北师大课标版七年级数学上册《有理数的加减混合运算2》习题2(精品习题)
- 格式:doc
- 大小:27.50 KB
- 文档页数:2
北师大版七年级数学上册《2.2有理数的加减运算》同步测试题附答案【基础达标练】课时训练夯实基础知识点1运用运算律简化有理数加法运算1.在计算-+3-时通常转化成--+3,这个变形的依据是( )A.加法交换律B.加法结合律C.乘法分配律D.乘法交换律2.下列变形,运用加法运算律正确的是( )A.3+(-2)=2+3B.4+(-6)+3=(-6)+4+3C.[5+(-2)]+4=[5+(-4)]+2D.+(-1)++=++(+1)3.计算43+(-78)+27+(-52)时,运算律使用最为恰当的是( )A.[43+(-78)]+[27+(-52)]B.(43+27)+[(-78)+(-52)]C.[43+(-52)]+[27+(-78)]D.[27+(-78)]+[43+(-52)]4.(2024·铜仁江口县质检)绝对值不大于100的所有整数的和是.5.计算:(1)(-2.4)+(-3.7)+(-4.6)+5.7;(2)+13++17;(3)(-3.14)+(+4.96)+(+2.14)+(-7.96).6.计算:30+(-18)+(-30)+48.知识点2有理数加法的综合运用7.(2024·威海期中)一跳蚤在一直线上从O点开始,第1次向右跳1个单位长度,紧接着第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度……依此规律跳下去,当它跳第100次落下时,落点处离点O的距离是个单位长度.( )A.49B.50C.-50D.998.如图,小明设计了一个计算程序,并按此程序进行了计算,若开始输入的数为-7,则最后输出的数为.输入➝+7➝+(-8)➝+2➝+(-12)➝输出9.(2024·贵阳南明区质检)某邮递员根据邮递需要,先从A地向东走3千米,然后折回向西走10千米,又折回向东走6千米,最后折回向西走5.5千米.现规定向东为正,问:该邮递员此时在A地的哪个方向?与A地相距多少千米?要求:用有理数加法运算,并将这一问题在数轴上表示出来.【综合能力练】巩固提升迁移运用10.(2024·贵州质检)若|a|=3,|b|=1,且a,b同号,则a+b的值为 ( )A.4B.-4C.2或-2D.4或-411.如果a+b+c=0,且|c|>|b|>|a|,则下列说法中可能成立的是 ( )A.a,b为正数,c为负数B.a,c为正数,b为负数C.b,c为正数,a为负数D.a,b,c均为负数12.(2024·铜仁江口县质检)某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,-8),(-5,+6),(-3,+2),(+1,-7),则车上还有人.13.用适当方法计算:(1)(-51)+(+12)+(-7)+(-11)+(+36);(2)-4+7.75+-1+-2;(3)1.3+0.5+0.5+0.3+(-0.7)+3.2+(-0.3)+0.7.14.(素养提升题)在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7-21|=;②=;③=.(2)数a在数轴上的位置如图所示,则|a-2.5|=.A.a-2.5B.2.5-aC.a+2.5D.-a-2.5(3)利用上述介绍的方法计算或化简:①+--+;②+-+2,其中a>2.参考答案【基础达标练】课时训练夯实基础知识点1运用运算律简化有理数加法运算1.在计算-25+3-85时通常转化成-25-85+3,这个变形的依据是(A)A.加法交换律B.加法结合律C.乘法分配律D.乘法交换律2.下列变形,运用加法运算律正确的是(B)A.3+(-2)=2+3B.4+(-6)+3=(-6)+4+3C.[5+(-2)]+4=[5+(-4)]+2D.16+(-1)++56=16+56+(+1)3.计算43+(-78)+27+(-52)时,运算律使用最为恰当的是(B)A.[43+(-78)]+[27+(-52)]B.(43+27)+[(-78)+(-52)]C.[43+(-52)]+[27+(-78)]D.[27+(-78)]+[43+(-52)]4.(2024·铜仁江口县质检)绝对值不大于100的所有整数的和是0.5.计算:(1)(-2.4)+(-3.7)+(-4.6)+5.7;(2)(-13)+13+(-23)+17;(3)(-3.14)+(+4.96)+(+2.14)+(-7.96).【解析】(1)原式=-10.7+5.7=-5.(2)原式=[(-13)+(-23)]+(13+17)=-1+30=29.(3)原式=(-3.14+2.14)+(4.96-7.96)=-1-3=-4.6.计算:30+(-18)+(-30)+48.【解析】30+(-18)+(-30)+48=30+(-30)+[(-18)+48]=0+30=30.知识点2有理数加法的综合运用7.(2024·威海期中)一跳蚤在一直线上从O点开始,第1次向右跳1个单位长度,紧接着第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度……依此规律跳下去,当它跳第100次落下时,落点处离点O的距离是个单位长度.(B)A.49B.50C.-50D.998.如图,小明设计了一个计算程序,并按此程序进行了计算,若开始输入的数为-7,则最后输出的数为-18.输入➝+7➝+(-8)➝+2➝+(-12)➝输出9.(2024·贵阳南明区质检)某邮递员根据邮递需要,先从A地向东走3千米,然后折回向西走10千米,又折回向东走6千米,最后折回向西走5.5千米.现规定向东为正,问:该邮递员此时在A地的哪个方向?与A地相距多少千米?要求:用有理数加法运算,并将这一问题在数轴上表示出来.【解析】根据题意知,+3+(-10)+6+(-5.5)=-6.5(千米)所以该邮递员此时在A地的西方,与A地相距6.5千米.【综合能力练】巩固提升迁移运用10.(2024·贵州质检)若|a|=3,|b|=1,且a,b同号,则a+b的值为 (D)A.4B.-4C.2或-2D.4或-411.如果a+b+c=0,且|c|>|b|>|a|,则下列说法中可能成立的是 (A)A.a,b为正数,c为负数B.a,c为正数,b为负数C.b,c为正数,a为负数D.a,b,c均为负数12.(2024·铜仁江口县质检)某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,-8),(-5,+6),(-3,+2),(+1,-7),则车上还有12人.13.用适当方法计算:(1)(-51)+(+12)+(-7)+(-11)+(+36);(2)-458+7.75+-138+-234;(3)1.3+0.5+0.5+0.3+(-0.7)+3.2+(-0.3)+0.7.【解析】(1)原式=-39+(-7)+(-11)+(+36)=-46+(-11)+(+36) =-57+(+36)=-21;(2)原式=-458+-138+7.75+-234=-6+5=-1;(3)原式=(1.3+3.2)+(0.5+0.5)+[0.3+(-0.3)]+[(-0.7)+0.7]=4.5+1=5.5.14.(素养提升题)在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7-21|=;②|-12-0.8|=;③|717-718|=.(2)数a在数轴上的位置如图所示,则|a-2.5|=.A.a-2.5B.2.5-aC.a+2.5D.-a-2.5(3)利用上述介绍的方法计算或化简:①|15-12018|+|12018-12|--12+11009;②|15-1a|+|1a-12|-|-12|+2(1a),其中a>2.【解析】(1)①|7-21|=21-7;②|-12-0.8|=12+0.8;③|717-718|=717-718.答案:①21-7②12+0.8③717-718(2)选B.由题中数轴得,a<2.5 则|a-2.5|=2.5-a.(3)略。
第二章有理数的加减混合运算一、单选题1.计算1﹣3+5﹣7+9=﹣1+5+9﹣+﹣﹣3﹣7)是应用了()A.加法交换律B.加法结合律C.分配律D.加法交换律与结合律【答案】D【解析】【分析】根据加法交换律与结合律即可求解.【详解】计算1-3+5-7+9=(1+5+9)+(-3-7)是应用了加法交换律与结合律.故选:D.【点睛】考查了有理数的加减混合运算,方法指引:﹣在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.﹣转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.2.计算(-3)-(+5)+(-7)-(-5)+213所得的结果是()A.-713B.1213C.-723D.-1223【答案】C【解析】【分析】先去括号、将带分数进行拆分变形,再计算有理数的加减法即可得.【详解】 原式1357523=---+++, 183=-+, 273=-, 故选:C .【点睛】本题考查了有理数的加减法,熟练掌握运算法则是解题关键.3.计算5372688⎛⎫-+- ⎪⎝⎭的值为( ) A .23- B .5212- C .1324- D .111424- 【答案】B【解析】【分析】可以先让同分母的分数相结合,然后按照有理数的运算法则计算即可得出答案.【详解】5372688⎛⎫-+- ⎪⎝⎭537=-+(2)68851=-36452=-12故选:B.【点睛】本题主要考查有理数的加减混合运算,掌握有理数加减混合运算顺序和法则是解题的关键.4.下列各式不成立的是()A.20+(-9)-7+(-10)=20-9-7-10B.-1+3+(-2)-11=-1+3-2-11C.-3.1+(-4.9)+(-2.6)-4=-3.1-4.9-2.6-4D.-7+(-18)+(-21)-34=-7-(18-21)-34【答案】D【解析】【分析】用验算法进行解答,要注意去括号后正负号的变化.【详解】解:A、20+(-9)-7+(-10)=20-9-7-10,其结果正确;B、-1+3+(-2)-11=-1+3-2-11,其结果正确;C、-3.1+(-4.9)+(-2.6)-4=-3.1-4.9-2.6-4其结果正确;D、-7+(-18)+(-21)-34=-7-18-21-34=-7-(18+21)-34,其结果不正确.故选:D.本题主要考查在进行有理数的加减混合运算时,去括号后是否变换运算符号.5.把1,2,3,4,…,2016的每一个数的前面任意填上“+”号或“-”号,然后将它们相加,则所得结果为( )A .偶数B .奇数C .正数D .有时为奇数,有时为偶数【答案】A【解析】【分析】因为偶数个奇数相加,故结果是偶数.【详解】因为相邻两个数的和与差都是奇数,且是从1开始到2016,共有1008对,则所得的结果肯定是偶数个奇数相加,故结果是偶数.故选:A .【点睛】本题考查了有理数的加减混合运算,本题根据相邻两个数的和与差都是奇数作为突破口:当有偶数个奇数相加时,结果是偶数. 6.现有a b c d ,,,四个正整数,将它们随机抽取两个并相加,所得的和都是6,7,8,9中的一个,并且6,7,8,9这4个数都能取到,那么a b c d ,,,这四个正整数( ) A .各不相等B .有且只有两个数相等C .有且只有三个数相等D .全部相等【答案】B【解析】设a b c d ≤≤≤,得到 6a b +=,9c d +=,分别求得a ,b ,c ,d 的值,即可判断.【详解】﹣四个正整数a ,b ,c ,d 具有同等不确定性,不妨设a b c d ≤≤≤,故 6a b +=,9c d +=,(1)当1a =时,得5b =,﹣a b c d ≤≤≤,﹣、c d 为4或5,不合题意舍去,所以1a ≠,(2)当2a =时,得4b =,﹣4c =,5d =,符合题意,四个数是:2,4,4,5;(2)当3a =时,得3b =,﹣3c =,6d =,不符合题意,两数之和不能得7;或4c =,5d =,符合题意,四个数是:3,3,4,5;综上所述:这四个数只能是:2,4,4,5或3,3,4,5.故选:B .【点睛】本题考查了以代数为背景的推理与论证.7.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A C -表示观测点A 相对观测点C 的高度)根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )米.A .210B .130C .390D .210- 【答案】A【解析】【分析】认真审题可以发现:A 比C 高90米,C 比D 高80米,D 比E 高60米,F 比E 高50米,F 比G 高70米,B 比G 高40米,然后转化为算式,通过变形得出A B -的关系即可.【详解】解:由表中数据可知:A C 90-=﹣,C D 80-=﹣,D E 60-=﹣,E F 50-=-﹣,F G 70-=﹣,G B 40-=-﹣,﹣+﹣+﹣+﹣+﹣+﹣,得:()()()()()()A C C D D E E F F G G B A B 908060507040210-+-+-+-+-+-=-=++-+-=. ∴观测点A 相对观测点B 的高度是210米.故选:A .【点睛】此题主要考查正负数在实际生活中的应用以及有理数加减混合运算的应用,正确理解题意、熟练掌握有理数的加法法则是关键.8.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a -b +c 的值为( ). A .-1B .0C .1D .2【答案】D【解析】【分析】先分别根据正整数、负整数、绝对值的定义求出a 、b 、c 的值,再代入计算有理数的加减法即可.【详解】由题意得:1a =,1b =-,0c则1(1)0a b c -+=--+ 11=+2=故选:D .【点睛】本题考查了正整数、负整数、绝对值的定义、有理数的加减法,熟练掌握各定义与运算法则是解题关键. 9.“三个数-7,12,-2的代数和”与“它们的绝对值的和”的差为( )A .-18B .-6C .6D .18【答案】A【解析】【分析】根据题意列出算式,根据绝对值的性质和有理数的加减混合运算法则计算即可.【详解】解:(-7)+12+(-2)-(|-7|+|+12|+|-2|)=3-21=-18,故选A.【点睛】本题考查的是有理数的加减混合运算,掌握绝对值的性质以及有理数的加减混合运算法则是解题的关键.+--++--+++--值为()10.计算123456782017201820192020A.0B.﹣1C.2020D.-2020【答案】D【解析】【分析】根据加法的结合律四个四个一组结合起来,每一组的和都等于-4,共505组,计算即可.【详解】解:1+2-3-4+5+6-7-8+9+10-11-12+……+2017+2018-2019-2020=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+……+(2017+2018-2019-2020)=(-4)+(-4)+(-4)+(-4)+……+(-4)=(-4)×505=-2020.故选:D.【点睛】本题考查了有理数的加减混合运算,观察出规律是解题的关键.二、填空题11.添括号:11111236--+=-______. 【答案】111236⎛⎫+- ⎪⎝⎭ 【解析】【分析】根据有理数加减混合运算去括号法则,从而完成求解.【详解】11111236--+=-111236⎛⎫+- ⎪⎝⎭故答案为:111236⎛⎫+-⎪⎝⎭. 【点睛】本题考察了有理数加减混合运算的知识;求解的关键是熟练掌握有理数加减混合运算中去括号法则,即可完成求解.12.某天在8个不同时间测得水池中的水位情况如下(单位:cm):+3,-6,-1,+5,-4,+2,-3,-2(规定上升为正,下降为负),那么这天水池中水位的最终变化情况是____.【答案】下降了6 cm.【解析】【分析】明确上升为正,为负下降.依题意列式计算即可求解.【详解】解:依题意得:(+3)+(-6)+(-1)+(+5)+(-4)+(+2)+(-3)+(-2)=3-6-1+5-4+2-3-2=-6(cm),即下降了6 cm.故答案为:下降了6 cm.【点睛】本题考查正数和负数的加减混合运算,解题的关键是明确正负数代表的实际含义.13.计算:(-0.25)-134⎛⎫-⎪⎝⎭+2.75-172⎛⎫+⎪⎝⎭=___.【答案】-1.75【解析】【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算. 14.某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则:(1)一月份比三月份多获利润____万元;(2)第一季度该工厂共获利润____万元.【答案】155 225【解析】【分析】(1)根据有理数的加减运算,即可求出答案;(2)把三个月的利润相加,即可得到答案.【详解】解:(1)根据题意,则150-(-5)=155(万元);故答案为:155;(2)二月份获利为:150-70=80(万元),﹣第一季度该工厂共获利润:150+80+(5-)=225(万元);故答案为:225;【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练掌握运算法则进行解题.15.若,a b 互为相反数,,c d 互为倒数,数轴上表示数m 的点到2-的距离是3,则323a cd b m -+-的值为_______.【答案】3-或7-.【解析】【分析】利用相反数以及互为倒数、绝对值的性质分别化简得出答案.【详解】解:﹣a ,b 互为相反数,c ,d 互为倒数,数轴上表示数m 的点到2-的距离是3,﹣0a b +=,1cd =,1m =或5-,则当1m =时,323||3()2||0213a cd b m a b cd m -+-=+--=--=-;当5m =-时,323||3()2||0257a cd b m a b cd m -+-=+--=--=-; 故323a cd b m -+-的值为3-或7-.故答案为:3-或7-.【点睛】本题主要考查了有理数的混合运算,正确分类讨论是解题关键.16.已知|a|=1,|b|=2,|c|=4,且a>b>c,则a -b+c=________ .【答案】−1或−3【解析】【分析】根据|a|=1,|b|=2,|c|=4,且a >b >c ,可得出c =−4,b =−2,a =±1,由此可得出答案.【详解】解:由题意得:a=±1,b=−2,c=−4,当a=−1,b=−2,c=−4时a−b+c=−3;当a=1,b=−2,c=−4时,a−b+c=−1;故答案为−1或−3.【点睛】本题考查有理数的加减混合运算及绝对值的意义,难度不大,根据题意确定a、b、c的值是关键.17.111111123456761220304256++++++=__________________【答案】3 288【解析】【分析】把每个分数化为“整数+分数”的形式,整数与整数部分相加,分数与分数部分相加,并把每个分数拆成两个分数相减的形式,然后通过加减相互抵消,求得结果【详解】解:111111 1234567 61220304256 ++++++111111=()+1+2+3+4+5+6+7 61220304256+++++111111111111=()28 233445566778-+-+-+-+-+-+11=2828-+3=288【点睛】完成此题,应认真审题,运用运算技巧灵活解答.18.计算111112612209900++++⋯+的值为__________________. 【答案】99100 【解析】【分析】 根据111(1)1n n n n =-++原式的每一项都写成两项之差,然后再进行计算即可得. 【详解】原式=1-11111112233499100+-+-++- =1-1100 =99100﹣ 故答案为99100. 【点睛】本题考查了分数的运算,熟练掌握111(1)1n n n n =-++是解题的关键. 三、解答题19.计算:()()3247252410-+---+--.【答案】-40【解析】【分析】根据有理数的加、减法法则计算即可.【详解】解:原式3247252410=--++-79252410=-++-3010=--40=-.【点睛】此题考查的是有理数的加减法混合运算,掌握有理数的加、减法法则是解决此题的关键.20.简便运算:(1)1131130.25 3.75 4.5244-+---; (2)()()11312 1.7557.252 2.5424⎛⎫⎛⎫-+--+---- ⎪ ⎪⎝⎭⎝⎭. 【答案】(1)92-;(2)9 【解析】【分析】(1)根据加法结合律、交换律和有理数的加减法运算法则计算即可;(2)根据加法结合律、交换律和有理数的加减法运算法则计算即可.【详解】解:(1)原式35151159244442=-+--- 39151551224444⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭332=-- 92=-; (2)原式131135121572442442=-+-+- 4972911511444224⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭ 1311344=++ 9=.【点睛】此题考查的是有理数的加减法简便运算,掌握加法结合律、交换律和有理数的加减法运算法则是解决此题的关键.21.某检修小组开汽车从A 地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下:4,7,9,8,6,7,2-+-++--.(单位:km )(1)求收工时距A 地多远?(2)在第几次纪录时距A 地最远(3)若每千米耗油0.5升,出发时油箱加满油且容量为20升,求途中还需补充多少升油?【答案】(1)收工时距A 1km ;(2)第5次纪录时距A 地最远;(3)途中还需补充1.5升.【解析】【分析】(1)由收工时距A 地的距离等于所有记录数字的和的绝对值,从而可得答案;(2)分别计算每次距A 地的距离,进行比较即可;(3)所有记录数的绝对值的和×0.5升,就是共耗油数,再减去油箱中存油量即可得到答案.【详解】解:(1)47986721-+-++--=-,所以11,-=故收工时距离A 地1km ;(2)由题意得,第一次距A 地44-=千米;第二次距A 地473-+=千米;第三次距A 地4796-+-=千米;第四次距A 地47982-+-+=千米;第五次距A 地479868-+-++=千米;第六次距A 地4798671-+-++-=千米;第七次距A 地47986721-+-++--=千米,故第5次纪录时距A 地最远;(3)()0.5479867221.5⨯++++++=(升)所以途中还需要补充:21.520 1.5-=(升).答:途中还需补充1.5升.【点睛】本题主要考查正负数的意义,绝对值的含义,及有理数的加减运算,正确理解正负数的意义及掌握有理数的运算法则是解题的关键.22.计算:﹣1﹣(41)18(39)12-++-+ ﹣2﹣1131()(3)(2)(5)2442---++-+ ﹣3﹣[]1.4(3.6 5.2) 4.3(1.5)--+--- ﹣4﹣1312()11442---+-- 【答案】﹣1﹣50-﹣﹣2﹣ 0﹣﹣3﹣3-﹣﹣4﹣3.5【解析】【分析】依据有理数的加减混合运算和绝对值的含义即可得出正确答案.【详解】解:﹣1﹣原式=()()41183912-++-+=[()()4139-+-]+(18+12)=-50﹣﹣2﹣原式=11313252442⎛⎫⎛⎫⎛⎫⎛⎫---++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=1131 3252442⎛⎫⎛⎫-+++- ⎪ ⎪⎝⎭⎝⎭ =[11522⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭]+(13 3244+) =0;﹣3﹣原式=()()1.4 3.6 5.2 4.3 1.5⎡⎤--+---⎣⎦=1.4 3.6 5.2 4.3 1.5+--+=-3﹣﹣4﹣原式=131211442⎛⎫---+-- ⎪⎝⎭=124+34+1-12=3.5. 故本题的正确答案为:﹣1﹣50-﹣﹣2﹣ 0﹣﹣3﹣3-﹣﹣4﹣3.5【点睛】掌握有理数的加减混合运算,以及会灵活运用加法的交换律、结合律、分配律进行简便计算是解题的关键. 23.七年级二班的几位同学正在一起讨论一个关于数轴上的点表示数的题目:甲说:“这条数轴上的两个点A 、B 表示的数都是绝对值是4的数”;乙说:“点C 表示负整数,点D 表示正整数,且这两个数的差是3”;丙说:“点E 表示的数的相反数是它本身”.(1)请你根据以上三位同学的发言,画出一条数轴,并描出A 、B 、C 、D 、E 五个不同的点. (2)求这个五个点表示的数的和.【答案】(1)见解析;(2)五个点表示的数的和为1或1-.【解析】【分析】根据甲说的可知4A =,B 4=-或4A =-,4B ,再由乙说的可得3D C -=,而根据丙说的可得0E =,据此进一步求出各点表示的数再画出数轴即可;(2)根据(1)中的数据加以计算即可.【详解】(1)﹣两点A 、B 表示的数都是绝对值是4的数,﹣4A =,B 4=-或4A =-,4B ;﹣点C 表示负整数,点D 表示正整数,且这两个数的差是3,﹣3D C -=,﹣2D =,1C =-或1D =,2C =-;﹣点E 表示的数的相反数是它本身,﹣0E =;综上所述,当4A =,B 4=-,2D =,1C =-,0E =时,数轴如下:当4A =,B 4=-,1D =,2C =-,0E =时,数轴如下:当4A =-,4B ,2D =,1C =-,0E =时,数轴如下:当4A =-,4B ,1D =,2C =-,0E =时,数轴如下:(2)由(1)可得:﹣当4A =,B 4=-,2D =,1C =-,0E =时,五个点表示数的和为:1,﹣当4A =,B 4=-,1D =,2C =-,0E =时,五个点表示数的和为:1-,﹣当4A =-,4B,2D =,1C =-,0E =时,五个点表示数的和为:1, ﹣当4A =-,4B ,1D =,2C =-,0E =时,五个点表示数的和为:1-,综上所述,五个点表示的数的和为1或1-.【点睛】本题主要考查了有理数与数轴的性质的综合运用,熟练掌握相关概念是解题关键.24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下﹣﹣8﹣﹣3﹣﹣12﹣﹣7﹣﹣10﹣﹣3﹣﹣8﹣﹣1﹣0﹣﹣10﹣(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?【答案】﹣最高分:92分;最低分70分﹣﹣低于80分的学生有5人﹣所占百分比50%﹣﹣10名同学的平均成绩是80分.【解析】(1)根据题意分别让80分加上记录结果中最大的数就是最高分,加上最小数就是最低分;(2)共有5个负数,即不足80分的共5人,计算百分比即可;(3)直接让80加上记录结果的平均数即可求算平均成绩.25.若2=a ,3b =,6c =,()a b a b +=-+,b c b c +=+,计算a b c +-的值.【答案】-7或-11【解析】【分析】根据绝对值的性质,确定a 、b 、c 的值,从而求得所求式子的值.【详解】解:﹣2=a ,3b =,6c =﹣a=±2 , b=±3 , c=±6,又﹣()a b a b +=-+,b c b c +=+﹣a+b <0,b+c >0﹣a=±2、b=-3、c=6﹣a b c +-=-2-3-6=-11或a b c +-=2-3-6=-7【点睛】本题考查有理数的加减混合运算和绝对值的相关知识,解答本题的关键是根据绝对值的性质a、b、c的值确定.26.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:﹣|7+21|=______;﹣|﹣12+0.8|=______;﹣23.2 2.83--=______;(2)用合理的方法进行简便计算:1111 924233202033⎛⎫-++---+⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|.【答案】(1)﹣7+21;﹣10.82-;﹣22.83.23+-;(2)9;(3)10012004.【解析】【分析】(1)根据绝对值的性质:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值是0即可得出结论;(2)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可;(3)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可.【详解】解:(1)﹣|7+21|=21+7;故答案为:21+7;﹣110.80.822 -+=-;故答案为:1 0.82-;﹣23.2 2.83--=22.83.23+-故答案为:22.83.23+-;(2)原式=1111 9242 33202033 -++-=9(3)原式=11111111... 23344520032004 -+-+-++-=11 22004 -=1001 2004【点睛】此题考查了有理数的加减混合运算,此题的难点把互为相反的两个数相加,使运算简便.做题时,要注意多观察各项之间的关系.。
2019年七年级数学上册第2章 2.6 有理数的加减混合运算精选练习一、选择题:1、一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有( )A、24.70千克B、25.30千克C、25.51千克D、24.80千克2、今年11月份甲、乙、丙三个城市的平均气温分别为-5℃、-1℃、15℃,那么最高的平均气温比最低的平均气温高( )A.10℃B.14℃C.16℃D.20℃3、下列等式计算正确的是( )A.(﹣2)+3=﹣1B.3﹣(﹣2)=1C.(﹣3)+(﹣2)=6D.(﹣3)+(﹣2)=﹣54、下列交换加数位置的变形中,正确的是( )A.1-4+5-4=1-4+4-5B.1-2+3-4=2-1+4-3C.4-7-5+8=4-5+8-7D.-3+4-1-2=2+4-3-15、将(+5)-(+2)-(-3)+(-9)写成省略加号和括号的和的形式,正确的是( )A.-5-2+3-9B.5-2-3-9C.5-2+3-9D.(+5)(+2)(-3)(-9)6、在(-5)-( )=-7中的括号里应填( )A.-12B.2C.-2D.127、在数轴上,点A对应的数是-2 019,点B对应的数是+17,则A,B两点的距离是( )A.2 029B.2 023C.2 036D.2 0108、若|a|+a=0,则a是( )A.零B.负数C.负数或零D.非负数9、已知a,b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果是( )A.2aB.﹣2aC.0D.2b10、已知|x|=3,y=2,而且x<y,则x-y等于( )A.1B.-5C.1或-5D.511、如果a,b是有理数,那么下列各式中成立的是( )A.如果a<0,b<0,那么a+b>0B.如果a>0,b<0,那么a+b>0C.如果a>0,b<0,那么a+b<0D.如果a>0,b<0,且|a|>|b|,那么a+b>012、一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为( )A.4038B.2018C.2019D.0二、填空题:13、-15与+2.4的和减去+2.7的差是________.14、若a是最小的自然数,b是最大的负整数,c是倒数等于它本身的数,则a+b+c=_______.15、若有理数在数轴上的位置如图所示,则化简|a+c|+|a-b|-|c+b|= .16、若a与-2互为相反数,则︱-3-a︱=_____.17、用[x]表示不大于x的整数中的最大整数,如[2.4]=2,[-3.1]=-4,请计算[5.5]+[-4.5]= .18、如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,第2018次输出的结果为 .三、解答题:19、计算:13+(﹣9)﹣(﹣2)﹣7 20、计算:(+3)+(-2)-(-5)-(+);21、计算: 22、计算:-|--(-)|+|(-)+(-)|.23、若|a|=2,b=-3,c是最大的负整数,求a+b-c的值.24、一辆大货车在一条南北朝向的公路上来回行驶,某一天早晨从A地出发,晚上到达B地,约定向北为正方向,向南为负方向,当天行驶记录如下(单位:千米):+18.3,-9.5,+7.1,-14,-6.2,+13,-6.8,-8.5.请你根据计算回答下列问题:(1)B地在A地何方,相距多少千米?(2)汽车这一天共行驶多少千米?(3)若汽车行驶时每千米耗油1.35升,那么这一天共耗油多少升?25、如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.26、阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时,如图2,点A、B都在原点的右边∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a =∣a-b∣;如图3,当点A、B都在原点的左边,∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;如图4,当点A、B在原点的两边,∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣=a+(-b)=∣a-b∣;回答下列问题:(1)数轴上表示2和5的两点之间的距离是_______,数轴上表示1和-3的两点之间的距离是;(2)数轴上若点A表示的数是x,点B表示的数是-2,则点A和B之间的距离是,若∣AB∣=2,那么x为;(3)当x等于时,代数式∣x+2∣+∣x-1∣=5;(4)若点A表示的数-1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒0.5个单位长度,求运动几秒后,点Q 可以追上点P ?(请写出必要的求解过程)参考答案1、D2、D3、D4、C5、C6、B7、C.8、C9、B10、B11、D12、D13、-15.314、0或-2;15、016、517、0;18、419、原式=﹣1;20、原式=6.21、原式=-1;22、原式=0.55.23、解:因为|a|=2,所以a=±2.因为c是最大的负整数,所以c=-1.当a=2时,a+b-c=2-3-(-1)=0;当a=-2时,a+b-c=-2-3-(-1)=-4.24、(1)-6.6千米;(2)83.4千米;(3)112.59升;25、(1)-1;(2)+0.5;(3)-926、(1)3;4;(2)∣x+2∣;0或-4;(3)-3或2;(4)4s;。
2.6 有理数的加减混合运算(一)◆基础训练一、选择题1.-2-1+3的值为().A.0 B.2 C.-2 D.-32.把(+5)-(+3)-(-1)+(-5)写成省略括号的和的形式是().A.5-3+1-5 B.5-3-1-5C.5+3+1-5 D.5-3+1+53.若│a-1│+│b+3│=0,则b-a-12的值是().A.-412B.-212C.112D.-112二、填空题4.从-5中减去-1,-3,2的和,所得的差是______.5.从-325与-535的和中减去-1415所得的差是_______.三、计算题6.23-17-(-7)+(-16).7.-0.8-(-0.08)-(-45)-(-0.92)-(+9).8.-4.25+13-(-123-14).9.-│-12│+13│-│-│0│-│-14│-(-19).◆能力提高一、填空题10.数轴上从左至右顺次有A,B,C三点,如果它们所表示的数的和为零,则其中表示负数的点可能是点_______.11.一个数是13,另一个数比13的相反数多-3,则这两个数的和是______.二、解答题12.某一矿井的示意图如下图所示:以地面为准,A点的高度是+4米,B,C两点的高度分别是-15米与-30米,A点比B点高多少米?比C点呢?◆拓展训练13.有一串整数是-55,-54,-53…问:(1)第100个数是多少?(2)求前面100个数的和.参考答案1.A 2.A 3.A 4.-3 5.-711156.-3 7.-88.-2 9.-113610.A或A,B 11.-312.+4-(-15)=19(米)+4-(-30)=34(米)13.(1)44 (2)-550。
北师大版七年级数学上册《2.2有理数的加减运算》同步练习题-带答案考试时间:60分钟满分100分班级:________________ 姓名:________________ 考号:________________一、单选题(本大题共8小题,总分24分)1.下列结论中,正确的是()A.有理数减法中,被减数一定比减数大B.减去一个数,等于加上这个数的相反数C.0减去一个数,仍得这个数D.互为相反数的两个数相减等于02.计算﹣2﹣8的结果是()A.﹣6B.﹣10C.10D.63.甲地的海拔高度是5m,乙地比甲地低9m,乙地的海拔高度是()m.A.9B.﹣9C.4D.﹣44.春节期间冰雪旅游大热,杭州的小明同学准备去旅游,考虑温差准备着装时,他查询气温,杭州的气温是19℃,长春的气温是﹣14℃,则此刻两地的温差是()A.33℃B.19℃C.14℃D.5℃5.将式子3﹣10﹣7写成和的形式正确的是()A.3+(﹣10)+(﹣7)B.﹣3+(﹣10)+(﹣7)C.3﹣(+10)﹣(+7)D.3+10+76.已知|a|=8,|b|=6,若|a+b|=a+b,则b﹣a的值为()A.﹣2B.﹣4C.﹣2或﹣4D.﹣2或﹣147.若|m|=5,|n|=4,且|m+n|=|m|﹣|n|,则m﹣n=()A.﹣9或﹣1B.1或9C.9或﹣9D.1或﹣98.对于若干个数,先将每两个数作差,再将这些差的绝对值进行求和,这样的运算称为对这若干个数的“差绝对值运算”,例如,对于1,2,3进行“差绝对值运算”,得到:|1﹣2|+|2﹣3|+|1﹣3|=4.①对﹣2,3,5,9进行“差绝对值运算”的结果是35;②x,−52,5的“差绝对值运算”的最小值是152;③a,b,c的“差绝对值运算”化简结果可能存在的不同表达式一共有8种;以上说法中正确的个数为()A.0个B.1个C.2个D.3个二、填空题(本大题共6小题,总分24分)9.计算:(−5.2)−145=.10.已知:|x|=8,y=﹣5,且x<y,则x﹣y的值为.11.如图是某市连续5天的天气情况,最大的日温差是℃.12.A、B、C三地的海拔高度分别是﹣112米、﹣80米、﹣25米,则最高点比最低点高米.13.某超市出售的一种品牌大米袋上,标有质量为(20±0.2)kg的字样,则从该超市里任意拿出这种品牌的大米两袋,它们的质量最多相差kg.14.若|x|=7,|y|=6,|x+y|=﹣(x+y),则x﹣y的值为.三、解答题(本大题共6小题,总分52分)15.计算:(1)﹣3﹣1﹣13.(2)−(+416)−6−(−0.125).16.已知|a|=3,|b|=5,且a>b,求a﹣b的值.17.请列式计算:(1)求绝对值小于5的所有整数的和;(2)设m为5与﹣12的差,n比6的相反数大5,求m+n的值.18.已知|x|=12,|x﹣y|=5.(1)求x,y的值:(2)当x﹣y<0,求x+y的值.19.(1)若|x+3|+|y﹣5|=0,那么x+y的值是多少?(2)已知|a|=7,|b|=3,|a﹣b|=b﹣a,求a+b的值.20.(1)阅读思考:小唐在学习过程中,发现“数轴上两点间的距离”可以用“表示这两点数的差”来表示.【探索】:如图1,线段AB,BC,CD的长度可表示为:AB=3=4﹣1,BC=5=4﹣(﹣1),CD=3=(﹣1)﹣(﹣4);于是他归纳出这样的结论:如果点A表示的数为a,点B表示的数为b,当b>a时,AB=b﹣a(较大数﹣较小数).(2)尝试应用:①如图2所示,计算:OE=,EF=.②把一条数轴在数m对应的点处对折,使表示1和3两数的点恰好互相重合,则m=;若把数轴在数n对应的点处对折,使表示﹣5和3两数的点恰好互相重合,数n=.(3)问题解决:如图3所示,点P表示数x,点M表示数﹣2,点N表示数2x+8,且MN=4PM,求出点P和点N分别表示的数.参考答案一、单选题(本大题共8小题,总分24分)1.BBDA.5.ADCB.【点评】本题考查了新定义运算,化简绝对值符号,整式的加减运算,掌握绝对值运算,整式的运算是解题的关键.二、填空题(本大题共6小题,总分24分)9.﹣7.10.﹣3.11.10.12.87.13.0.4.14.﹣1或﹣13.三、解答题(本大题共6小题,总分52分)15.解:(1)原式=﹣4﹣13=﹣17;(2)原式=﹣416−6+18 =﹣10−16+18=﹣10−424+324=﹣10124.16.解:∵|a |=3,|b |=5∴a =±3或b =±5∵a >b∴a =3时,b =﹣5a ﹣b =3﹣(﹣5)=3+5=8a =﹣3时,b =﹣5a ﹣b =﹣3﹣(﹣5)=﹣3+5=2综上所述,a ﹣b 的值为8或2.17.解:(1)绝对值小于5的整数有:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4 所以﹣4﹣3﹣2﹣1+0+1+2+3+4=0;(2)由题意得m =5﹣(﹣12)=5+12=17,n =﹣6+5=﹣1所以m +n =17+(﹣1)=16.18.解:(1)∵|x |=12∴x =±12∵|x ﹣y |=5∴x =12,y =7或y =17,或者x =﹣12,y =﹣7或y =﹣17;(2)∵x ﹣y <0∴x =12,y =17或x =﹣12,y =﹣7;∴x +y 的值为:29或﹣19.19.解:(1)∵|x +3|+|y ﹣5|=0∴x =﹣3,y =5∴x +y =﹣3+5=2;(2)∵|a ﹣b |=b ﹣a∴b≥a∵|a|=7,|b|=3∴a=﹣7,b=±3∴a+b=﹣7±3=﹣10或﹣4.20.解:(2)①OE=0﹣(﹣5)=0+5=5,EF=3﹣(﹣5)=3+5=8②由题意得:3﹣m=m﹣1∴m=2把一条数轴在数m对应的点处对折,使表示1和3两数的点恰好互相重合,则m=2由题意得:3﹣n=n﹣(﹣5)∴n=﹣1∴若把数轴在数n对应的点处对折,使表示﹣5和3两数的点恰好互相重合,数n=﹣1故答案为:①5,8②2,﹣1;(3)由题意得:MN=2x+8﹣(﹣2)=2x+10,PM=﹣2﹣x∵MN=4PM∴2x+10=4(﹣2﹣x)解得:x=﹣3∴2x+8=2∴点P表示的数是:﹣3,点N表示的数是。
北师大版七年级数学上册《2.2有理数的加减运算》同步测试题带答案【基础达标练】课时训练夯实基础知识点1有理数的减法1.比2小3的数是( )A.-3B.-1C.2D.52.--的值是( )A.-B.-C.D.3.下列各式中正确的是( )A.-5-(-3)=-8B.+6-(-5)=1C.-7-|-7|=0D.+5-(+8)=-34.下列结论不正确的是( )A.若a>0,b<0,则a-b>0B.若a<0,b>0,则a-b<0C.若a<0,b<0,则a-(-b)>0D.若a<0,b<0,且|b|>|a|,则a-b>05.(2024·益阳期末)a的相反数是它本身,b是最大的负整数,则a-b的值是.6.计算:(1)0-2;(2)--;(3)|-5-6|-(4-5)-|-8|;(4)2-.知识点2有理数减法的应用7.(2024·贵阳期中)某市冬季的一天,中午12时的气温是-2 ℃,经过6小时气温下降了6 ℃,那么当天18时的气温是( )A.4 ℃B.-4 ℃C.8 ℃D.-8 ℃8.数轴上表示数-5和表示数-14的两点之间的距离是.9.(2024·贵阳南明区质检)科技改变世界.快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确放入相应的格口,还会感应避让障碍物、自动归队取包裹,没电的时候还会自己找充电桩充电.某分拣仓库计划平均每天分拣20万件包裹,但实际每天的分拣量与计划相比会有出入,下表是该仓库10月份第三周分拣包裹的情况(超过计划量的部分记为正,未达到计划量的部分记为负):星期一二三四五六日分拣情况+60-4+5-1+7-6(单位:万件)(1)该仓库本周内分拣包裹数量最多的一天是星期;最少的一天是星期;最多的一天比最少的一天多分拣万件包裹;(2)该仓库本周实际平均每天分拣多少万件包裹?【综合能力练】巩固提升迁移运用10.(2024·毕节金沙县质检)如图,|a|-a的值为()A.-6B.0C.3D.611.(2024·黔西南州质检)若数a,b在数轴上的位置如图所示,则 ( )A.a+b>0B.|a|<|b|C.a-b>0D.-a-b>012.(2024·贵阳花溪区质检)若|a|=8,|b|=5,且a>0,b<0,则a-b的值是.13.如果一个数的实际值为a,测量值为b,我们把|a-b|称为绝对误差,称为相对误差.若有一种零件实际长度为5.0 cm,测量得4.8 cm,则测量所产生的绝对误差是cm,相对误差是cm.14.计算下列各题,能简算的要简算.(1)3-(+63)-(-259)-(-41);(2)598-12-3-84.15.(素养提升题)点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=|a-b|,利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示2和-3的两点之间的距离是,数轴上表示x和-2的两点之间的距离是.(2)若|x+3|+|x-5|=8,利用数轴求出x的整数值为.(3)P是数轴上任意一点,且点P表示的数是x,求|x+2|+|x-4|的最小值.参考答案【基础达标练】课时训练夯实基础知识点1有理数的减法1.比2小3的数是(B)A.-3B.-1C.2D.52.-12-14的值是(B)A.-14B.-34C.34D.143.下列各式中正确的是(D)A.-5-(-3)=-8B.+6-(-5)=1C.-7-|-7|=0D.+5-(+8)=-34.下列结论不正确的是(C)A.若a>0,b<0,则a-b>0B.若a<0,b>0,则a-b<0C.若a<0,b<0,则a-(-b)>0D.若a<0,b<0,且|b|>|a|,则a-b>05.(2024·益阳期末)a的相反数是它本身,b是最大的负整数,则a-b的值是1.6.计算:(1)0-2;(2)-12-(-12);(3)|-5-6|-(4-5)-|-8|;(4)223-(134-313).【解析】(1)0-2=0+(-2)=-2.(2)-12-(-12)=-12+12=0.(3)|-5-6|-(4-5)-|-8|=11-(-1)-8=11+1-8=4.(4)223-(134-313)=83-(74-103)=32 12-2112-4012=3212-(-1912)=32+1912=174.知识点2有理数减法的应用7.(2024·贵阳期中)某市冬季的一天,中午12时的气温是-2 ℃,经过6小时气温下降了6 ℃,那么当天18时的气温是(D)A.4 ℃B.-4 ℃C.8 ℃D.-8 ℃8.数轴上表示数-5和表示数-14的两点之间的距离是9.9.(2024·贵阳南明区质检)科技改变世界.快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确放入相应的格口,还会感应避让障碍物、自动归队取包裹,没电的时候还会自己找充电桩充电.某分拣仓库计划平均每天分拣20万件包裹,但实际每天的分拣量与计划相比会有出入,下表是该仓库10月份第三周分拣包裹的情况(超过计划量的部分记为正,未达到计划量的部分记为负):星期一二三四五六日分拣情况+60-4+5-1+7-6(单位:万件)(1)该仓库本周内分拣包裹数量最多的一天是星期;最少的一天是星期;最多的一天比最少的一天多分拣万件包裹;(2)该仓库本周实际平均每天分拣多少万件包裹?【解析】(1)由题表可知:该仓库本周内分拣包裹数量最多的一天是星期六;最少的一天是星期日;最多的一天比最少的一天多分拣+7-(-6)=13(万件).答案:六日13(2)略【综合能力练】巩固提升迁移运用10.(2024·毕节金沙县质检)如图,|a|-a的值为(D)A.-6B.0C.3D.611.(2024·黔西南州质检)若数a,b在数轴上的位置如图所示,则 (D)A.a+b>0B.|a|<|b|C.a-b>0D.-a-b>012.(2024·贵阳花溪区质检)若|a|=8,|b|=5,且a>0,b<0,则a-b的值是13.13.如果一个数的实际值为a,测量值为b,我们把|a-b|称为绝对误差,|a-b|a称为相对误差.若有一种零件实际长度为5.0 cm,测量得4.8 cm,则测量所产生的绝对误差是0.2cm,相对误差是0.04cm.14.计算下列各题,能简算的要简算.(1)3-(+63)-(-259)-(-41);(2)598-1245-335-84.【解析】(1)原式=3-63+259+41 =-60+300=240;(2)原式=598-12-45-3-35-84=(598-12-3-84)-45+3 5=499-75=49735.15.(素养提升题)点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=|a-b|,利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示2和-3的两点之间的距离是,数轴上表示x和-2的两点之间的距离是.(2)若|x+3|+|x-5|=8,利用数轴求出x的整数值为.(3)P是数轴上任意一点,且点P表示的数是x,求|x+2|+|x-4|的最小值.【解析】(1)由题意可得,数轴上表示2和5两点之间的距离是|5-2|=3数轴上表示2和-3的两点之间的距离是|-3-2|=5,数轴上表示x和-2的两点之间的距离是|x-(-2)|=|x+2|.答案:35|x+2|(2)根据绝对值的定义有|x+3|+|x-5|=8可表示为|x-(-3)|+|x-5|=8,即表示点x到-3与5两点距离之和借助数轴分析可知,当x在-3与5之间时,|x+3|+|x-5|=8此时x的整数值是-3,-2,-1,0,1,2,3,4,5.答案:-3,-2,-1,0,1,2,3,4,5(3)根据绝对值的定义有|x+2|+|x-4|可表示为|x-(-2)|+|x-4|,即表示点x到-2与4两点距离之和根据(2)中的数轴可知,当x在-2与4之间时,|x+2|+|x-4|有最小值最小值为4-(-2)=6.。
北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题专题(一) 有理数的加减运算1、计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.2、计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)-(10+2)=20-12=8.3、计算:(1)-23-35+78-13-25+18; 解:原式=(-23-13)+(-35-25)+(78+18) =-1-1+1=-1.(2)-479-(-315)-(+229)+(-615). 解:原式=[-479-(+229)]+[-(-315)+(-615)] =-7-3=-10.4、计算:|-0.75|+(-3)-(-0.25)+|-18|+78. 解:原式=0.75-3+0.25+18+78=(0.75+0.25)+(18+78)-3 =1+1-3=-1.5、计算:-156+(-523)+2434+312. 解:原式=(-1-56)+(-5-23)+(24+34)+(3+12) =[(-1)+(-5)+24+3]+[(-56)+(-23)+34+12] =21+(-14) =2034. 6、计算:634+313-514-312+123. 解:原式=6+34+3+13-5-14-3-12+1+23=(6+3-5-3+1)+(34+13-14-12+23) =2+1=3.7、计算:(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7-7=0.(3)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(4)12+(-23)+45+(-12)+(-13); 解:原式=[12+(-12)]+[(-23)+(-13)]+45=0+(-1)+45=-15.(5)-478-(-512)+(-412)-318;解:原式=-478+512-412-318=(-478-318)+(512-412) =-8+1=-7.(6)0.25+112+(-23)-14+(-512); 解:原式=14+112+(-23)-14+(-512) =(14-14)+[112+(-23)+(-512)] =-1.(7)|-12|-(-2.5)-(-1)-|0-212|; 解:原式=12+2.5+1-212=(12+1)+(2.5-212) =112.(8)-205+40034+(-20423)+(-112); 解:原式=(-205)+400+34+(-204)+(-23)+(-1)+(-12) =(400-205-204-1)+(34-23-12)=-10+(-512) =-10512.(9)0+1-[(-1)-(-37)-(+5)-(-47)]+|-4|; 解:原式=1-[(-1)+37-5+47]+4 =1-[(-1+37+47)-5]+4 =10.(10)-12-16-112-120-130-142-156-172; 解:原式=-(12+16+112+120+130+142+156+172) =-(1-12+12-13+13-14+14-15+15-16+16-17+17-18+18-19) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100) =-1+1-1+1-…-1+1=0.8、观察下列各式:12=11×2=1-12,16=12×3=12-13,112=13×4=13-14,…,根据规律完成下列各题.(1)19×10=19-110; (2)计算12+16+112+120+…+19 900的值为99100.专题(二) 有理数的混合运算1、计算:531×(-29)×(-2115)×(-412). 解:原式=-531×29×3115×92=-(531×3115)×(29×92) =-13×1 =-13.2、计算:(14-16+124)×(-48). 解:原式=14×(-48)-16×(-48)+124×(-48) =-12+8-2=-6.3、计算:4×(-367)-3×(-367)-6×367. 解:原式=-367×(4-3+6) =-27.4、计算:(16-27+23)÷(-542). 解:原式=(16-27+23)×(-425) =16×(-425)-27×(-425)+23×(-425) =-75+125-285=-235.5、计算:(能用简便方法的尽量用简便方法计算)(1)-0.75×(-112)÷(-214); 解:原式=-34×(-32)×(-49)=-12.(2)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=-2×9÷1=-18.(3)(-1.5)×45÷(-25)×34; 解:原式=32×45×52×34=94.(4)-14+16÷(-2)3×(-3-1);解:原式=-1+16÷(-8)×(-4)=-1+8=7.(5)(-5)÷(-127)×(-214)÷7; 解:原式=-5×79×94×17=-54.(6)0.7×1949+234×(-14)+0.7×59+14×(-14); 解:原式=0.7×(1949+59)-14×(234+14) =0.7×20-14×3=-28.(7)391314×(-14); 解:原式=(40-114)×(-14)=40×(-14)-114×(-14) =-560+1=-559.(8)1318÷(-7); 解:原式=1318×(-17) =(14-78)×(-17) =-2+18=-178.(9)12.5×6.787 5×18+1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(10)(-5)-(-5)×110÷110×(-5); 解:原式=(-5)-(-5)×110×10×(-5)=-5-25=-30.(11)(-42)÷(223)2+512×(-16)-(-0.5)2; 解:原式=(-16)÷649-1112-14=-94-1112-14=-4112.(12)148÷(38-56+14); 解:因为(38-56+14)÷148=(38-56+14)×48 =38×48-56×48+14×48 =18-40+12=-10,所以148÷(38-56+14)=-110.(13)(-12)÷(-4)-27÷(-3)×(-13); 解:原式=3-9×13=3-3=0.(14)(-2)3-16×(38-1)+2÷(12―14―16). 解:原式=-8-16×38+16+2÷(612-312-212) =-8-6+16+2÷112=2+24=26.。