理、应用、优势和未来发展方向。
膜片钳技术的原理是利用薄膜的柔性和弹性特性,将其夹持在两个夹持片之间,通过施加适当的压力来固定和控制膜片。
它的结构简单,通常由两个平行的金属夹持片组成,夹持片之间有一层薄膜,可以是金属、塑料或橡胶材料。
膜片钳技术在医疗领域中广泛应用于微创手术。
它可以用于夹持和处理各种组织样本,如血管、肾脏、肺部等。
膜片钳可以通过精确控制夹持力来保护脆弱的组织,减少手术风险和创伤。
此外,膜片钳还可以用于制作微小的缝线和缝合器,用于手术缝合和内脏重建。
在电子领域,膜片钳技术用于处理和夹持微小的电子元件。
由于膜片钳的夹持力可调节且均匀,它可以用于精确地定位和安装电子组件,确保元件之间的准确对齐和联系。
此外,膜片钳还可以用于处理柔性电路板和柔性显示屏等薄膜电子产品,保证其完整性和性能。
在航空航天领域,膜片钳技术用于夹持和固定航天器表面的绝热膜。
夹持膜片的合适压力可以确保膜片与表面的紧密贴合,提供良好的隔热性能,减少航天器受到的热能损失。
此外,膜片钳还可以用于夹持航天器的其他部件和设备,确保它们在运行过程中的稳定性和可靠性。
在光学领域,膜片钳技术用于夹持和夹持光学元件,如透镜、棱镜和滤光片。
膜片钳的夹持力和表面平整度可以确保光学元件的精确定位和对准度,从而提供高质量的光学性能和成像效果。
此外,膜片钳还可以用于夹持光学材料的样本,如光学薄膜和光学纤维,用于实验和测试。
膜片钳技术具有许多优势。
首先,它具有高精度和可调节的夹持力,可以适应不同材料和应用的要求。
其次,膜片钳结构简单,易于制造和操作。
此外,膜片钳具有快速响应和高灵敏度的特性,可以快速调整和控制夹持力。
最重要的是,膜片钳技术可以保护薄膜材料的完整性,减少损伤和污染的风险。
未来,膜片钳技术有许多发展方向。
丁香园膜片钳技术讨论区资料汇编整理人:xiaoxuanzi发起人:tianx7752006年6月目录第一节膜片钳技术介绍 (1)应用 (1)基本概念 (2)第二节仪器操作和维护 (3)仪器的使用 (3)噪声 (4)玻璃微电极的制备 (5)第三节实验操作 (7)1.细胞的分离、培养 (7)(1)心肌细胞 (7)(2)平滑肌细胞 (17)(3)其他细胞 (19)2.电极的拉制与电镀 (23)3.电极内外液与渗透压 (25)4.串联、封接、电极电阻 (28)5.补偿 (37)6.刺激方案 (40)7.动作电位记录 (42)8.电流记录 (42)(1)钙电流 (42)(2)钾电流 (45)(3)钠电流 (47)(4)其他电流 (48)9.穿孔 (50)10.单通道记录 (51)11.脑片 (54)12.数据分析与处理 (55)第四节 相关电子文献及书籍 (61)第一节 膜片钳技术介绍一、应用1.全细胞记录技术的应用[Cactuswzw](1)离子通道宏观性质的分析,例如,离子通道的性质和分类(电压门控通道、膜受体激活通道、配体门控通道、胞内第二信使激活通道等)(2)离子通道微观性质分析,例如单一离子通道活动的测定的测定,离子通道的构造,分布和机能的分析等。
(3)膜电容的测量及其对细胞分泌活动的研究。
(4)胞内钙离子浓度和钙通道电流的同时定量检测。
(5)组织切片的全细胞记录。
(6)植物细胞的电生理研究。
二、基本概念1.刚刚接触patch,有些概念都很模糊holding potential与command potential?Axon200B的放大器控制面板上有ext. command,又是什么东东?都分别什么时候给予?在我理解,pipette capacity compesation就是快电容补偿,而Cm补偿为慢电容补偿,那为何Axon200B的面板上在pipette capacitance compensation下面列了FAST和SLOW的magnitude以及时间常数的调节扭?[baxiansheng]Holding potential 是钳制电压,这是实验中从头至尾通过电极用于钳制细胞的一个电压,和膜电位的关系取决于采用的实验模式。
Patch clamp膜片钳实验学习资料Patch clamp膜片钳实验学习资料2011-06-03 10:26历史1976~1981年期间,两位德国细胞生物学家Erwin和Bert Sakmann所开创的膜片钳技术(patch clamp technique)为细胞生理学的研究带来了一场革命性的变化.两位科学家1991年荣获诺贝尔生理或医学奖.膜片钳技术是经微弱电流信号测量为基础的,利用玻璃微电极与细胞膜封接,可测量多种膜通道电流,其值可小到pA(10-12A)量级,是一种典型的低噪声测量技术.应当注意,为测量膜通道电流,必须将膜钳制于某一固定的电位上.理论生物电信号测量基础电路中,基本组成元件为电阻器(R)、电感器(L)和电容器(C).在生物系统中,电流的值很微弱(pA,10-12A~nA,10-9A).当细胞膜Na+通道开放时,一毫秒有104Na+跨膜,相当于1.6pA.生物测量电路中存在两种导电机构(电子和离子),需特制的电极和导电液体作为二者导电的接口.生物体中的电阻器和电容器等元件,可用欧姆定律描述,但呈严重非线性特性时,用曲线描述.几个基本定律:欧姆定律:电流I流经一电阻R时,将在其两端产生电位差V=IR基尔霍夫电流定律(KCL):电路中,任何时刻,对任一节点,所以支路电流的代数和恒等于零.基尔霍夫电压定律(KVL):电路中,任何时刻,沿任一回路内所有支路或元件电压的代数和等于零.电导器:电导是电导器对电流导电性能的电学量,用符号G表示,单位为西门子(S).而电阻是电路中电阻器对电流呈现阻力的电学量,用符号R表示,单位为欧姆(W).这两个电学量具有互补意义,互为倒数,即G=1/R.一个无穷大的电阻,其电导为零.电容器:电容是储存电荷的电容器的电学量,用符号C表示,单位为法拉(F).电容器的电容量与极板面积成正比,与极板之间的距离成反比,还与绝缘层的介电性质有关.当电容器两极板之间施加电压V时,则所存储的电荷Q=CV(单位:C-法拉,V-伏特,Q-库仑).细胞膜的电容常表示为每单位面积的电容量(比电容),几乎所有的脂质双分子层约有1mF/cm2的电容量.在电容器两端外接电压时,两极板之间将产生电场.细胞膜厚度约为10nm,若电压为100mv,则在膜产生很大的电场强度105V/cm.可被电压门控型离子通道的敏感机构所检测.细胞膜电路参数特征表述:脂质双分子层的介电特性可用电容C表示,离子通道则用电导G表示.可兴奋细胞膜的等效电路:根据基尔霍夫电流定律(KCL),可有Im=ic+Ii=Cm(dVm/dt)+(Vm-Er)/Rm=Cm(dVm/dt)+Gm(Vm-Er)其中,Vm-膜电位(V);Im-总膜电流;ic-电容电流;Ii-离子通道电流(A/cm2);Rm-膜的比电阻(W/cm2);Gm-膜的比电导(S/cm2);Cm-膜的比电容(F/cm2);Er-静息电位,但某一离子形成Ii时,则Er被平衡电位Ei(对应于离子i)所替代.可见,离子电流Ii取决于总的膜电导Gm与驱动力(势)(Vm-Er)的乘积.一般来说,细胞膜的离子电流是单个电流之和,即Ii=INa+Ik+ICl+×.每种离子产生的电流分量如INa=GNa(Vm-ENa).微电极与导电溶液微电极是生物测量中的传感器.从导电角度来看,某些含水的离子溶液,如血液,胞浆及海水均遵守欧姆定律.电流由两种离子运载,即阳离子和阴离子.当电流流过细胞膜离子通道时,选择性由一部分离子运载.电极上的电子与溶液中的离子进行变换可能会出现误差.常用电极为银/氯化银电极.细胞膜离子通道分类电压门控通道:膜受体门控通道:胞内第二信使激活的通道:通道电流的记录模式(recording configuration)细胞贴附式:用于单通道记录全细胞记录式:研究胞内第二信使时有着特殊的优势(但破膜后细胞变形,影响记录结果,可用穿孔膜片钳技术)膜外朝外式:用于单通道记录膜内朝外式:用于单通道记录膜片钳实验系统的组成机械部件:防震工作台,屏蔽罩,仪器设备架光学部件:显微镜,视频监视器,单色光系统电子部件:膜片钳放大器,刺激器,数据采集设备,计算机系统微操纵器:机械式,机电式,液压式玻璃微电极工艺玻璃毛坯管:有软玻璃(苏打玻璃,电石玻璃)和硬玻璃(硼硅玻璃,铝硅玻璃,石英玻璃)之分.软玻璃熔点低,易抛光,但1KHz的电导率是膜片记录的主要热噪声源(有较大的介电松弛特性)硬玻璃拉制后有较窄的末梢(较高的电阻);硼硅和硅硅玻璃有较好的噪声和介电松弛特性;石英玻璃特别适用于低噪声记录,但需激光源拉制.玻璃微电极拉制工艺:垂直式拉制仪,水平拉制仪电极熔锻仪和优化处理:一是为减小电极内部与溶液之间的电容(电极末梢数微米涂敷疏水材料硅酮树脂,以阻止液膜上爬);二是为了对电极尖端作优化处理(热抛光使电极尖端光滑,以提高封接成功率).电极流灌:为防止灰尘污染,置有盖容器内并需2~3小时内使用;电极内液充灌前最好用滤纸过滤.电极夹持器:可用甲醇清洗保持清洁浴池电极:浴池电极应该有一个稳定的电极电位并且不扰乱浴液成分.通常裸露的Ag/AgCl丝作为一种良好的浴池电极.然而Ag+仅能为某些细胞所承受,需用琼脂盐桥改善.技术膜片钳的工作模式(operating mode)电压钳模式(voltage clamp,VC):电流钳模式(current clamp,CC):用已知恒定的或者时变的电流作用于细胞,测量作用电流引起的膜电位的变化.实验前准备工作细胞活性状态:活细胞寿命比较短溶液准备:一般来说,浴液模仿自然的胞外环境,电极内液取代细胞溶质(胞液).胞外用浴液以公升为单位存放于冰箱,胞内用液以小容量(5~10ml)为单位冻存,实验前解冻.必须注意pH值和渗透压,亦需过滤.某些实验前的短时间内,需要向小容积(100~500ml)的电极充灌液中补加冻存物(如ATP,GTP,荧光染料,多种第二信使等)到一个Eppendorf管.实验步骤:两个重要环节高阻封接:电极与细胞膜形成封接的过程,可用示波器来观测当对电极施加一脉冲电压时的电极电流.在电极未入液前,可观测到一平坦的电流波形,混杂有电极和夹持器的杂散电容所形成的瞬态电流;当电极入液后,2mV的脉冲将产生1mA的电流通过约2MW的电极.当电极趋近细胞膜,并形成吉欧封接,将进一步增加电极电阻和减小电极电流.为证实吉欧封接的形成,可增加放大器的增益,观察到除脉冲电压的首尾两端电容性脉冲尖端电流外,电流波形仍呈平坦状.数据记录:以全细胞记录为例吸破膜片:负压或高电压脉冲参数补偿:从电路角度观察,当施加脉冲电压时,电极入口处因电极电容,入口电阻和膜电容的存在,构成一个较复杂的RC网络.当外加测试脉冲电压或命令电压时,将产生瞬态电流响应,严重干扰预期的测试结果.因此实验记录之前需要进行参数补偿,以获得实际的结果.为了消除这些参数的瞬态影响,膜片钳放大器均设有补偿电路.快电容补偿:电极电容Cp极小,仅几个pF,相应的电路时间常数很小,故对于Cp瞬态补偿称之.慢电容补偿:细胞膜电容约为1mF/cm2,此时的充电电流需流经串联电阻Rs(约几MW),时间常数较大(约100mS),故Cm的补偿称为慢电容补偿.串联电阻补偿:串联电阻跨接于Cp与Cm之间,当有电流经过时,产生可观的压降(如Rs=5MW,Ip=2mA,其导致钳制电位误差达10mV).因此需要消除这种误差的电路措施.数据记录:设置适当的放大器的带宽注意事项溶液:浴池和电极溶液渗透压和pH值;浴液中的二价离子具有屏蔽表面膜电荷的作用;许多有机化合物不易溶于水;氯离子Cl-是水溶液和Ag/AgCl丝电极之间的主要电荷传递离子(电子导电和离子导电的接口作用);失调电压(放大器的失调电压,电极电位,液结电位等);电极流灌液补加ATP等以维持细胞信号转导或某些离子电流的衰减;来自于容器,注射器,管子,针具及非高纯度化学试剂的污染.电极:电极本身的AgCl涂层受损;电极与生理盐水之间的电位问题(电极有气泡?电极与探头虚接?浴池电极未接通等)数据采集:存在问题有泄漏校正,保持电位的选择和刺激方案,采样频率的正确选择和滤波器设置.应用单通道电流记录技术细胞贴附式记录模式:细胞贴附式是最早使用的记录模式.由于单通道电流非常微弱,因此抑制噪声非常重要.膜片钳系统中的噪声成分除电子仪器噪声,电极噪声外,尚有封接噪声.因此高阻封接或吉欧封接是技术关键.为实现高阻封接,必须注意:细胞膜表面光洁,浴液干净无杂质和灰尘污染;电极材料宜用硬质玻璃,最好抛光并涂硅酮树脂以改良介电特性,降低噪声;具体封接技术经验非常重要(电极尖粘污灰尘;电极仅用一次;酶处理细胞浴液表面残渣;电极内液含Ca2+,则必须用HEPES缓冲液,以防止其与磷酸盐形成结晶;低渗透的(10%)电极溶液比较容易形成高阻封接).离体膜片的单通道电流记录在细胞贴附式记录模式基础上,派生出的膜外朝外式和膜内朝外式,因只剩下一个微小而独立的膜片,故称之为离体膜片(cell-free patch).此时细胞内,外环境均可人工控制,自由地对膜片上的单一离子通道进行调控和实验研究.离子通道的辨识可以通过门控机制,药物激活或阻塞来辨识.单一离子电流的记录数据所有的离子通道的开放和关闭处于一种随机和突变性的状态.也就是说,通道在导通和非导通两种状态下随机变化,其开放(关闭)概率由跨膜电压或配体结合所控制.从数学观点来看,这种特性是非确定的,不能用确切的明显的数学方程来描述.而只有用随机分析方法来处理(阈值检测法;直方图-幅度直方图和开关持续时间直方图).全细胞记录技术基本实验步骤:进行全细胞记录(whole-cell recording,WCR)时,电极内液应是低Ca2+的.电极尖端与细胞膜接触并形成吉欧封接使膜吸穿后,电极电位随即变为负值.将幅值几毫伏的阶跃电压通过电极作用于细胞膜,立即出现电容暂态响应.调节C-fast以消除电极电容(快电容)引起的暂态误差.对电极内腔施加一脉冲负压,直到细胞膜封接区吸破,以至电流大增,噪声也加大.进行膜电容补偿.一旦WCR模式形成之后,可将微电极稍微提升以减轻对细胞的压力.WCR实验可持续至少1小时而无衰变现象.若细胞紧贴培养皿,移开微电极时,有可能形成膜外朝外式.可以开拓应用:1.此方法对所选定细胞产生最少的膜损伤,而达到改变细胞内液目的;2.仅需更换微电极对某一细胞进行连续的不同内液的全细胞记录;3.借助此方法可以在一个实验中获得宏观的和单通道的数据.全细胞记录模式中的电极充灌:标准的电极内液:pH缓冲液(10mMHEPES,调节pH2.4);Ca缓冲液(10mM EGTA+1mM Ca,给定Cai 10nM);MgATP(~2mM;使ATP酶保持活性);自由Mg2+(~1mM,在许多胞液过程中,作为一种辅助因子);GTP(~0.1mM)用于涉及研究G蛋白的实验.ATP和GTP是不稳定的.电极内液含有核苷酸时应将其保持在冰冻状态,实验过程中,融化了液体必须置于冰块上.对于长程记录(30min),应使用ATP再生式系统,以避免ATP在电极中衰减.细胞通常含有谷胱甘肽,K+和Na+通道的失活依赖于电极内液的氧化还原电位,应当灌注5mM谷胱甘肽以防止产生异常现象.谷氨酸盐,MOPS和羟乙磺酸盐可替代胞内标准阴离子(Cl-)以保持负平衡电位.F-也可作为胞内阴离子,也穿透Cl-可通透的通道.F-优于Cl-地方在于形成封接和记录的稳定性.F-与Al3+形成AlF4,它是一种G蛋白有效激活剂;F-也是一种Ca2+缓冲剂,干涉Ca依赖性过程.因此对于涉及G蛋白和胞内信使的过程,使用F-是不合适的.穿孔膜片钳技术:为克服某未知因子进入电极而使细胞功能被冲洗的缺点,在细胞贴附模式下,应用穿孔剂而形成穿孔膜片钳(perforated patch clamp).胞内的关键扩散分子不能跨越膜上生成的孔道以避免冲洗现象的发生.常用穿孔剂:制霉菌素(Nystatin)和两性霉素(Amphotericin B)Nystatin是一种多烯抗生素类药物.Nystatin孔道具有特殊的性质.Nystatin对细胞封接的抑制作用(封接时电极尖端不能有穿孔剂).Nystatin不溶于水,对光线敏感(溶液必须进行超声处理和光屏蔽).全细胞记录技术的应用:离子通道宏观性质的分析(离子通道的性质和分类-电压门控通道,膜受体激活通道,配体门控通道,胞内第二信使激活通道等);离子通道微观性质分析(单一离子通道活动的测定,离子通道的构造,分布和机能分布等);膜电容的测量及其对细胞分泌活动的研究;胞内钙离子浓度和钙通道电流的同时定量检测;组织切片的全细胞记录;植物细胞的电生理研究.重要概念小结:全细胞记录技术是四种记录模式中应用最广泛的一种.建立全细胞模式的电路模型,可以对其功能进行电学分析,包括暂态分析,其时间常数近似为t=RsCm.对于复杂的神经细胞分析,可以采用分段建模的概念来解决.在全细胞记录模式中,电极内液与胞液之间的物质扩散与平衡,同样可以用分段建模的化学方法来分析.穿孔膜片钳是全细胞记录的派生模式,可以防止细胞内物质的流失而影响其功能.脑切片膜片钳技术优点:无需酶处理;应用高分辨率的记录技术在可分辨的神经元进行试验(组织结构相对完整);可与其它方法结合(胞内离子荧光测量,常规荧光成像,共聚焦激光扫描成象,多光子激光扫描成像)脑切片脑切片的制备与维护断头开颅切脑区置冰冷充氧盐水(1min)组织冷却(10min)修剪组织粘贴到切片台,并冰液覆盖振动切片(60~400mm,10min)切片孵育(备用(25℃以下,10h以内),实验用(32~37℃孵育约30min))(也可37℃孵育约30min 后转入25℃备用)脑组织的不同部位制备切片原则-保持神经元活性和树突不受损伤;依据所要研究的神经细胞确定切片的定位方向动物的品种与年龄新生动物-颅骨软,方便快速取出脑组织;脑组织小,置入冰冷生理盐水冷却快成年动物-脑组织坚韧,对缺氧敏感;组织髓鞘质多易致切片损伤脑切片膜片钳记录技术仪器设备样品器皿,记录腔,铂金丝,显微镜(差分干涉对比度显微镜DIC differential interference contrast或亮场光学显微镜BFO bright-field optics)(采用长波长的红外线可提高分辨率)电极内液和外液的配制标准电极外液:(mM,NaCl 125,KCl 2.5,CaCl2 2,MgCl2 1,NaH2PO4 1.25,NaHCO3 26,葡萄糖20)标准电极内液:依据实验目的(mM,KCl 140,MgCl2 2,CaCl2 1,EGTA 10,ATP 2,HEPES 10)切片上神经元和神经蚀质细胞的辨识视觉辨识:浅表细胞-显微镜下直接辨识;深层细胞-IR-DIC显微镜观察(也局限于4-0~50mm)荧光染料标记:染料从全细胞记录微电极注入;也可细胞浴液渗入.记录前的准备工作细胞清洗:对较深在的细胞,可用流体冲洗方法.选择细胞:好的细胞表面光滑,对比度好.记录用电极:电极相对细长以避免与物镜相触.电极阻值过大难于破膜,入口电阻(串联电阻Rs)大,也限制电极内液与细胞内部之间的物质交换.几种记录模式举例细胞贴附式:全细胞记录:膜外朝外式:双电极记录:脑切片膜片钳技术与其它方法的结合常规成像技术紫外光源(UV)照射到切片的某一区域.细胞载入荧光染料(Fura-2)后,其反射光特性发生变化.检测器可用CCD摄像机或光电倍增管PMT,均可测量细胞内钙离子浓度,荧光强度与钙通道电流.CCD的优点在于可以获得被测细胞(神经元)各个部分的图像.共聚焦成像技术激光源激发试样中的钙离子染料(Fura-2),其反射的荧光被检测.因激发光和荧光反射光在一特定的平面聚焦(共聚焦平面).因试样中的荧光仅为一薄的光学平面被检测(薄层光学断层),提高了空间分辨率,优于常规的荧光成像技术.多光子成像与常规荧光成像技术相比,提高三维分辨率;与菜聚焦成像相比,不依赖于特殊的光学设计,着眼于荧光染料的激发方式(激光源类型,波长).二-光子成像:由于激发光的波长较长,因而其散射和被吸收的概率很低;散射光子稀少以致其激发只限于一局部的焦点容积内.由于无需抑制聚焦平面以外的信息,所有的荧光光子都位于目镜之下并形成图像信息.多光子成像的优点:避免了紫外光照射对细胞的损伤(因低能量的激发波长在试样内狭窄聚焦平面内照射);减少了染料光漂白和细胞的光中毒损伤(因染料仅在试样的小范围内受照射);成像范围大(因激光波长大,穿透较深,可在样品深处收集图像信息).重要概念小结脑切片膜片钳技术是研究脑科学,特别是神经科学的重要方法.脑切片是从动物的脑区直接取出切割,其厚度可达500mm,常用的以200~300mm为宜.操作过程中,必须保持切片的活性.脑组织的结构复杂,为分清神经元的胞体,树突,突触等形态,以便于记录电极封接和记录,需要使用若干方法进行辨识(视觉辨识,荧光染料标记等).与单细胞记录类似,脑切片膜片钳记录也有细胞贴附式,全细胞,膜外朝外式等.膜片钳与成像技术结合可以得到更深入全面的信息(常规荧光成像,共聚焦激光扫描成像和多光子激光扫描成像).转自电生理网站。
膜片钳技术膜片钳技术80年代初发展起来的膜片钳技术(patch clamp technique)为了解生物膜离子单通道的门控动力学特征及通透性、选择性膜信息提供了最直接的手段。
该技术的兴起与应用,使人们不仅对生物体的电现象和其他生命现象更进一步的了解,而且对于疾病和药物作用的认识也不断的更新,同时还形成了许多病因学与药理学方面的新观点。
本文拟对膜片钳的基本原理及在心血管研究中的应用作一综述。
1膜片钳技术基本原理与特点膜片钳技术本质上也属于电压钳范畴,两者的区别关键在于:①膜电位固定的方法不同;②电位固定的细胞膜面积不同,进而所研究的离子通道数目不同。
电压钳技术主要是通过保持细胞跨膜电位不变,并迅速控制其数值,以观察在不同膜电位条件下膜电流情况。
因此只能用来研究整个细胞膜或一大块细胞膜上所有离子通道活动。
目前电压钳主要用于巨大细胞的全性能电流的研究,特别在分子克隆的卵母细胞表达电流的鉴定中发挥着其他技术不能替代的作用。
该技术的主要缺陷是必须在细胞内插入两个电极,对细胞损伤很大,在小细胞如中枢神经元,就难以实现,又因细胞形态复杂,很难保持细胞膜各处生物特性的一致。
膜片钳的基本原理则是利用负反馈电子线路,将微电极尖端所吸附的一个至几个平方微米的细胞膜的电位固定在一定水平上,对通过通道的微小离子电流作动态或静态观察,从而研究其功能。
膜片钳技术实现膜电流固定的关键步骤是在玻璃微电极尖端边缘与细胞膜之间形成高阻密封,其阻抗数值可达10~100 GΩ(此密封电阻是指微电极内与细胞外液之间的电阻)。
由于此阻值如此之高,故基本上可看成绝缘,其上之电流可看成零,形成高阻密封的力主要有氢健、范德华力、盐键等。
此密封不仅电学上近乎绝缘,在机械上也是较牢固的。
又由于玻璃微电极尖端管径很小,其下膜面积仅约1 μm2,在这么小的面积上离子通道数量很少,一般只有一个或几个通道,经这一个或几个通道流出的离子数量相对于整个细胞来讲很少,可以忽略,也就是说电极下的离子电流对整个细胞的静息电位的影响可以忽略,那么,只要保持电极内电位不变,则电极下的一小片细胞膜两侧的电位差就不变,从而实现电位固定。
丁香园膜片钳技术讨论区资料汇编整理人:xiaoxuanzi发起人:tianx7752006年6月目录第一节膜片钳技术介绍 (1)应用 (1)基本概念 (2)第二节仪器操作和维护 (3)仪器的使用 (3)噪声 (4)玻璃微电极的制备 (5)第三节 实验操作 (7)1.细胞的分离、培养 (7)(1)心肌细胞 (7)(2)平滑肌细胞 (17)(3)其他细胞 (19)2.电极的拉制与电镀 (23)3.电极内外液与渗透压 (25)4.串联、封接、电极电阻 (28)5.补偿 (37)6.刺激方案 (40)7.动作电位记录 (42)8.电流记录 (42)(1)钙电流 (42)(2)钾电流 (45)(3)钠电流 (47)(4)其他电流 (48)9.穿孔 (50)10.单通道记录 (51)11.脑片 (54)12.数据分析与处理 (55)第四节 相关电子文献及书籍 (61)第一节 膜片钳技术介绍一、应用1.全细胞记录技术的应用[Cactuswzw](1)离子通道宏观性质的分析,例如,离子通道的性质和分类(电压门控通道、膜受体激活通道、配体门控通道、胞内第二信使激活通道等)(2)离子通道微观性质分析,例如单一离子通道活动的测定的测定,离子通道的构造,分布和机能的分析等。
(3)膜电容的测量及其对细胞分泌活动的研究。
(4)胞内钙离子浓度和钙通道电流的同时定量检测。
(5)组织切片的全细胞记录。
(6)植物细胞的电生理研究。
二、基本概念1.刚刚接触patch,有些概念都很模糊holding potential与command potential?Axon200B的放大器控制面板上有ext. command,又是什么东东?都分别什么时候给予?在我理解,pipette capacity compesation就是快电容补偿,而Cm补偿为慢电容补偿,那为何Axon200B的面板上在pipette capacitance compensation下面列了FAST和SLOW的magnitude以及时间常数的调节扭?[baxiansheng]Holding potential 是钳制电压,这是实验中从头至尾通过电极用于钳制细胞的一个电压,和膜电位的关系取决于采用的实验模式。
而command voltage是在holding potential基础上施加的刺激方案,比如全细胞实验中可以设置Holding potential在-80mV,然后去极化至+10mV 400ms,那么这个去极化至+10mV的方波就是commandvoltage,当然command voltage的设置可以根据实验设置得更复杂。
Axon200B放大器控制面板的ext. command是用于接外接刺激器的,通过外接刺激器来施加command voltage,当然现在完全由计算机代替了。
pipette capacity是电极电容,因为时间常数小,所以称快电容,而Cm是膜电容,因为时间常数大,所以称为慢电容。
Axon200B的面板上在pipette capacitance compensation下面列了FAST和SLOW的magnitude以及时间常数的调节扭,那是对电极电容的补偿方式。
实际上电极电容中也有一些时间常数较大的成分,单纯补偿FAST效果并不完美,需要再稍稍调节一下SLOW。
2.我的课题是关于心血管系统中离子通道方面的研究。
离子通道一般有备用关闭状态(close),激活状态(active)和失活状态(inavtive)。
但最近我看文献有去激活状态,英文为deactivation,我想跟失活肯定不是一个概念,但又找不到确切的含义,有谁能帮我解释一下这几种通道状态个代表什么含义?[coolworm]C<----->O<------->I这里,C: 关闭O:开放I:失活激活(activation:从C到O的过程。
失活(inavtivation):从O到I的过程。
去激活(deactivation):I 回到C的过程。
3.请问,有没有人知道,电压钳和电流钳的区别,电流钳的英文是不是current-clamp?多谢![xuji007] 电压钳应该就是钳制住电压来测电流,电流钳就是钳制住电流来测电压。
电流钳就是current-clamp。
4.请教整流的定义,以及内向整流、外向整流的区别,我只知整流是一种电学特性,并且成为诸如钾通道分类的标准,但对上述确切含义还很模糊,请高手赐教![xuji007]我不是高手,只是谈谈自己的理解。
如果膜只是一个单纯的电阻的话,那么通过它的电流就应该和电压是线性的关系。
但由于通道的存在,这种线性关系就会被改变。
比如Ik1,它的电流随电压增大的趋势会随着电压的增大而逐渐减弱,也就是内向整流了。
还请高手之指正。
[dingyinyuan]所谓整流一般是相对离子通道电流的电压依赖性的线性关系而言,内向整流指离子通道电流随电压的升高而降低,I-V曲线位于相对偏向下。
如心肌细胞IK1 。
外向整流指离子通道电流随电压的升高而更高超过电压依赖性的线性关系电流值,I-V曲线位于相对偏向上。
[心潮澎湃]依据欧姆定律:R=U/I,若U增大,但是I不是按比例增大,即为整流。
若U增大,I增大的幅度减小,I-V曲线向下弯曲,则为内向整流,如IK1的部分外向电流,反之,如U增大,I增大的幅度增加,I-V曲线向上弯曲,则为外向整流,如ITO电流,整流与除极和复极有一定联系。
[baxiansheng]rectifying “整流”,是借用物理电子学的一个概念,大家都知道“整流二极管”,在一个方向电阻非常小,反向电阻非常大。
在通道电流中,是指这种通道的电流在一个方向上的电导(电阻的倒数)大,而反方向的电导小。
比如内向整流钾电流,是指电流内流时电导较小,外流时电导较大,在I-V曲线上不呈直线,而是零电流以上的部分斜率下降,呈抛物线状,亦及电导G=I/V变小(在通道电生理中,一般外向电流为正)。
在钾通道中,很多电流具有整流特性,比如乙酰胆碱敏感钾电流,ATP敏感电流等等。
delayed rectifying k+ channel 延迟整流钾通道,是特指的一种钾电流通道,在豚鼠上有表达,而在大鼠上几乎没有。
它具有整流的特性。
而且这个通道只具有激活们而没有失活门,当去极化激活后,电流不会象钠电流、钙电流、瞬时外向钾电流等随时间延长又自动失活,这大概就是它delayed的含义。
这个电流含有快成分和慢成分两种。
不知这样解释是否明白。
第二节 仪器操作和维护一、仪器的使用1.各位高手,本实验室刚买的一套设备, 膜片钳放大器是Axopatch 200B,采集卡是 digitizer 1200 ,软件是Axon公司的Pclamp 8.0,请问各位有没有使用相似设备的,能把你们放大器和采集卡interface的线路连接告诉我吗?还有,我们的微操纵器是***的液压的,那个架子是怎么安装到显微镜上面去的?[chianhuu]其实那么多接口,用到的并不多。
信号线是使用BNC线将放大器的scaled output连接信号器的 ANALOG IN 任意接口,这是采集信号。
将 放大器的 COMMAND INPUT(任意,分别对应于面板上两个旋钮,根据需要连接)连接信号器的 ANALOG OUT 1或2 。
HEADSTAGE 接电极HEAD。
最好能将放大器上的SIGNAL GROUND 和整台机器的公共接地端连接,抗干扰。
放大器连接电脑的接口用DIGITAL BOARD 。
其他的就不用了。
2.我看了几个单位的PATCH ,他们都没有要外加的刺激器和示波器.仅有PATCH CLAMP(AXONPATCH200和A/D(1322A)转换卡.我们想PATCH CLAMP 里有方波刺激,电脑显示屏能代替示波器.于是我们也参照他们的线路联接.结果就是不能正常地测电阻.谁能告诉我们AXONPATCH200B和A/D1322转换器正确的连接线路吗?1, 由PATCH CLAMP 和A/D组成的如何连接2. 由PATCH CLAMP 和A/D以及示波器组成的连线.[yangk2002](1),要不要刺激器,取决于实验设计。
如果只需要通过电极细胞内刺激,当然不需要刺激器。
而如果需要在细胞外产生刺激(例如刺激突触前递质分泌),则非用不可;(2)示波器显示变化比电脑快,有的实验室还用。
这是各人习惯问题,有人说用示波器“太土”,是一种不了解情况的说法;(3)接线方法有二:彻底搞清法(费时,但对今后有好处):仔细对照软件使用指南,上面有详细说明;囫囵吞枣法(省事,立即可用):照猫画虎,看别人的连接方法,然后拷贝别人的程序,保证可以运行。
是为抛砖引玉。
3.膜片钳采集软件Clampex的Acquisition Mode中Fixed-Length Events Mode和Variable-Length Events Mode是如何采样的?他们有何区别?主要用于那种实验?[刘振伟]Fixed-Length Events Mode用于诱发突触活动、动作电位等时间长度固定的信号采集。
在设定阈值的情况下,对阈上事件进行采样,对每个阈上事件的记录时间长度是固定的,但总的采集时间被记录下来。
记录也可受控于外部触发命令。
Variable-Length Events Mode用于通道关闭时间较长(静止期较长)的单通道记录。
在设定阈值的情况下,只对阈上事件进行采样,而对没有阈上事件发生的“静止期”则不采样,从而减小了所记录数据文件的容量。
4.请问,各位,我们用的200B的放大器,为什么总是超载呢?是软件设置的问题,还是硬件的问题(急)谢谢[upboom]我用的也是200B,以前我也碰到过overload的情况,提供几个方面的原因供你参考:(1)保证电极拉制质量,没有断头、过粗现象。
(2)holder和参比电极的银丝要镀得均匀,时间过久则需要重新镀银。
(3)接地良好。
(4)细胞外液、电极内液配制合理,渗透压、PH保证在正常范围内,并用滤膜过滤去除杂质细菌。
(5)入水后适当调节液接电位(我的offset值就调在4~5之间),如果是这方面原因,那么肯定会恢复正常的。
二、噪声1.我们用的是CEZ-2400型膜片钳放大器(NIHON KOHDENO,Japen)放大,是血细胞做的,接地还可以,以前他们一直是这么做的,可是我放大以后才发现干扰电流幅度在2~6pA左右,基本把我作出的电流淹没了。
[sbboy1973]你要首先确定你的G欧封接是否成功?依我个人经验电极电阻一般在7-10较合适,等你G欧封接成功后噪声会大大降低;2,滤波要打在1KHz,不要太高;3,放大一般在20-50倍即可,但还要根据你测定的通道电流大小决定;4,要大大降低噪声,还是要很好的接地、很好的屏蔽(最要注意的是显微镜)、最好在晚上做,其中屏蔽尤其要注意那些电线、插头,可以用排除法慢慢试,要有耐心。