微电阻率扫描成像测井及其应用-fmi
- 格式:ppt
- 大小:4.95 MB
- 文档页数:34
DOI:10.19392/j.cnki.1671 7341.202016095FMI在井中的应用研究姚晓勇长江大学(地球物理与石油资源学院) 湖北武汉 430100摘 要:本文是研究TH油田3区奥陶系碳酸盐岩储集层裂缝发育的特征,主要是通过地层微电阻率扫描成像测井,对该地区碳酸盐岩储层裂缝的发育情况进行研究。
关键词:地层微电阻率扫描成像测井;成像测井;裂缝发育 裂缝性油气藏是勘探的难点和重点,裂缝不仅是地下重要的储集空间,还是重要的渗滤通道。
因而,研究地下裂缝的发育和它的分布规律就尤为重要。
平常的测井方式是难以精确、有效地辨认裂痕,特别对裂缝的产状、散布密度更难肯定,而成像测井在辨认裂缝方面具备独到的地方。
1FMI原理成像测井的本质是利用物理实现体系完成被测量场的某些特征散布的Radon变换和逆变换;其中Radon逆变换是利用投影数据从而进一步确认物场的特征散布参数的过程。
有效裂缝是地下储集空间中流、气体的渗流通道,为高产油气流产出的途径。
裂缝的类型可以分为:天然裂缝和非天然裂缝;天然裂缝是能够形成储层的裂缝;而非天然裂缝又叫诱导缝,它由人为导致形成的缝,不能形成储层。
从TH油田3区某井的成像资料来看,本井裂缝类型主要为高导缝(斜交缝,角度较高)及不规则缝,也有少量的水平缝。
FMI测量井段地层中的高导缝,倾向以南,北东倾为主(较乱),倾角大多在40 70°之间变化,也有较低角度的裂缝。
其中斜交缝、不规则缝、水平缝为天然裂缝;钻井诱导缝为非天然裂缝。
而诱导缝的造成原因主要包含以下几种类型:(1)由于钻柱的重力效应,钻头或者取心的钻头之间可能拥有一些间隙。
这种现象发生在覆岩通过钻头破碎时,地层应力将导致岩石向井中推进或扩张。
(2)因为静水压力的作用,由于井眼环境的影响,缝隙越来越大,这些缝隙与人工压裂作业的缝隙相类似,这大概会导致岩心顶部和底部跳动产生裂缝。
这些裂缝往往沿井壁消失,并在不同岩石力学特点的界面处消失。
地层微电阻率扫描成像测井在识别裂缝方面的应用目录摘要 (2)1. 地层微电阻率扫描成像测井简介 (3)1.1电极排列及测量原理 (4)1.2全井眼地层微电阻率扫描成像测井(FMI) (4)2.利用地层微电阻率成像测井识别裂缝 (5)2.1. 天然裂缝 (6)2.1.1非构造裂缝 (6)2.1.2构造裂缝 (8)2.2钻井诱生裂缝(诱导裂缝) (10)结论 (11)参考文献 (12)剩余油饱和度评价摘要测井技术是油气勘探的“眼睛”。
中国的隐蔽性油气藏多,客观要求这双眼睛特别明亮、敏锐,可是常规测井技术只能对地层性质做大致的划分,精度不够。
需要一种新的测井手段,就是成像测井。
成像测井(imaging logging)是根据钻孔中地球物理场的观测,对井壁和井周围物体进行物理参数成像的方法。
广义地说,成像测井应包括井壁成像、井边成像和井间成像。
井壁成像测井在技术上最成熟,包括井壁声波成像和地层微电阻率扫描成像。
井边成像主要是电阻率成像,所用的方法为方位侧向测井和阵列感应测井。
井间成像包括声波、电磁波和电阻率成像,在工程勘察中已得到比较广泛的应用,在石油勘探中也已获得一些成功的实例。
这种技术采集信息多,精度高,不受干扰,能准确确定地层的真正电阻率,是解决复杂储层测井评价的有力手段。
地面系统综合化、便携化、网络化。
未来的地面系统要具有多种作业功能,不仅可以挂接成像测井仪器和常规测井仪器进行裸眼井测井,还能挂接生产测井、测试、射孔、取芯等工具进行套管井测井,满足全系列测井服务的要求。
井下仪器集成化、高分辨、深探测、高可靠、高时效、低成本。
井下仪器测量探头阵列化,变单点测量为阵列测量以适应地层非均质的需要,为储层评价的深入提供丰富信息,奠定提高储层饱和度精度油气田生产测井论文的基础。
各种测井仪器的集成化测量不但提高了测井时效,而且改善了测井综合评价所需信息的一致性,提高了测井资料的整体评价水平。
关键字:测井;成像测井;地层微扫描测井图像裂缝识别测井1.地层微电阻率扫描成像测井简介地层微电阻率扫描成像测井是一种重要的井壁成像方法,它利用多极板上的多排钮扣状的小电极向井壁地层发射电流,由于电极接触的岩石成分、结构及所含流体的不同,由此引起电流的变化,电流的变化反映井壁各处的岩石电阻率的变化,据此可显示电阻率的井壁成像。
FMI在井中的应用研究
FMI(Fullbore Formation MicroImager)是一种新型的测井技术,能够提供井壁成像的结果。
该技术可以对井壁的细节进行高分辨率的成像,如石英颗粒的排列、岩层构造、
裂缝等的特征,并提供了更为准确的储层评价信息。
以油气勘探领域为例,FMI技术在储集层描述方面已经得到了广泛的应用。
采用FMI
技术对储层进行成像可以让研究人员获得储层内部信息,比如表征储层空间分布及流体饱
和度分布的孔隙度分布规律等。
FMI技术可以成像的深度范围很宽,从井壁到100英尺内,可以获得良好的图像分辨率,并可以得出井壁的细节信息。
此外,由于 FMI技术具有很好的稳定性和一致性,使用FMI技术可以快速获取成像信息,且获取的信息通常较为精确可靠。
此外,FMI技术还可以应用于井间台阶式沉积物地层的研究。
以公司某油田为例,采
用FMI成像技术进行地层分析后,发现该油田储层呈“台阶状”分布。
成像图像可以显示
储层中不同类型的岩层组成,广告公司的勘探团队可以在发现油气等矿藏后,根据成像图
像进一步优化出完善的储层开采方案和操作方案。
除了在油气勘探领域, FMI技术在水文地质勘查、采矿资源勘探、环保等领域均得到了广泛的应用。
总之, FMI技术在地质学研究中的应用非常广泛,其具有高分辨率、高精度、高稳定性等特点,特别是在储层描述方面提供了很大的便利。
随着FMI技术的不断发展,相信它
将有更加广泛的应用前景。
第一章全井眼地层微电阻率扫描成像仪目前我们使用的电成像测井技术来自世界上三大测井公司,斯伦贝谢公司(Schlumberger)、阿特拉斯公司(Atlas)和哈里伯顿公司(Hulliburton)。
下面主要以斯伦贝谢公司生产的FMI仪器为主介绍其原理和方法。
一.全井眼地层微电阻率扫描成像仪(FMI)1.1仪器的发展历史FMI,英文全称是Fullbore Formation Microimager,中文意为全井眼地层微电阻率成像仪。
FMI是斯伦贝谢公司九十年代的产品,它是在地层倾角仪的基础上发展起来的,其产品的发展顺序是:CDM(1955)—HDT(1965)—SHDT(1975)—FMS(1986)—FMI(1992)。
CDM是最早的倾角测井仪,它只有3个臂,测量3条电导率曲线,可用于倾角计算。
HDT是高分辨地层倾角测井仪,一直沿用至今。
它由4个臂,5个电极组成(其中1个测量电极用于加速度校正),它获得井周地层4个方位的微电阻率测量值以及井斜测量值和仪器方位记录,最终提供地层倾角、倾向处理结果。
测井分析家及地质家最早用它来研究井下构造和沉积相,因其电阻率测量具有高分辨率,能反映地层的微细结构,而且在同一深度点的不同方向有四个测量值,用这四条曲线的横向对比和纵向变化特征来研究岩石的沉积结构,例如研究沉积层理(水平层理、前积层理、交错层理、槽状交错层理等),取得了一定的效果,但由于信息量太少,其应用受到很大的局限性。
SHDT是地层学地层倾角测井仪。
它由四个臂,10个电极组成(其中2个测量电极用于加速度校正),测量8条微电阻率曲线,由于每个极板上并排安装2个电极,电极之间的距离很近,同一极板测量的两条电导率曲线具有更好的相关性,也就是说,地层的同一结构特征可更好地进行纵横向对比,因此,它除了提供地层倾角测量值以外,还用来提取地层结构等方面的信息。
FMS(FormationMicroScaner)为地层微电阻率扫描仪,它是SHDT测量方法的发展。
微电阻率扫描成像测井解释方法及应用研究成像测井技术自从引进我国后在沉积构造识别、薄层识别以及裂缝检测等物理属性成像方面取得了一定的进展,但是井下地层地质特征与成像图形的对应关系还需要进一步分析和探讨。
应该在实际测井工作中根据成像仪的特征特点建立地区相应关系,进一步研究成像解释方法。
标签:微电阻率扫描成像测井解释方法裂缝检测本文以全井眼微电阻率扫描成像测井仪为代表,主要介绍了电成像测井技术的仪器指标、仪器结构、基本原理、工作原理以及物理基础。
在对成像测井资料进行预处理的基础上,进一步对成像测井在岩心刻度成像、裂缝检测识别等方面的应用展开了探讨。
1微电阻率扫描成像测井的必要性由于油气地域构造复杂,采集资料品质差,构造形态作图存在较大的误差,油气储层存在严重的非均匀性且横向预测结果多样,导致影响了我国油气的开发效益和全局勘探。
我国的测井资料就目前而言还不能对其进行客观准确的解释和评价。
主要体现在两个方面:第一,华东油气田复杂多变的地质特征使得资料解释结果存在较大的偏差,需要进一步精细解释井旁构造形态,而且油田内储层岩石构造的非均匀性、碳酸盐高阻地层与砂泥岩低阻地层的复杂地质特征使常规测井难以精细解释井旁构造形态。
第二,华东油气田砂泥岩类裂缝储层、灰岩缝洞类储层的纵、横分布复杂且不均匀,裂缝产状伴随泥浆入侵裂缝性储层以及低孔等使得判别流体性质存在较大的难度。
因此有必要对微电阻率扫描成像测井的解释方法和应用进行深入的了解和探讨,提高我国油田开发勘探效率和经济效益。
2微电阻率扫描成像测井解释方法2.1仪器结构及测量原理本文以全井眼微电阻率扫描成像测井仪(英文全称为Fullbore Formation MicroImager,简称FMI)为代表,对电成像测井资料处理进行了简单的探讨。
全井眼微电阻率扫描成像测井仪的四个手臂分别有一个折页极板和一个主极板,这种状如手掌的结构使得极板增加,可以覆盖更加广泛的井壁范围。
FMI在井中的应用研究引言一、 FMI技术简介FMI技术是指地层微观成像技术,它通过测量地层微小尺度的电子密度差异,获取地层结构图像。
FMI测井仪器是由一根长条形的传感器组成,安装在测井仪器的下面,可以在井中的各个方向上采集地层图像。
FMI技术具有以下几个优点:高分辨率、可定量解释、无侵入性、无干扰、可成像油水界面等。
因此在油气勘探中得到了广泛的应用。
二、 FMI技术在井中的应用1. 地层结构成像FMI技术可以获取到高分辨率的地层图像,可以显示出地层中的小尺度结构和岩石特征。
这对于油气勘探开发来说非常重要,可以为勘探人员提供更为清晰的地层结构信息,帮助他们更好地理解地下地质情况,指导井下操作。
2. 岩心分析3. 钻进导向FMI技术可以提供高分辨率的地层图像,可以为钻进导向提供更为清晰的地质信息。
通过分析地层图像,勘探人员可以确定井的钻向和井壁稳定情况,指导钻井作业,减小钻井风险,提高作业效率。
4. 油藏特征识别FMI技术可以成像油气层的微观结构,可以显示油水界面和油气层的分布情况。
这对于确定油气层的特征和性质来说非常重要,可以指导油气层的开发和生产,提高油气采收率。
5. 地层参数解释1. 某油田勘探开发中,勘探人员使用FMI技术对地层进行高分辨率成像,发现了一处隐蔽的油气层。
通过进一步的分析和评价,这处油气层被成功开发,为油田的产能增长做出了重要贡献。
2. 某个采油工程中,勘探人员使用FMI技术对岩心进行高分辨率成像,发现了地层中的特殊结构特征。
这些特征为勘探人员提供了重要的地质信息,指导后续的油藏开采工作。
3. 某钻井工程中,勘探人员使用FMI技术对井壁进行高分辨率成像,发现了井壁的不稳定情况。
通过钻进导向,钻井作业成功避开了这些不稳定区域,确保了钻井的顺利进行。
1. 多元数据集成FMI技术可以和其他测井技术进行数据集成,比如声波测井、电阻率测井等技术。
通过多元数据集成,可以提高地质信息的准确性和可靠性,为油气勘探开发提供更为全面的地下地质信息。
环井眼微电阻率扫描成像测井原理方法及应用一.原理1.目前,地层微电阻率成像测井的基本原理是相同的.它用密集排列的纽扣电极测量井壁附近的地层电导率或电阻率的相对变化。
在测量过程中.仪器通过极板和电极向地层发射电流,该电流的一部分从极板上的纽扣电极流出.但大部分是从极板流出.用来聚焦纽扣电极,以便使仪器具有适当的探测深度和较高的地层分辨率.纽扣电极电流记录成~组曲线.这些曲线就反映了地层井壁附近电阻率的相对变化。
在成像测井资料数据处理过程中,首先,对成像测井原始数据进行加速度校正深度配等一系列预处理。
然后,用一种渐变的色板对成像测井数据进行刻度,把每个数据点变成一个色元进行成像显示,形成彩色成像图。
成像图一般分为静态平衡图像和动态加强图像两种。
静态平衡图像采用全井段统一配色,目的是反映全井段的相对电阻率的变化。
动态加强图像是为解决有限的颜色刻度与全井段大范围的电阻率变化之问的矛盾。
一般采用每半米井段配一次色,其所形成的动态图像的分辨能力很强,常用于详细的地层分析,但图像的颜色仅代表半米内的电阻率的变化。
在形成彩色成像图时,通常按“黑一黄一白”顺序对成像测井数据进行颜色级别划分。
由黑到白,电成像代表电阻率变化由低到高。
地层微电阻率成像图像是一个伪井壁图像,它可以反映井壁上细微的岩性、物性(如孔隙度)及井壁结构(如:裂缝、井壁破损、井壁取心孔等),但它的颜色与实际岩石的颜色不相干;另外,每口井的微电阻率变化范围由于井之间的差异而有所不同,因此口井的某个颜色与另一口井的同一个颜色可能对应着不同的电阻率值。
地层微电阻率成像解释与岩心描述有很多相似之处,其内容包括沉积构造、构造及裂缝、孔洞分析、成岩作用现象、岩相等。
不同的是地层微电阻率成像测井为井壁描述,井壁上的诱导缝及破损反映了地应力的影响,而层理及裂缝的定向数据也是岩心上很难得到的。
但是,岩心是地下岩层的直接采样,是最为准确的资料.将两者进行标定后,将使地层描述更为准确。