金属塑性变形理论第9讲变形不均匀原因及防止措施
- 格式:ppt
- 大小:983.50 KB
- 文档页数:43
滚动轴承常见失效形式及原因分析滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。
一,疲劳剥落疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。
滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。
点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。
疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面。
轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。
这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。
目前对疲劳失效机理比较统一的观点有:>>>>1、次表面起源型次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。
>>>>2、表面起源型表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。
>>>>3、工程模型工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。
疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。
具体因素如下:(1)制造因素a.产品结构设计的影响产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。
材料科学基础A习题第五章材料的变形与再结晶1、某金属轴类零件在使用过程中发生了过量的弹性变形,为减小该零件的弹性变形,拟采取以下措施:(1)增加该零件的轴径。
(2)通过热处理提高其屈服强度。
(3)用弹性模量更大的金属制作该零件。
问哪一种措施可解决该问题,为什么?答:增加该零件的轴径,或用弹性模量更大的金属制作该零件。
产生过量的弹性变形是因为该金属轴的刚度太低,增加该零件的轴径可减小其承受的应力,故可减小其弹性变形;用弹性模量更大的金属制作该零件可增加其抵抗弹性变形的能力,也可减小其弹性变形。
2、有铜、铝、铁三种金属,现无法通过实验或查阅资料直接获知他们的弹性模量,但关于这几种金属的其他各种数据可以查阅到。
请通过查阅这几种金属的其他数据确定铜、铝、铁三种金属弹性模量大小的顺序(从大到小排列),并说明其理由。
答:金属的弹性模量主要取决于其原子间作用力,而熔点高低反映了原子间作用力的大小,因而可通过查阅这些金属的熔点高低来间接确定其弹性模量的大小。
据熔点高低顺序,此几种金属的弹性模量从大到小依次为铁、铜、铝。
3、下图为两种合金A、B各自的交变加载-卸载应力应变曲线(分别为实线和虚线),试问那一种合金作为减振材料更为合适,为什么?答:B合金作为减振材料更为合适。
因为其应变滞后于应力的变化更为明显,交变加载-卸载应力应变回线包含的面积更大,即其对振动能的衰减更大。
4、对比晶体发生塑性变形时可以发生交滑移和不可以发生交滑移,哪一种情形下更易塑性变形,为什么?答:发生交滑移时更易塑性变形。
因为发生交滑移可使位错绕过障碍继续滑移,故更易塑性变形。
5、当一种单晶体分别以单滑移和多系滑移发生塑性变形时,其应力应变曲线如下图,问A、B中哪一条曲线为多系滑移变形曲线,为什么?应力滑移可导致不同滑移面上的位错相遇,通过位错反应形成不动位错,或产生交割形成阻碍位错运动的割阶,从而阻碍位错滑移,因此其应力-应变曲线的加工硬化率较单滑移高。
滚动轴承常见的失效形式及原因滚动轴承常见的失效形式及原因分析滚动轴承在使用过程中由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。
疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。
滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。
点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。
疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角. 通常呈显疲劳扩展特征的海滩装纹路.产生部位主要岀现在套圈和滚动体的滚动表面.轴承疲劳失效的机理很复杂,也岀现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。
这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。
目前对疲劳失效机理比较统一的观点有:次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。
表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。
工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。
疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。
具■体因素如下:A制造因素|1 、产品结构设计的影响:产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。
在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。
锻造裂纹产生的原因及解决方法锻造裂纹产生的原因及解决方法2011-04-2509:28裂纹是锻压生产中常见的主要缺陷之一,通常是先形成微观裂纹,再扩展成宏观裂纹。
锻造工艺过程(包括加热和冷却)中裂纹的产生与受力情况、变形金属的组织结构、变形温度和变形速度等有关。
锻造工艺过程中除了工具给予工件的作用力之外,还有由于变形不均匀和变形速度不同引起的附加应力、由温度不均匀引起的热应力和由组织转变不同时进行而产生的组织应力。
应力状态、变形温度和变形速度是裂纹产生和扩展的外部条件;金属的组织结构是裂纹产生和扩展的内部依据。
前者是通过对金属组织及对微观机制的影响而对裂纹的发生和扩展发生作用的。
全面分析裂纹的成因应当综合地进行力学和组织的分析。
(一)形成裂纹的力学分析在外力作用下物体内各点处于一定应力状态,在不同的方位将作用不同的正应力及切应力。
裂纹的形式一般有两种:一是切断,断裂面是平行于最大切应力或最大切应变;另一种是正断,断裂面垂直于最大正应力或正应变方向。
至于材料产生何种破坏形式,主要取决于应力状态,即正应力σ与剪应力τ之比值。
也与材料所能承受的极限变形程度εmax及γmax有关。
例如,①对于塑性材料的扭转,由于最大正应力与切应力之比σ/τ=1是剪断破坏;②对于低塑性材料,由于不能承受大的拉应变,扭转时产生45°方向开裂。
由于断面形状突然变化或试件上有尖锐缺口,将引起应力集中,应力的比值σ/τ有很大变化,例如带缺口试件拉伸σ/τ=4,这时多发生正断。
下面分析不同外力引起开裂的情况。
压力加工生产中,在下列一些情况,由外力作用可能引起裂纹:弯曲和校直、脆性材料镦粗、冲头扩孔、扭转、拉拔、拉伸、胀形和内翻边等,现结合几个工序说明如下。
弯曲件在校正工序中(见图3-34)由于一侧受拉应力常易引起开裂。
例如某厂锻高速钢拉刀时,工具的断面是边长相差较大的矩形,沿窄边压缩时易产生弯曲,当弯曲比较严重,随后校正时常常开裂。
箱形梁焊接扭曲变形的控制措施摘要:在钢结构制造当中,对箱型梁的焊接是最为常见的结构形式。
虽然其外形很简单,形状看起来也是方方正正的,但正是因为这个原因,它对焊接后变形的控制要求的更为严格。
所以,我们需要对箱形梁在焊接过程中出现的一些变形的因素进行相关的分析和研究,并采取一些有效的修复措施,以此来对箱形梁在焊接的过程中所发生的焊接变形进行控制,从而使箱形梁的焊接更为牢固可靠,也使箱形梁在更为广泛的领域内得到更为广泛的应用,从而更好地服务于人类,创造出更多的价值。
关键词:箱型梁;焊接过程;焊接变形引言箱型梁主要是指其截面形状与普通箱子截面无异,因而称之为箱型梁。
箱型梁通常由几个部分组合在一起形成的,如盖板和腹板、隔板、底板这四个方面组合而成。
箱型梁具有一定的先进性和优越性,其属于力学性能方面的经济断面组合结构,常会应用在龙门吊机、起重船等较为大型的承重结构。
1 箱形梁的结构和特点一般情况下来说,箱形梁主要是通过盖板、腹板、底板还有隔板所组成的,其截面的形状和我们通常所见到的箱子的截面形状是一样的,所以我们都称之为箱形梁。
箱形梁具有优越的力学性能,而且这种断面结构还经济实用,所以,在当今社会,其应用比较广泛,尤其是应用到了大型的承重结构之上,比如大型吊机、起重机以及船业设备等等。
箱形梁的承载量比较大,而且它还能够承受动载荷。
因此,对焊接的质量要求比较严格,一般来说,我们需要对其四条主焊缝进行百分之百超声波的一级探伤。
对于像是大型的吊机、起重机以及船业设备等来说,其箱形梁所连接的部位比较多,制作的精度比较高,外形的尺寸比较大,所以它一般都具有比较高标准的要求,而这也是箱形梁和其他刚接结构焊接方式相区别的地方。
2 箱型梁焊接变形的控制方法2.1箱型梁组对顺序的合理化依照箱型梁的具体形态和结构特点,对其组装顺序进行合理的安排,主要步骤如下:①应先将下底板完全铺设好后,方可在处于下底板上划处的上腹板和其相连接,做合线的腊线工作。
金属材料热处理变形原因及防止变形的技术措施摘要:热处理能改善工件的综合机械机能,但热处理过程引起工件的变形是不可避免的。
任何因素的变化都或多或少地影响工件的变形倾向和形变大小。
在热处理过程中,能够把握工件热处理过程中导致工件变形的主要因素和关键点。
通过分析和实践,改进热处理工艺技术,一定能够在热处理工件的形变问题上得到突破,制定出合理的技术措施,保证热处理产品的质量和合格率。
关键词:金属材料;热处理;变形原因;防止变形技术引言实际工业生产中,仅凭选择材料和成形工艺并不能满足工件所需要的性能,通过对金属材料进行热处理而获得优良的综合性能是必不可少的。
但金属材料的热处理除改善材料的综合性能的积极作用外,在热处理过程中也不可避免地会产生或多或少的变形,而这又是工件生产过程中极力消除和避免的。
因此,需要找出工件热处理过程中发生形变的原因,采取技术措施把变形量控制在符合要求范围内。
1金属材料性能分析在当前的社会生产生活中,金属材料的应用范围十分的广泛。
由于金属材料具有韧性强、塑性好以及高强度的特点,因此其在诸多行业中均有所应用。
当前常用的金属材料主要包括两种:即多孔金属材料以及纳米金属材料。
纳米金属材料:一般情况下,只有物质的尺寸达到了纳米的级别,那么该物质的物理性质和化学性质均会发生改变。
在分析与研究金属材料性能的过程中,主要分析金属材料的如下两种性能:其一,硬度。
一般情况下,金属材料的硬度主要指的是金属材料的抗击能力。
其二,耐久性。
耐久性能和腐蚀性是金属材料需要着重考虑的一对因素。
在应用金属材料的过程中不可避免的会受到各种物质的腐蚀,由此就会导致金属材料出现缝隙等问题。
2金属热处理变形的原因分析在工业生产过程中,各种金属零件早已成为机械制造的必要部分。
在零件的设计、选材中,对综合性能方面也提出了更高要求。
特别是生产过程中,对产品热处理加工后的品质提出了新要求。
但在热处理过程中出现形变等质量问题,一直是热处理过程中难以克服的。
第一章材料的力学行为和性能思考题1.解释下列力学性能指标。
(1) HB (2) HRC (3) HV2.解释下列名词。
(1)蠕变(2)低应力脆断(3)疲劳(4)断裂韧度3.下列工件应采用何种硬度试验方法来测定其硬度?(1)锉刀(2)黄铜轴套(3)供应状态的各种碳钢钢材(4)硬质合金刀片(5)耐磨工件的表面硬化层4.下列硬度表示方法是否正确,为什么?(1)HBW250~300 (2)5~10HRC (3)HRC70~75 (4)HV800~850 (5)800~850H5.比较铸铁与低碳钢拉伸应力-应变曲线的不同,并分析其原因。
6.一根两端固定的低碳钢丝,承受拉应力为20Mpa,当温度从30摄氏度突然下降到10摄氏度时,钢丝内新产生的应力为多少?7.现有原始直径为10mm圆形长、短试样各一根,经拉伸试验测得的伸长率均为25%,求两试样拉断后的标距长度。
两试样中哪一根塑性好?为什么?8.甲乙丙丁四种材料的硬度分别为45HRC、90HRB、800HV、240HBW,试比较这四种材料硬度的高低。
第二章材料的结构思考题1.为何单晶体具有各向异性?而多晶体在一般情况下却显示各向同性?2.解释下列基本概念;晶体与非晶体;晶体的各向异性;同素异晶转变;位错;晶界;固溶体;金属化合物。
3.试述高分子链的结合力、分子链结构、聚集态结构对高聚物的性能的影响。
4.何为高分子材料的老化?如何防止?5.试计算面心立方晶格的致密度。
6.说明结晶对高聚物性能的影响。
第三章1.过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?2.在铸造生产中,采用哪些措施控制晶粒的大小?3.如果其他条件相同,试比较下列铸造条件下,铸件晶粒的大小:(1).金属模浇注与砂模浇注;(2).高温浇注宇与低温浇注;(3).铸成薄件与铸成厚件;(4).浇注时采用振动和不振动。
4.二元匀晶相图、共晶相图与合金的力学性能和工艺性能之间存在什么关系?5.画出Fe-Fe3C相图,指出图中各点及线的意义,并标出个相区的相组成物和组织组成物。