金属塑性变形物理基础位错理论
- 格式:ppt
- 大小:1.95 MB
- 文档页数:73
一、加工硬化加工硬化指经过塑性变形后,金属内部的组织结构和物理力学性能发生改变,其塑性、韧性下降,强度、硬度增加,继续变形的力提高的现象。
微观上,加工硬化与金属内部的位错滑移、位错交割、位错塞积、交滑移以及晶粒的破碎与变化等有关。
加工硬化的后果: 强度提高,增加设备吨位;塑性下降,降低变形程度,增加变形工序和中间退火工序;强化金属材料(不能热处理的),提高金属零件的强度,改善冷塑性加工的工艺性能。
附:金属的结构:单晶体结构(体心立方、面心立方、密排六方) 实际多晶体结构(点缺陷、线缺陷、面缺陷) 单晶体的塑性变形机构:滑移,挛生 位错理论的基本概念:位错、刃型位错、螺型位错、柏氏矢量、位错运动与增值 多晶体冷塑性变形的微观机理:晶界、晶粒位向、晶内变形、晶间变形、变形不均匀性、 变形后组织与性能的改变 有关基本内容参阅金属学及热处理 二、金属的塑性与塑性指标金属的塑性:指固体金属在外力的作用下产生永久变形而不破坏其完整性的能力。
注:塑性是一种状态、而不是一种性质 塑性的影响因素:(各因素具体的影响没详细) 内部因素:晶格类型、化学成分、晶相组织; 外部因素:变形温度、变形速度、受力状态 附:塑性指标三、金属受外力而变形,抵抗变形的力—变形抗力 变形的难易程度 单位流动应力 变形抗力的影响因素: 化学成分、组织结构、变形温度 变形速度、变形程度、应力状态四、金属的超塑性—金属材料在一定的内部条件(金属的组织状态)和外部条件(变形温度、变形速度)下变形体现出的极高的塑性,延伸率达δ=100%~2000%。
, m =0.3~1.0超塑性结构超塑性(微细晶粒超塑性) 动态超塑性(相变超塑性)超塑性的影响因素:组织结构(晶粒度5 ~ 10μm ) 变形温度(0.5 ~ 0.7T m )、变形速度(10-4 ~ 10-1 min-1) 五、塑性力学的基本假设:1.变形体连续2.变形体均质和各向同性3.变形体静力平衡4.体积力和体积变形不计 六、主应力、应力状态特征方程(在课本上) 1、应力特征方程的解是唯一的;2、对于给定的应力状态,应力不变量也具有唯一性;3、应力第一不变量J1反映变形体体积变形的大小,与塑性变形无关;J3也与塑性变形无关;J2与塑性变00100%h l l l δ-=⨯ 延伸率−00100%hA A A φ-−=⨯断缩面收率 00100%h C H H H ε-−=⨯压缩变形程度()()()()()()()()22222222222212322311616x y y z z x xy yz zx x y y z z x xy yz zx J σσσσσστττσσσσσστττσσσσσσ⎡⎤''''''=-++-++⎣⎦⎡⎤=-+-+-+++⎢⎥⎣⎦⎡⎤=-+-+-⎣'⎦10x y z J σσσ'''+'=+=形有关;4、应力不变量不随坐标而改变,是确定点的应力状态异同的判据。
6 材料在塑性变形中的组织结构与性能变化本章仅将简要地介绍冷形变及其后的加热过程、以及热形变过程对金属和合金的组织结构与性能的影响的主要理论。
6.1 冷形变后金属组织结构和性能的变化金属和合金在低于再结晶温度进行压力加工时,通常就称为冷形变或冷加工。
钢在常温下进行的冷轧、冷拔、冷挤、冷冲等压力加工过程皆为冷形变过程。
在冷形变过程中组织和性能都会发生变化。
6.1.1 金属组织结构的变化金属塑性变形的物理实质基本上就是位错的运动,位错运动的结果就产生了塑性变形。
在位错的运动过程中,位错之间、位错与溶质原子、间隙位置原子以及空位之间、位错与第二相质点之间都会发生相互作用,引起位错的数量、分布和组态的变化。
从微观角度来看,这就是金属组织结构在塑性变形过程中或变形后的主要变化。
塑性变形对位错的数量、分布和组态的影响是和金属材料本身的性质以及变形温度、变形速度等外在条件有关的。
单晶体塑性变形时,随着变形量增加,位错增多,位错密度增加,运动位错在各种障碍前受阻,要继续运动需要增加应力,从而引起加工硬化。
变形到一定程度后产生交滑移,因而引起动态回复,这些塑性变形过程中的变化已是我们所熟知的,不再细述。
多晶体塑性变形时,随着变形量增加和单晶体变形一样,位错的密度要增加。
用测量电阻变化、储能变化的方法,或者用测量腐蚀坑的方法以及电镜直接观测的方法都可以出金属材料的位错密度。
退火状态的金属,典型的位错密度值是105~108 cm -2,而大变形后的典型数值是1010~1012cm -1。
通过实验得到的位错密度(ρ)同流变应力(σ)之间的关系是:21ρασGb = (6-1) 式中:a —等干0.2~0.3范围的常数;G —剪切弹性模量;b —柏氏矢量。
多晶体塑性变形时,因为各个晶粒取向不同,各晶粒的变形既相互阻碍又相互促进,变形量稍大就形成了位错胞状结构。
所谓胞状结构,是变形的各种晶粒中,被密集的位错缠给结区分许多个单个的小区域。
位错强化理论通过合金化、塑性变形和热处理等手段提高金属材料的强度,称为金属的强化。
所谓强度是指材料对塑性变形和断裂的抗力。
从根本上讲,金属强度来源于原子间结合力,而根据理论计算的金属切变强度一般是其切变模量的1/10~1/30,而金属的实际强度只是这个理论强度的几十分之一,甚至几千分之一。
造成这样大差异使位错理论应运而生,晶体的滑移不是晶体的一部分相对于另一部分同时做整体运动,而是位错在切应力的作用下沿着滑移面逐步移动的结果。
位错虽然移动了一个原子间距,但位错中心附近的的少数原子只做远小于一个原子间距的弹性偏移,而晶体其他区域的原子仍处于正常位置,这样,位错运动只需要一个很小的应力(P169)就能实现,位错理论的发展揭示了晶体实际切变强度(和屈服强度)低于理论切变强度的本质。
金属材料的强化途径不外两个,一是提高合金的原子间结合力,提高其理论强度,并制得无缺陷的完整晶体,如晶须。
铁的晶须强度接近理论值,可以认为这是因为晶须中没有位错,或者只包含少量在形变过程中不能增殖的位错。
从自前来看,只有少数几种晶须作为结构材料得到了应用。
另一强化途径是向晶体内引入大量晶体缺陷,如位错、点缺陷、异类原子、晶界、高度弥散的质点或不均匀性(如偏聚)等,这些缺陷阻碍位错运动,也会明显地提高金属强度。
具体方法有固溶强化、形变强化(加工硬化)、沉淀强化和弥散强化(质点强化)、细晶强化、相变强化:1.固溶强化它的实现主要是通过溶质原子与位错的交互作用。
固溶体中存在着溶质原子,使合金的强度硬度提高,而塑性韧性有所下降,即产生固溶强化。
其原因在于,一是固溶体中溶质与溶剂的原子半径所引起的弹性畸变,与位错之间产生的弹性交互作用,对滑移面上运动着的位错有阻碍作用;二是在滑移线上偏聚的溶质原子(柯氏气团)对位错的束缚和钉扎作用。
(P176)2.形变强化,即加工硬化:随着变形程度的增加,金属的强度硬度增加,而塑性韧性下降。
其原因与位错的交互作用有关,随着变形程度的增加,位错密度不断增加。