2015年秋季新版苏科版八年级数学上学期4.1、平方根学案6
- 格式:doc
- 大小:278.00 KB
- 文档页数:2
课题:4.1 平方根(1)课型:新授主备: 赵斌审核:杨景教学目标1.了解平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用平方根运算求某些非负数的平方根.教学重点了解开方与乘方互为逆运算,能熟练地用平方根求某些非负数的平方根.教学难点用平方根运算求某些非负数的平方根.教学过程(一)创设情景,感悟新知情景一:设图中的小方格的边长为1,你能分别说出图中2个长方形的对角线AB,A’B’的长吗?情景二:在等式ax=2中,已知3-=x,你能求a吗?已知5=a,你能x求吗?(二)探索规律,揭示新知问题一:认真观察下面的式子,积极思考,互相讨论:.25.0)5.0(,25.05.0,91)31(,91)31(,4)2(,42222222=-==-==-=(1)请你举例与上面的式子类同的式子;(2)你得到什么结论?如果一个数的平方等于a,那么这个数叫做的a平方根(square root),也称为二次方根。
如果ax=2,那么x就叫做a的平方根。
问题二:在下列各括号中能填写适当的数使等式成立吗?如果能够,请填写;如果不能,请说明理由,并与同学交流。
)(()()()()()()().4,0,10,5;21,41,25,922222222-========一个正数的平方根有2个,它们互为相反数。
一个正数a 的正的平方根,记作“a ”,正数a 的负的平方根记作“a -”。
这两个平方根合起来记作“a ±”,读作“正,负根号a ”. 问题三:从问题二中,你得到了什么结论?(三)尝试反馈,领悟新知例1求下列各数的平方根:(1) 25;(2)8116(3)15;(4)()22-。
分析:1、判断这些数是否都有平方根;2、根据规律各个数的平方根有几个?练习题一:完成书本练习。
练习题二:1、平方得81的数是 ,因此81的平方根是 。
2、平方根是它本身的数是 。
3、如果-b 是a 的平方根,那么A 、2a b =;B 、2b a = ;C 、2a b -=;D 、2b a -=。
课题: 4.1 平方根(第1课时)教材分析:“平方根”是苏科版数学八年级上册第4章“实数”的第1节的内容,隶属于“数与代数”领域,是本章教学的重点和难点.本节共2课时,本节课是第1课时.由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,从而完成了初中阶段数的扩展.运算方面,在乘方运算的基础上以引入了开方运算,使代数运算得以完善.因此,本节课有助于了解n次方根的概念,为今后学习二次根式、方程、函数等知识作出了铺垫,提供了数学知识的积累.教学目标:1.了解平方根的概念,学会平方根的符号表示;2.了解开方与乘方互为逆运算,会用平方根运算求一个非负数的平方根;3.理解平方根的性质,懂得一个正数有两个平方根(它们互为相反数),0的平方根是0,负数没有平方根.教学重点:了解开方与乘方互为逆运算,能熟练地用平方根运算求一个非负数的平方根.教学难点:用平方根运算求一个非负数的平方根.教学过程:一、创设情景,复习旧知师:想一想,什么是乘方运算?能举个例子吗?生: 32,(-3)2,52,54,…师:在“54”中,5、4分别叫什么?生(众):5是底数,4是指数.师:54的结果是多少?它又叫什么?生(众):625,幂.师:乘方运算是已知底数、指数,求幂的运算.二、提出问题,引发探究师:如果知道了指数、幂,问底数是多少呢?也就是说“已知x4=625,求x.”我们把这种运算称之为开方运算,就是已知幂、指数,求底数的运算.师:我们研究数的运算往往是从简单的开始,你觉得我们可以先从“开几次方”开始研究呢?生:1.师:对于一个数的开1次方,是多少?有没有必要?生:没有,开1次方还是它本身.师:对的!那从“开几次方”开始?生:开2次方.师:到底“开几次方”?生(众):开2次方.师:二次方又称平方.那我们就从平方运算和对应的开平方运算开始.师:我们知道22=4.若x2=4,x是多少?生:±2.师:x2=100呢?x2=169呢?生:±10,±13.师:能再举些列子吗?生:……师:你有什么发现?生:平方等于同一个数的数有两个,它们互为相反数.师:x2=2呢?(学生讨论)师:在这里我们没有找到任何一个整数或分数的平方等于2,即无法找到一个有理数,使它的平方等于2.这怎么办呢?师:为了确定一个数,使它的平方等于2,我们在平方数2的上面放上符号“”来表示,记作2,即()222=.这里的“”读作“根号”,2读作“根号2”.师:此时,x会是多少?±.生:2师:可以看出,使x2=a(a>0)成立的数有几个?生(众):两个.师:它们之间有什么关系?生:它们互为相反数.师:(板书定义)我们说,如果x 2=a (a ≥0),那么x 叫做a 的平方根,也称为二次方根.这就是我们今天所要学习的平方根(出示课题).正数a 的正的平方根记作“a ”负的平方根记作“a -”, 正数a 的两个平方根记作“a ±”,读作“正、负根号a ”.三、尝试练习,巩固新知(出示例题)例1 求下列各数的平方根:(1)25;(2)1681;(3)15;(4)0.09. (学生讲解,教师点评,巩固新知)四、探索交流,发现性质师:在下列各括号中能填写适当的数使等式成立吗?如果能,请填写;如果不能,请说明理由,并与同学交流.( )2=9,( )2=5,( )2=925,( )2=0, ( )2=-49,( )2=-8,( )2=-36. 生:……师:你有什么发现?生:……师:(板书性质)一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.五、拓展练习,深化理解(出示例题)例2 计算:(1)36; (2)412-; (3)81.0±. 师:式子36什么意思?生:表示36的平方根.师:再想想,看看黑板上的符号表示.生:表示36的正的平方根.师:正确!等于多少?生:6. 师:式子412-什么意思? 生:表示412的负的平方根. 师:等于多少? 生:23-. 师:很好!那么,81.0±呢?生:表示0.81的平方根.(师生共同分析后,学生板演)六、梳理小结,归纳提升师:请同学们围绕以下几个问题展开梳理:(1)这节课你是怎样学习平方根的?(2)你对平方根有哪些认识?生:……师:同学们,乘方运算是已知底数、指数求幂的运算,开方运算是已知幂、指数求底数的运算,如果已知幂、底数求指数有什么运算呢?这将在高中学习中解决这样的问题.教学反思:1.立足研究教材,贴近学生现实著名特级教师李庾南认为“教材不等于教学内容,教者应该从学生实际出发,力求学生的知识、智力、能力、情感、态度能达到各自的‘最近发展区’,创造性地用教材,重组教学内容,决不能只是讲教材”.本节课教材设计是以运用勾股定理计算直角三角形边长为实际情境,引导学生感悟研究“数的开方”的必要性,激发学生的求知欲.显然,边长的计算结果应该是算术平方根,而不是平方根,笔者觉得有值得商榷的地方.所以,笔者放弃了教材上的情境引入,而是从“什么是乘方运算”入手,引入“开方运算”,让学生初步感受乘方与开方互为逆运算,然后引导学生来具体研究平方运算和对应的开平方运算,再给出平方根的定义,让学生学会平方根的符号表示及求法,并归纳其性质.这样,不仅有利于学生理解平方根的内涵,还能够更好地揭示开平方运算与平方运算之间的内在关联.2.深刻理解教材,认真理解数学钟启泉教授指出:“可以说,唯有‘用教材教’才能反映教学过程中教材的性质.这是因为,教学过程是一种社会交互作用的过程,知识不是教师通过传递信息强制性地灌输给学生的,而是学生自身以及在与教师交互作用之中建构的.”章建跃教授曾说:“在课堂教学中,要以数学知识的发生、发展过程和理解数学知识的心理过程为基本线索,为学生构建前后一致逻辑连贯的学习过程,使他们在掌握数学知识的过程中学会思考.”“用教材教”就需要我们深刻理解教材、认真理解数学,不仅包括本学段内数学知识的发生、发展可能,还要思考在后续高中阶段会有怎样的生长可能,也有利于学生能从整体上理解数学,构建数学认知结构.“幂、底数、指数”三个量之间的关系是平方根教学的生长点,笔者设计具有思考性的问题串,引发学生思维冲突,引导学生准确而深刻理解平方根概念,也为学习高中对数知识作了必要的准备.。
课题:4.1 平方根(1)学习目标: 姓名: 1.了解平方根的概念,会用根号表示数的平方根; 2.了解开方与乘方互为逆运算,会用平方根运算求某些非负数的平方根. 学习过程: 一.【情景创设】 设图中的小方格的边长为1,你能分别说出图中2个长方形的对角线AB ,A′B′的长吗?二.【问题探究】问题1:观察下面的式子:224= 2(2)4-=210100= 2(10)100-=213169= 2(13)169-=(1) 请你在右边举出与左边的式子类似的例子。
(2) 从这些式子中,你有什么发现?1、概念:如果一个数的平方等于a ,那么这个数叫做a 的平方根,也称为二次方根.如果x 2=a ,那么x 就叫做a 的平方根,也称为二次方根.2、表示法:一个正数a 的正的平方根,记作“ ”,正数a 的负的平方根,记作“ ”.这两个平方根合起来记作“ ”,读作“ ”例如:224= 2(2)4-=,±2叫做4的平方根.记作:42±=± 210100= 2(10)100-=, 叫做 的平方根.记作:213169= 2(13)169-=, 叫做 的平方根.记作:问题2:在下列各括号中,你能填写适当的数使等式成立吗?如果能,请填写;如果不能,请说明理由,并与同学交流.2()9=,2()25=, 29()25=; 2()0=,29()4=-, 2()4=-.3、探索交流后总结出以下结论:(1)(2)(3)4、求一个数的平方根的运算叫做开平方(开平方运算与平方运算互为逆运算)巩固练习:1、判断下列说法是否正确。
2、如图,说出左圈中“?”所表示的数。
(1)5-是25的平方根;(2)25的平方根是5-;(3)0的平方根是0;(4)1的平方根是1;(5)2(3)-的平方根是3-问题3: 求下列各数的平方根(1)25; (2)1681; (3)15; (4)21()5-.问题4:求下列各式中x 的值:(1)3x 2-27=0 (2)9(x 2+1)=10问题5:解答题:(1)已知一个数a 的两个平方根是b+1,b+3,求a 、b 的值.(2)若a +1没有平方根,求a 的取值范围.三.【变式拓展】问题6:已知2a -1的平方根是±3,4a +2b +1的平方根是±5,求a -2b 的平方根.四.【总结提升】1.说说你对平方根的理解.2.开平方运算与平方运算有什么联系?有什么区别?五. 【课堂反馈】六. 【课后作业】(选做题)八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为( ) A .9710-⨯B .8710-⨯C .90.710-⨯D .80.710-⨯ 【答案】A【分析】根据科学记数法绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,其中110a ≤<,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】由科学记数法的表示可知,90.000000007=710-⨯,故选:A .【点睛】科学记数法表示数时,要注意形式10n a -⨯中,a 的取值范围,要求110a ≤<,而且n 的值和原数左边起第一个不为零的数字前面的0的个数一样.2.如图,射线OA 平分角,AB OM ⊥于点B ,AC ON ⊥于点C ,若130BOC ∠=︒,则BAC ∠=( )A .70︒B .60︒C .50︒D .40︒【答案】C 【分析】根据题意可知A 、B 、O 、M 四点构成了四边形,且有两个角是直角,直接利用四边形的内角和即可求解.【详解】解:∵AB OM ⊥于点B ,AC ON ⊥于点C ,∠∠=90ABO ACO ∴=︒,130BOC ∠=︒,360-90-90-130=50∴∠=︒︒︒︒︒BAC ;故选:C .【点睛】本题考查的是四边形的内角和,这里要注意到⊥构造的是90°的角即可求解本题.3.下列式子正确的是( )A .336a a a +=B .()235a a =C .()2224612ab a b =D .65a a a ÷=【答案】D【分析】根据合并同类项法则,幂的乘方和积的乘方,同底数幂的除法求出每个式子的值,再判断即可.【详解】解:A 、3332a a a +=,故本选项不符合题意;B 、326()a a =,故本选项不符合题意;C 、2224(6)36ab a b =,故本选项不符合题意;D 、65a a a ÷=,故本选项符合题意;故选:D .【点睛】本题考查了合并同类项法则,幂的乘方和积的乘方,同底数幂的除法等知识点,能正确求出每个式子的值是解此题的关键.4.如图,已知ABC 为等腰三角形, , 90AB AC BAC =∠<︒,将ABC 沿AC 翻折至,ADC E 为BC的中点,F 为AD 的中点,线段EF 交AC 于点G ,若()1FCDGEC S m m S =≠,则AG GC=( )A .mB .11m m +-C .1m +D .1m -【答案】D 【分析】连接AE ,由三角形的中线将三角形面积分成相等的两部分,用m 表示出△AEG 的面积,再由等高三角形面积比等于底边之比求解即可.【详解】解:如图,连接AE ,设1CEG S =,则FCD S m =,∵F 为AD 的中点,2ACD ACB S S m ∴==,1AEG S m ∴=- ∴1AEG CEG S AG m CG S==-故选:D.【点睛】 本题主要考查了与三角形中线有关的面积问题,掌握三角形的中线将三角形面积分成相等的两部分是解题的关键.5.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是9.1环,方差分别是20.63S =甲,20.58S =乙,20.49S =丙,20.46S =丁,则本次测试射箭成绩最稳定的是( )A .甲B .乙C .丙D .丁 【答案】D【分析】根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的射箭成绩最稳定.【详解】∵甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是9.1环,方差分别是20.63S =甲,20.58S =乙,20.49S =丙,20.46S =丁,丁的方差最小,∴射箭成绩最稳定的是丁.故选:D .【点睛】此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在解题时要能根据方差的意义和本题的实际,得出正确结论是本题的关键.6.如果把分式232xx y -中的x ,y 都扩大3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .扩大9倍【答案】B【分析】根据分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变,可得答案. 【详解】()23322332333232x xxx y x y x y ⨯⋅==⨯-⨯--.故选:B .【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变. 7.下列命题,是真命题的是( )A .三角形的外角和为180︒B .三角形的一个外角大于任何一个和它不相邻的内角.C .两条直线被第三条直线所截,同位角相等.D .垂直于同一直线的两直线互相垂直.【答案】B【分析】根据三角形的性质,平行与垂直的性质逐一判断即可.【详解】解:A.三角形的外角和为360︒,故错误;B.三角形一个外角等于与它不相邻的两个内角的和,所以它大于任何一个和它不相邻的内角,故正确;C.两条平行线被第三条直线所截,同位角相等,故错误;D.垂直于同一直线的两直线互相平行,故错误.故选:B.【点睛】本题通过判断命题的真假考查了几何基本图形的性质定理,理解掌握相关性质是解答关键.8.9的平方根是( )A .3B .±3CD 【答案】B【分析】根据平方根的定义解答即可.=±1.故选B .【点睛】本题考查了平方根,注意一个正数的平方根有两个.9.为了测量河两岸相对点A、B的距离,小明先在AB的垂线BF上取两点C、D,使CD=BC,再作出BF 的垂线DE,使A、C、E在同一条直线上(如图所示),可以证明△EDC≌△ABC,得ED=AB,因此测得ED 的长度就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.AAS【答案】B【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【详解】因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选B.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.若分式11xx-+的值为0,则x的值为()A.1 B.-1 C.1或-1 D.0【答案】A【解析】根据分式的概念,分式有意义要求分母不为零,所以分式值为零,即分子为零即可.【详解】11xx-=+,10x∴-=,1x∴=,故选:A.【点睛】考查分式的定义,理解定义以及有意义的条件是解题的关键.二、填空题11.如图,两个四边形均为正方形,根据图形的面积关系,写出一个正确的等式__________.【答案】222()2a b a ab b +=++【分析】根据图形的分割前后面积相等,分别用大正方形的面积等于分割后四个小的图形的面积的和,即可得出结论.【详解】如图可知,把大正方形分割成四部分,大正方形的边长为()a b +,大正方形面积为2()a b +,两个小正方形的面积分别为2a 、2b ,两个长方形的面积相等为ab ,所以有222()2a b a ab b +=++,故答案为:222()2a b a ab b +=++. .【点睛】分割图形,找到分割前后图形的关系,利用面积相等,属于完全平方公式的证明,找到a 、b 的关系式,即可得出结论.12.如图,在ABC ∆中,分别以点A 和点C 为圆心,大于12AC 长为半径画弧,两弧相交于点M 、N ;作直线MN 分别交BC 、AC 于点D 、点E ,若3AE m =,ABD ∆的周长为13cm ,则ABC ∆的周长为________.【答案】19cm【分析】根据尺规作图得到MN 是线段AC 的垂直平分线,根据线段垂直平分线的性质得到DA DC =,26AC AE ==,根据三角形的周长公式计算即可.【详解】解:由尺规作图可知,MN 是线段AC 的垂直平分线,DA DC ∴=,26AC AE ==,ABD ∆的周长为13,13AB AD BD AB DC BD AB BC ∴++=++=+=,则ABC ∆的周长13619()AB BC AC cm =++=+=,故答案为:19cm .【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.如图,在t R ABC ∆中,90C ∠=︒,6AC cm =,10AB cm =,分别以点A ,B 为圆心,大于AB 的长为半径画弧,两弧交点分别为点P ,Q ,过P ,Q 两点作直线交BC 于点D ,则CD 的长是_______cm .【答案】74【分析】连接AD ,如图,先利用勾股定理计算出BC=8,利用基本作图得到PQ 垂直平分AB ,所以DA=DB ,设CD=x ,则DB=DA=8-x ,利用勾股定理得到x 2+62=(8-x )2,然后解方程即可.【详解】解:连接AD ,如图,∵∠C=90°,AC=3,AB=5,∴22106-=8,由作法得PQ 垂直平分AB ,∴DA=DB ,设CD=x ,则DB=DA=8-x ,在Rt △ACD 中,x 2+62=(8-x )2,解得x=74, 即CD 的长为74. 故答案为:74.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和勾股定理.14.如图,在ABC 中,90C ∠=︒,AB 的垂直平分线交AB 于点D ,交BC 于E ,连接AE ,若5,12,CE AC ==且ACE △的周长为30,则BE 的长是 __________.【答案】1【分析】根据CE=5,AC=12,且△ACE 的周长为30,可得AE 的长,再根据线段垂直平分线的性质,可得答案.【详解】解:∵CE=5,AC=12,且△ACE 的周长为30,∴AE=1.∵AB 的垂直平分线交AB 于D ,交BC 于E ,∴BE=AE=1,故答案是:1.【点睛】本题考查了线段垂直平分线的性质,线段垂直平分线上的点到线段两端点的距离相等.15.如图,一只蚂蚁从点A 沿数轴向右直爬2个单位到达点B ,点A 表示2-,设点B 所表示的数为m ,则2m 的值为______.【答案】22-【分析】由点2-向右直爬2个单位,即22-,据此即可得到.【详解】解:由题意,∵点A 表示2-, ∴点B 表示22-+,即22m =-+,∴22(22)222m =⨯-+=-;故答案为:222-.【点睛】本题考查了实数与数轴的对应关系,理解向右移动是增大是关键.16.在平面直角坐标系中,已知一次函数21y x =+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y 2y .(填”>”,”<”或”=”)【答案】<.【解析】试题分析:一次函数y kx+b =的增减性有两种情况:①当k 0>时,函数y kx+b =的值随x 的值增大而增大;②当k 0<时,函数y kx+b = y 的值随x 的值增大而减小.由题意得,函数21y x =+的k 0>,故y 的值随x 的值增大而增大.∵12x x <,∴12y y <.考点:一次函数图象与系数的关系.17.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥CD ,OE ∥BC 交CD 于E ,若OC=4,CE=3,则BC 的长是____.【答案】1.【分析】首先利用三角形的中位线定理求得CD 的长,然后利用勾股定理求得AD 的长,即可求出BC 的长.【详解】解:∵四边形ABCD 是平行四边形,∴OA=OC ,AD ∥BC .∵OE ∥BC ,∴OE ∥AD ,∴OE 是△ACD 的中位线.∵CE=3cm ,∴DC=2OE=2×3=2.∵CO=4,∴AC=3.∵AC ⊥CD ,∴AD 222268AC CD =+=+=1,∴BC=AD=1.故答案为:1.【点睛】考查了平行四边形的性质,三角形中位线定理,勾股定理,正确的理解平行四边形的性质是解答本题的关键,难度不大.三、解答题18.先化简,再求值:22212212x x x x x x x --+÷-+-,其中12x = 【答案】-2【解析】试题分析:先化简,再将x 的值代入计算即可.试题解析:原式==+1 =当x =时,原式==-219.从宁海县到某市,可乘坐普通列车或高铁,已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车的平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【答案】(1)普通列车的行驶路程是520千米;(2)高铁的平均速度是300千米/时【解析】(1)设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米,根据“普通列车的行驶路程+高铁的行驶路程=920千米”列出方程并解答.(2)设普通列车平均速度是a千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可.【详解】解:(1)设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米,依题意得:x+1.3x=920解得x=1.所以1.3x=520(千米)答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是a千米/时,则高铁平均速度是2.5a千米/时,根据题意得:5204003,2.5a a-=解得:a=120,经检验a=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时【点睛】此题考查了分式方程和一元一次方程的应用,关键是分析题意,找到合适的数量关系列出方程.注意:解分式方程时要注意检验.20.为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?【答案】原计划每天种树40棵.【解析】设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实际完成的天数比计划少5天为等量关系建立方程求出其解即可.【详解】设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得1000 x −1000+%x (125)=5,解得:x=40,经检验,x=40是原方程的解. 答:原计划每天种树40棵. 21.观察下列各式:22221(12)23+⨯+=,22222(23)37+⨯+=,22223(34)413+⨯+=,….(1)2224(45)5+⨯+=____________;(2)用含有n (n 为正整数)的等式表示出来,并加以证明;(3)利用上面得到的规律,写出222100(100101)101+⨯+是哪个数的平方数. 【答案】(1)221;(2)[][]2222(1)(1)(1)1n n n n n n ++++=++或()221n n ++,理由见解析;(3)210101 【分析】(1)根据规律为2(451)⨯+(2)根据规律为()211n n ++⎡⎤⎣⎦(3)()2222100(100101)1001011011+⨯+=⨯+【详解】解:(1)()222221(12)2121=3+⨯+=⨯+()222222(23)3231=7+⨯+=⨯+()222223(34)4341=13+⨯+=⨯+∴()222224(45)545121+⨯+=⨯+=.故答案为:221;(2)[][]2222(1)(1)(1)1n n n n n n ++++=++或()221n n ++.理由如下:[]222(1)(1)n n n n ++++[]22(1)221n n n n =++++[]2(1)2(1)1n n n n =++++[]()222(1)11n n n n =++=++.(3)22222100(100101)101(1001011)10101+⨯+=⨯+=.【点睛】本题考查了数字的规律,根据给出的式子找到规律是解题的关键.22.(1)计算:()()322423523a a a a ⎡⎤⋅+-÷⎢⎥⎣⎦;(2)先化简,再求值:524223x x x x -⎛⎫++⋅ ⎪--⎝⎭,其中5x =.【答案】(1)13-;(2)62x --;16-【分析】(1)根据单项式乘单项式法则、合并同类项法则和单项式除以单项式法则计算即可;(2)根据分式的各个运算法则化简,然后代入求值即可.【详解】解:(1)()()322423523a a a a ⎡⎤⋅+-÷⎢⎥⎣⎦ =()()666589a a a ⎡⎤+-÷⎣⎦ =()()6639aa -÷ =13- (2)524223x x x x-⎛⎫++⋅ ⎪--⎝⎭ =24524223x x x x x⎛⎫--+⋅ ⎪---⎝⎭ =()222923x x x x--⋅-- =()()()332223x x x x x+--⋅-- =()23x -+=62x --将5x =代入,得原式=62516--⨯=-【点睛】此题考查的是整式的混合运算和分式的混合运算,掌握整式的各个运算法则和分式的各个运算法则是解决此题的关键.23.如图,△ABC 是等边三角形,△ADC 与△ABC 关于直线AC 对称,AE 与CD 垂直交BC 的延长线于点E ,∠EAF =45°,且AF 与AB 在AE 的两侧,EF ⊥AF .(1)依题意补全图形.(2)①在AE 上找一点P ,使点P 到点B ,点C 的距离和最短;②求证:点D 到AF ,EF 的距离相等.【答案】(1)详见解析;(2)①详见解析;②详见解析.【分析】(1)本题考查理解题意能力,按照题目所述依次作图即可.(2)①本题考查线段和最短问题,需要通过垂直平分线的性质将所求线段转化为其他等量线段之和,以达到求解目的.②本题考查垂直平分线的判定以及全等三角形的证明,继而利用角的平分线性质即可得出结论.【详解】(1)补全图形,如图1所示(2)①如图2,连接BD,P为BD与AE的交点∵等边△ACD,AE⊥CD∴PC=PD,PC+PB最短等价于PB+PD最短故B,D之间直线最短,点P即为所求.②证明:连接DE,DF.如图3所示∵△ABC,△ADC是等边三角形∴AC=AD,∠ACB=∠CAD=60°∵AE⊥CD∴∠CAE=12∠CAD=30°∴∠CEA=∠ACB﹣∠CAE=30°∴∠CAE=∠CEA∴CA=CE∴CD垂直平分AE∴DA=DE∴∠DAE =∠DEA∵EF ⊥AF ,∠EAF =45°∴∠FEA =45°∴∠FEA =∠EAF∴FA =FE ,∠FAD =∠FED∴△FAD ≌△FED (SAS )∴∠AFD =∠EFD∴点D 到AF ,EF 的距离相等.【点睛】本题第一问作图极为重要,要求对题意有较深的理解,同时对于垂直平分线以及角平分线的定义要清楚,能通过题目文字所述转化为考点,信息转化能力需要多做题目加以提升.24.如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明ABQ ∆≌CAP ∆;(2)CMQ ∠会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,PBQ ∆是直角三角形?(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则CMQ ∠变化吗?若变化说明理由,若不变,则求出它的度数。
学习目标1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
重点算术平方根的概念。
难点根据算术平方根的概念正确求出非负数的算术平方根。
教学过程教学环节教学活动设计意图创设情境导入新课复习平方根的定义和性质及平方根的计算(1)下列说法正确的是()A 16的平方根是2±, B 1=1±,C -9的平方根是3±, D -5是5的平方根的相反数。
(2)求下列各数的平方根169,729,2.56,()24-,16(2)若240x x y-++-=,求x.y的值。
让学生复习平方根的定义和性质。
通过计算非负数的平方根,进而引入算术平方根的概念。
自主探究合作交流出示自学提纲:阅读教材96~97页,并回答下列问题:1.算术平方根的概念。
2.为什么规定:0算术的平方根为0?3.总结一个数的算术平方根的性质?4.自学例2、例3、例4先试做后对照。
5.144的算术平方根是多少?怎样用符号表示?学生活动:独立思考1、2答案,提出疑难问题。
给学生充足的时间和空间,理解和感知算术平方根概念,通过讨论、交流,提出共同的问题,使学生的自主性和合作性得到很好的发展。
师生互动归纳新知1.问题1:你能叙术算术平方根的概念吗?一般地:正数a有两个平方根a±,我们把正数a的正的平方根“a,”叫做a的算术平方根。
强调:书写时根号一定要把被开方数盖住。
问题2:a表示什么意思?它的值是怎样的数?这里的被开方数a应该是怎样的数?问题3:0的算术平方根是多少?怎么表示?2、试一试:你能根据等式:212=144说出144的算术平方根是多少吗?并用等式表示出来.3、想一想:下列式子表示什么意思?你能求出它们的值吗?1625-)(225建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如25表示25的算术平方根。
课题:4.1 平方根(2)学习目标: 姓名: 1.了解算术平方根的概念,会用根号表示数的算术平方根; 2.了解开方与乘方互为逆运算,会用平方根运算求某些非负数的算术平方根; 3.能运用算术平方根解决一些简单的实际问题. 学习过程: 一.【情景创设】1.小明家装修新居,计划用100块板砖来铺设面积为25平方米的客厅地面,请帮他计算,每块正方形地板砖的边长为多少时,才正好合适(不浪费)?2.求4个直角边长为10厘米的等腰直角三角形纸片拼合成的正方形的边长.二.【问题探究】问题1:(1)什么叫做一个数的算术平方根?算术平方根与平方根有什么区别?(2)什么数有算术平方根?零的算术平方根是什么?归纳:正数a 有两个平方根,其中正数a 的正的平方根 a ,叫做a 的算术平方根.例如,4的平方根是±2,其中2叫做4的算术平方根,记作 4 =2;2的平方根是± 2 ,其中 2 叫做2的算术平方根.问题2:求下列各数的算术平方根:(1)625; (2)0.0081; (3)7; (4)0; (5)(-32)2问题3:求下列各式的值并填空:⑴_____16=- ⑵_____09.0= ⑶______169=±⑷_____412=- ⑸494= ⑹______)3)(27(=---问题4: 计算(1)22817- (2)8116-(3)02141613⎪⎭⎫ ⎝⎛-++- (4)25.2)10(2--问题5: “欲穷千里目,更上一层楼”说的是登得高看得远.如图,若观测点的高度为h ,观测者能达到的最远距离为d ,则d ≈2hR ,其中R 是地球半径,约等于6400 km . 小丽站在海边一块岩石上,眼睛离海平面的高度h 为20 m ,她观测到远处一艘船刚露出海平面,求此时d 的值?三.【变式拓展】问题6:填空并归纳:(1)(01.0)2 = ( 25)2= (4)2= 则(a )2= .(2)216= ()216-= 2)1.0(-= 则()2a = .问题7:若的则y x 2,211++-+-=x x y 算术平方根是多少?四.【总结提升】算术平方根与平方根的区别和联系是什么?五. 【课堂反馈】六. 【课后作业】(选做题)八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+1【答案】B【详解】试题解析:A. x2-4=(x+2)(x-2) ,含有因式(x-2),不符合题意;B. x3-4x2-12x=x(x+2)(x-6),不含有因式(x-2),正确;C. x2-2x=x(x-2),含有因式(x-2),不符合题意;D. (x-3)2+2(x-3)+1=x2-4x+4=(x-2)2,含有因式(x-2),不符合题意,故选B.2.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2 B.2 C.0 D.1【答案】B【解析】根据题意得:(x+m)(2−x)=2x−x2+2m−mx,∵x+m与2−x的乘积中不含x的一次项,∴m=2;故选B.3.下列命题中,属于假命题的是()A.相等的两个角是对顶角B.两直线平行,同位角相等C.同位角相等,两直线平行D.三角形三个内角和等于180°【答案】A【分析】利用对顶角的性质、平行线的性质及判定及三角形的内角和等知识分别判断后即可确定答案.【详解】A、相等的两个角不一定是对顶角,故错误,是假命题;B、两直线平行,同位角相等,正确,是真命题;C、同位角相等,两直线平行,正确,是真命题;D、三角形三个内角和等于180°,正确,是真命题;故选:A.【点睛】此题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质及判定及三角形的内角和,难度不大.4.下列命题是真命题的是( )A .三角形的三条高线相交于三角形内一点B .等腰三角形的中线与高线重合C .三边长为3,4,5的三角形为直角三角形D .到线段两端距离相等的点在这条线段的垂直平分线上 【答案】D【分析】利用直角三角形三条高线相交于直角顶点可对A 进行判断;根据等腰三角形三线合一可对B 进行判断;根据勾股定理的逆定理可对C 进行判断;根据线段垂直平分线定理的逆定理可对D 进行判断.【详解】解:A 、锐角三角形的三条高线相交于三角形内一点,直角三角形三条高线相交于直角顶点,所以A 选项错误;B 、等腰三角形的底边上的中线与与底边上的高重合,所以B 选项错误;C 、因为222(3)(4)(5)+≠,所以三边长为3,4,5不为为直角三角形,所以B 选项错误;D 、到线段两端距离相等的点在这条线段的垂直平分线上,所以D 选项正确.故选:D .【点睛】本题考查了命题与定理:要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.小明不慎将一个三角形玻璃摔碎成如图所示的四块,现要到玻璃店配一个与原来一样大小的三角形玻璃,你认为应带去的一块是( )A .第1块B .第2块C .第3块D .第4块【答案】B 【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去, 只有第2块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的.故选B.【点睛】此题考查全等三角形的应用,解题关键在于掌握判定定理.6.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有1.11 111 1176克,用科学记数法表示是( )A .7.6×118克B .7.6×11-7克C .7.6×11-8克D .7.6×11-9克【答案】C【解析】试题解析:对于绝对值小于1的数,用科学记数法表示为a×11n 形式,其中1≤a <11,n 是一个负整数,除符号外,数字和原数左边第一个不为1的数前面1的个数相等,根据以上内容得:1.11 111 1176克=7.6×11-8克,故选C .7.在一条笔直的公路上有A B ,两地,甲,乙两辆货车都要从A 地送货到B 地,甲车先从A 地出发匀速行驶,3小时后乙车从A 地出发,并沿同一路线匀速行驶,当乙车到达B 地后立刻按原速返回,在返回途中第二次与甲车相遇,甲车出发的时间记为t (小时),两车之间的距离记为y (千米),y 与t 的函数关系如图所示,则乙车第二次与甲车相遇是甲车距离A 地( )千米.A .495B .505C .515D .525【答案】A 【分析】根据题意列出方程组,得出甲乙的速度,再由路程关系确定第二次相遇的时间,进而求出乙车第二次与甲车相遇是甲车距离A 地的距离.【详解】解:设甲的速度为v 甲,甲的速度为v 乙,由题意可知,当t=4.5时,乙车追上甲车,第一次相遇,当t=7时,乙车到达B 地,故(73)7300(4.53) 4.5v v v v --=⎧⎨-=⎩乙甲乙甲,解得:60/180/v km h v km h =⎧⎨=⎩甲乙, ∴总A 、B 之间总路程为:(73)4180720v km -=⨯=乙,当t=7时,甲离B 地还有:720760300km -⨯=,∴(60+180)t=300 解得54t =,即再经过54t=小时后,甲乙第二次相遇,此时甲车距离A地的距离为:560(7)4954⨯+=(千米)故答案为:A【点睛】本题考查了函数图象与行程的问题,解题的关键是准确把握图象与实际行程的关系,确定甲乙的速度.8.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点,若AB=6,BC=4,△PBC的周长等于()A.10 B.12 C.14 D.16【答案】A【分析】先根据等腰三角形的性质得出AC=AB=6,再根据线段垂直平分线的性质得出AP=BP,故AP+PC=AC,由此即可得出结论.【详解】解:∵△ABC中,AB=AC,AB=6,∴AC=6,∵AB的垂直平分线交AC于P点,∴BP+PC=AC,∴△PBC的周长=(BP+PC)+BC=AC+BC=6+4=1.故选:A.【点睛】本题考查的是线段垂直平分线的性质,三角形的周长计算方法,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.9.如图所示.在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN =()A.58°B.32°C.36°D.34°【答案】B【分析】先由∠BAC =106°及三角形内角和定理求出∠B +∠C 的度数,再根据线段垂直平分线的性质求出∠B =∠BAE ,∠C =∠CAN ,即∠B +∠C =∠BAE +∠CAN ,由∠EAN =∠BAC -(∠BAE +∠CAN)解答即可.【详解】∵△ABC 中,∠BAC =106°,∴∠B +∠C =180°-∠BAC =180°-106°=74°,∵EF 、MN 分别是AB 、AC 的中垂线,∴∠B =∠BAE,∠C =∠CAN,即∠B +∠C =∠BAE +∠CAN =74°,∴∠EAN =∠BAC -(∠BAE +∠CAN)=106°-74°=32°.故选B.【点睛】本题考查的是线段垂直平分线的性质及三角形内角和定理,能根据三角形内角和定理求出∠B +∠C =∠BAE +∠CAN =74°是解答此题的关键.10.计算()()2334xx +﹣的结果,与下列哪一个式子相同?( ) A .74x -+B .712x --C .2612x -D .2612x x --【答案】D【分析】由多项式乘法运算法则:两多项式相乘时,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加,合并同类项后所得的式子就是它们的积.【详解】解:由多项式乘法运算法则得 ()()22233468912612x x x x x x x -+=+---=-.故选D .【点睛】本题考查多项式乘法运算法则,牢记法则,不要漏项是解答本题的关键.二、填空题11.写一个函数图象交y 轴于点()0,3-,且y 随x 的增大而增大的一次函数关系式_______.【答案】y=x -3(答案不唯一)【分析】设这个一次函数的解析式为:y=kx +b ,然后将()0,3-代入可得b=-3,再根据y 随x 的增大而增大可得,k >0,最后写出一个符合以上结论的一次函数即可.【详解】解:设这个一次函数的解析式为:y=kx +b将()0,3-代入,解得b=-3,∵y 随x 的增大而增大∴k >0∴这个一次函数可以为y=x -3故答案为:y=x -3(答案不唯一)【点睛】此题考查的是根据一次函数的图象所经过的点和一次函数的增减性,写出符合条件的一次函数,掌握一次函数的图象及性质与各系数的关系是解决此题的关键.12.如图,在△ABC 中,∠A=70°,点O 到AB,BC,AC 的距离相等,连接BO ,CO ,则∠BOC=________.【答案】1°【分析】根据角平分线性质推出O 为△ABC 三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB ,根据角平分线定义求出∠OBC+∠OCB ,即可求出答案.【详解】:∵点O 到AB 、BC 、AC 的距离相等,∴OB 平分∠ABC ,OC 平分∠ACB , ∴12OBC ABC ∠=∠,12OCB ACB ∠=∠, ∵∠A=70°,∴∠ABC+∠ACB=180°-70°=110°,∴1110552OBC OCB ∠+∠=⨯︒=︒, ∴∠BOC=180°-(∠OBC+∠OCB )=1°;故答案为:1.【点睛】本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB 的度数是解此题的关键. 13.如图1,在ABC ∆中,AB AC =.动点P 从ABC ∆的顶点A 出发,以2/cm s 的速度沿A B C A →→→匀速运动回到点A .图2是点P 运动过程中,线段AP 的长度()y cm 随时间()t s 变化的图象.其中点Q 为曲线部分的最低点.请从下面A 、B 两题中任选一作答,我选择________题.A .ABC ∆的面积是______,B .图2中m 的值是______.【答案】A . 85 B .256+【解析】由图形与函数图像的关系可知Q 点为AQ ⊥BC 时的点,则AQ=4cm,再求出AB=2/cm s ×3s=6cm ,利用勾股定理及可求出BQ ,从而求出BC ,即可求出ABC ∆的面积;再求出ABC ∆的周长,根据速度即可求出m .【详解】如图,当AQ ⊥BC 时,AP 的长度最短为4,即AQ=4,AB=2/cm s ×3s=6cm ,∴BQ= 226425-=∵AB AC =∴BC=2BQ=45∴ABC ∆的面积为14542⨯⨯=85;ABC ∆的周长为6+6+45=12+45∴m=(12+45)÷2=256+故答案为: A ;85或B ;256+.【点睛】此题主要考查函数与几何综合,解题的关键是熟知等腰三角形的性质及函数图像的性质.14.已知实数a 在数轴上的位置如图所示,则化简2|1|a a --=___________.【答案】1【解析】根据数轴得到0a <,10a ->,根据绝对值和二次根式的性质化简即可.【详解】由数轴可知,0a <,则10a ->,∴2111a a a a -=-+=,故答案为:1.【点睛】a<.本题考查了绝对值和二次根式的化简及绝对值的性质,关键是根据数轴得出015.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC的位置,点B恰好在边DE上,则∠θ=_____度.【答案】1.【解析】根据三角形内角和定理求出∠ABC,根据旋转变换的性质得到∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,计算即可.【详解】解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=1°,∴∠θ=1°,故答案为1.【点睛】本题考查的是旋转变换的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是解题的关键.16.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.【答案】1【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【详解】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:22AE BE+,∴正方形的面积是10×10=100,∵△AEB的面积是12AE×BE=12×6×8=24,∴阴影部分的面积是100﹣24=1,故答案是:1.考点:勾股定理;正方形的性质.17.已知m+2n﹣2=0,则2m•4n的值为_____.【答案】1【分析】把2m•1n转化成2m•22n的形式,根据同底数幂乘法法则可得2m•22n=2m+2n,把m+2n=2代入求值即可.【详解】由m+2n﹣2=0得m+2n=2,∴2m•1n=2m•22n=2m+2n=22=1.故答案为:1.【点睛】本题考查了幂的乘方和同底数幂乘法,掌握幂的乘方和同底数幂乘法的运算法则是解题关键.三、解答题18.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.【答案】(1)28,15;(2)108;(3)1.【解析】试题分析:(1)根据学校从三个年级随机抽取1名学生的体育成绩进行统计分析和扇形统计图可以求得七年级抽取的学生数,从而可以求得a的值,也可以求得九年级抽取的学生数,进而得到b的值;(2)根据扇形统计图可以求得八年级所对应的扇形圆心角的度数;(3)根据表格中的数据可以估计该校学生体育成绩不合格的人数.试题解析:(1)由题意和扇形统计图可得,a=1×40%﹣20﹣24﹣8=80﹣20﹣24﹣8=28,b=1×30%﹣24﹣14﹣7=60﹣24﹣14﹣7=15,故答案为28,15;(2)由扇形统计图可得,八年级所对应的扇形圆心角为:360°×(1﹣40%﹣30%)=360°×30%=108°,故答案为108;(3)由题意可得,10×857200++=1人,即该校三个年级共有10名学生参加考试,该校学生体育成绩不合格的有1人.考点:扇形统计图;用样本估计总体;统计与概率.19.如图,已知D 为BC 的中点,DE ⊥AB ,DF ⊥AC ,点E 、F 为垂足,且BE =CF .求证:△ABC 是等腰三角形.【答案】见解析.【分析】由于DE ⊥AB ,DF ⊥AC ,那么∠DEB=∠DFC=90°,根据D 是BC 中点可得BD=CD ,而BE=CF ,根据HL 可证Rt △BED ≌Rt △CFD ,于是∠B=∠C ,进而可证△ABC 等腰三角形;【详解】解:∵点D 是BC 边上的中点,∴BD=CD ,∵DE ⊥AB 于E ,DF ⊥AC 于F ,∴∠DEB=∠DFC=90°,在Rt △BED 和Rt △CFD 中,BD CD BE CF=⎧⎨=⎩ ∴Rt △BED ≌Rt △CFD (HL ),∴∠B=∠C ,∴AB=AC ,∴△ABC 等腰三角形;【点睛】本题考查了全等三角形的判定和性质、等腰三角形的判定,解题的关键是证明Rt △BED ≌Rt △CFD . 20.如图,把△ABC 放置在每个小正方形边长为1的网格中,点A ,B ,C 均在格点上,建立适当的平面直角坐标系xOy ,使点A (1,4),△ABC 与△A'B'C'关于y 轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y 轴上找点P ,使PC+PB'的值最小,求点P 的坐标与PC+PB'的最小值.【答案】(1)详见解析;(2)图详见解析,点P 的坐标为(0,1),PC+PB'的最小值为25.【分析】(1)根据点A 的坐标找到坐标原点并建立坐标系,然后分别找到A 、B 、C 关于y 轴的对称点A'、B'、C' ,连接A'B'、B'C' 、A'C'即可;(2)直接利用轴对称求最短路线的方法、利用待定系数法求一次函数的解析式以及勾股定理得出答案.【详解】解:(1)根据点A 的坐标找到坐标原点并建立坐标系,然后分别找到A 、B 、C 关于y 轴的对称点A'、B'、C' ,连接A'B'、B'C' 、A'C',如图所示:△A'B'C'即为所求;(2)如图所示:BC 与y 轴交于点P ,根据对称的性质可得PB= PB'∴PC+PB'=PC +PB=BC ,根据两点之间线段最短,此时PC+PB'最小,且最小值即为BC 的长设直线BC 的解析式为y=kx +b将B 、C 坐标代入,得0222k b k b =-+⎧⎨=+⎩解得:121k b ⎧=⎪⎨⎪=⎩∴直线BC 的解析式为112y x =+ 当x=0时,y=1∴点P的坐标为:(0,1),PC+PB'的最小值为:2224+=25.【点睛】此题主要考查了轴对称变换、利用待定系数法求一次函数的解析式以及勾股定理,正确得出对应点位置是解题关键.21.如图,△ABC中,∠B=90°,AB=3,BC=4,AC=5;实践与操作:过点A作一条直线,使这条直线将△ABC分成面积相等的两部分,直线与BC交于点D.(尺规作图,不写作法,保留作图痕迹,标清字母)推理与计算:求点D到AC的距离.【答案】作图见解析,点D到AC的距离为:6 5【分析】根据三角形的面积公式,只需过点A和BC的中点D画直线即可;作DH⊥AC,证得△CHD∽△CBA,利用对应边成比例求得答案.【详解】作线段BC的垂直平分线EF交BC于D,过A、D画直线,则直线AD为所求作DH⊥AC于H.∵∠C=∠C,∠CHD=∠B=90°,∴△CHD∽△CBA,∴DH CD AB AC=,∵BD=DC=2,AB=3,AC=5,∴2 35 DH=,∴65DH = ∴点D 到AC 的距离为:65 【点睛】本题考查了作图—复杂作图以及相似三角形的判定和性质.熟练掌握相似三角形的判定是解题的关键. 22.如图,ABC ∆中,AB AC =,50A ∠=︒,点D 、E 、F 分别在AB 、BC 、AC 上,且BD CE =,BE CF =.求DEF ∠的度数.【答案】65°【分析】根据等腰三角形的性质得到65B C ∠=∠=︒,再证明DBE ECF ∆∆≌,得到DEB EFC ∠=∠,再根据三角形额内角和与平角的性质即可求解.【详解】由题意:AB AC =,50A ∠=︒,有65B C ∠=∠=︒又BD CE =,BE CF =,∴DBE ECF ∆∆≌,∴DEB EFC ∠=∠又180DEB CEF DEF ∠+∠+∠=︒,180EFC CEF C ∠+∠+∠=︒ ∴65DEF C ∠=∠=︒【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等腰三角形的性质及全等三角形的判定与性质. 23.在边长为1的小正方形网格中,△AOB 的顶点均在格点上.(1)B 点关于y 轴的对称点坐标为 ;(2)将△AOB 向左平移3个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1;(3)在(2)的条件下,A 1的坐标为 .【答案】(3)(﹣3,3);(3)作图见解析(3)(﹣3,3).【解析】试题分析:(3)关于y轴对称的点坐标是纵坐标相同,横坐标互为相反数,(3)分别将三个顶点A、O、B,向左方向平移三个单位,然后连线.(3)左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3.试题解析:(3)因为B的坐标是(3,3),所以B关于y轴对称的点的坐标是(-3,3)(3)将A向左移三个格得到A3,O向左平移三个单位得到O3,B向左平移三个单位得到B3,再连线得到△A3O3B3.(3)因为A的坐标是(3,3),左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3,所以A3是(-3,3).考点:3.关于y轴对称点坐标规律3.图形平移后点的坐标规律24.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.比亚迪油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为96元;若完全用电做动力行驶,则费用为36元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?【答案】(1)汽车行驶中每千米用电费用是0.3元,甲乙两地的距离是120千米;(2)至少需要用电行驶92千米.【分析】(1)设每千米用电费用是x元,则用油的费用是(x+0.5)元,根据费用除以单价等于里程建立方程求出x,再用36除以x即可得到甲乙两地距离;(2)设用电行驶y千米,根据总费用不超过50元得到不等式求解.【详解】解:(1)设每千米用电费用是x元,则每千米用油的费用是(x+0.5)元,由题意得36960.5=+x x,解得0.3x=经检验,0.3x=是方程的解,且符合题意36=1200.3千米 答:汽车行驶中每千米用电费用是0.3元,甲乙两地的距离是120千米.(2)设用电行驶y 千米,则用油行驶()120-y 千米,每千米用油行驶的费用是()0.50.8+=x 元,由题意得:()0.30.812050+-≤y y解得:92≥y答:至少需要用电行驶92千米.【点睛】本题考查了分式方程与一元一次不等式的应用,掌握行驶单价乘以行驶路程等于行驶费用是解题的关键. 25.某学校为了调查学生对课改实验的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”.工作人员根据问卷调查数据绘制了两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了多少名学生?(2)将条形统计图中的B 等级补完整;(3)求出扇形统计图中,D 等级所对应扇形的圆心角度数.【答案】 (1)共调查了200名学生.(2)作图见解析; (3) D 等级所对应扇形的圆心角度数为18°.【分析】(1)A 类学生除以A 所占百分比;(2)求出B 组人数绘图即可;(3)求出D 所占百分率,乘以360度即可.【详解】(1)40÷20%=200(人); 答:共调查了200名学生。
4.1平方根(1)(初二数学)【教材简解】平方根是本章的重点内容,它是后面学习实数的准备知识,是学习二次根式,一元二次方程的基础。
本节课主要介绍平方根的概念,如何用根号表示数的平方根,如何用平方运算求一些非负数的平方根。
而下一节立方根的学习可以类比平方根进行,因而平方根的学习必须要打牢基础。
另外,从运算角度来看,加与减,乘与除,平方与开平方互为逆运算,所以平方根的概念在某种程度上也起到了承上的作用。
【目标预设】知识与技能:1、知道平方根的概念,能熟练地求出一个非负数的平方根,会用根号表示一个数的平方根。
2、能描述平方根的特征,理解开方与乘方两者之间的联系与区别。
过程与方法:让学生在观察、探索等活动中,获得对非负数的平方根特点的认识。
情感、态度与价值观:1、学生积极参与数学活动,培养其对数学的好奇心与求知欲。
2、通过数学活动,使学生获得成功的体验,并形成实事求是的态度。
【教学重难点】教学重点:了解开方与平方互为逆运算,能熟练的用平方运算求一些非负数的平方根。
教学难点:用平方运算求一些非负数的平方根。
【设计理念】要想让学生正确、牢固地掌握平方根的概念,需要由浅入深,不断深化的过程。
概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的。
概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的。
概念教学过程中要做到:讲清概念,加强训练,逐步深化。
【教学过程】师:今天由我来和大家一起学习平方根(1)学习之前,我们来复习一下,上一章我们学习了什么内容(ppt)生:勾股定理师:什么是勾股定理生:直角三角形两条直角边a,b的平方和等于斜边c的平方(ppt)师:用什么式子表示生:a2+b2=c2师:看来大家都掌握的很好。
下面请大家用勾股定理帮老师解决一个问题(ppt)情境一。
如图:小方格的边长为1,你能算出图中AB,A’B’的长吗?师:第一个图AB=?生:AB=5师:为什么?生:∵AB2=42+32=25∴AB=5师:那另一个图,A’B’=?生:A’B’2=42+52=41师:A’B’是多少呢?看来我们的知识储备还不够,我们赶紧来补充能量,学习新内容。
平方根教学目标1、了解数的平方根及算术平方根的概念.会用根号表示一个数的平方根及算术平方根。
2、会求非负数的平方根及算术平方根。
3、能运用算术平方根解决实际问题。
教学重点了解数算术平方根的概念.会用根号表示一个数的算术平方根。
教学难点会求非负数的算术平方根。
教学过程(教师)二次备课一、板书课题、出示目标师:同学们,今天我们来学习4.1平方根(2)(板书课题),本节课的学习目标是(投影):1.了解算术平方根的概念,会用根号表示数的算术平方根;2.了解开方与乘方互为逆运算,会用平方根运算求某些非负数的算术平方根;3.能运用算术平方根解决一些简单的实际问题。
二、自学指导师:要达到本节课的学习目标不是靠老师讲,而是靠大家自学。
为了方便使大家顺利达到本节课的学习目标,请同学们认真看屏幕(投影):自学指导认真书P96页例2、例3。
1、理解算术平方根的概念,会表示一个数的算术平方根。
2、( 3 )2、(-2 )2、(-5)2有意义吗?如果有,求它的值。
并能总结归纳。
6分钟后同桌互查,然后老师抽查。
学生看书,教师巡视,督促学生认真看书。
检测、板演:出示检测题:例1:求下列各数的算术平方根:(1)625;(2)0.0081;(3)7;(4)0分别让4名学生上堂板演,其他学生在练习本上做。
教师巡视,收集学生检测中出现的错误。
四、后教(一)更正师:请同学们认真看堂上板演板演的内容,如发现错误或有不同解法的同学请举手。
(教师组织学生更正)1、①学生互相检查,会背算数平方根的概念,会表示一个数的算数平方根。
出现什么错误?订证有误的做法。
②板演的例1,是否正确,出现什么问题?2、讨论:同桌或小组解疑,讨论( 3 )2、(-2 )2、(-5)2有意义吗?3、归纳:(a )2=a(a≥0);(a )2=|a|=a (a≥0);(a )2=|a|=-a (a≤0).五、当堂训练师:同学们,通过上面的检测,说明同学们会自学,自学的很好。
平方根【基础巩固】1.非负数a的算术平方根表示为_______,225的算术平方根是_______,0的算术平方根是_______.2=_______=_______.-的算术平方根是_______.3_______,0.644.若是49的算术平方根,则等于( )A.7 B.-7 C.49 D.-4957,则的算术平方根是( )A.49 B.53 C.7 D6.若一个数的算术平方根等于它本身,则这个数是( )A.1 B.-1 C.0 D.0或17( )A.2 B.-2 C.2或-2 D.48.(-11)2的算术平方根是( )A.121 B.11 C.±11 D.没有平方根9.求下列各数的算术平方根.;(1)100;(2)4964(3)0.0001;(4)0.10.求下列各式的值.11.求下列各式中的.(1)162-25=0;(2)(+2)(-1)=7+.【拓展提优】12a的值有( )A.0个B.1个C.无数个D.以上都不对13在实数范围内有意义,则的取值范围是A.>1 B.<1 C.≥1 D.≤1141的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间15.下列式子中,正确的是( )A B=-0.6C=13 D 616.一个数的算术平方根为a,比这个数大2的数是( )A .a +2B 2C 2D .a 2+217.下列说法正确的是 ( )A .2是-4的平方根B .2是(-2)2的算术平方根C .(-2)2的平方根是2D .8的平方根是418()23y ++=0,则-y 的值为 ( ) A .1 B .-1 C .7 D .-719_______.20.已知a ,b 为两个连续整数,且<b ,则a +b =_______.21.若a b a ,b 的值.22.若()2130x y -++=,求,y ,的值.23.已知2a -1的算术平方根是3,3a +b -1的算术平方根是4,c 求a +2b -c 的算术平方根.24.已知2y =,求11x y+的算术平方根.25.比较下列各组数的大小.(1)9.26.已知a ,b 是有理数,且11120344a b ⎛⎛++--= ⎝⎭⎝⎭,求a ,b 的值.参考答案【基础巩固】115 0 2.945 -119 3.2 0.8 4.A 5.D 6.D 7.A 8.B 9.(1)10 (2)78 (3)0.01 (4)0 10.(1)318 (2)3 (3)9 (4)45 11.(1)=±54(2)=±3 【拓展提优】12.B 13.C 14.D 15.C 16.D 17.B 18.C 19 20.521.a =5,b -5 22. =1,y =-3,=2 23 2425.(1)< (2)< (3)> (4)>26.a=335b=145。
平方根
学习目标:
1、初步理解并掌握算术平方根的意义,并掌握正确的表示方法;
2、会正确地求出一个非负数的算术平方根.
重点:理解算术平方根的符号表示
难点:算术平方根有关的两个计算公式
学习流程:
一、问题情境 一块正方形地板瓷砖的边长应是多少?
分析:在实际问题中,我们有时并不是需要求出所有的平方根。
例如在这个问题中,一块正方形地板瓷砖的边长可以为负数吗?
2、举例填空: 4的平方根是_______;4的算术平方根是___________
2的平方根是_______;2的算术平方根是___________
0的平方根是_______;0的算术平方根是___________
一般地:a 表示 ;—a 则表示 , + a 表示 。
二、典例选讲
例2填空:
(1= ;= ;的算术平方根是 ;
(2)2
(4)-的平方根是__ _____;算术平方根是 ,
(3)|9|-的平方根是___ ____;算术平方根是 ,
例3.判断下列各式中,哪些是有意义的?哪些是无意义的? (1) (2) (3) (4) 3-2-)3(2-12
--x
练习
提 高 已知
y= + +3,求xy 的算术平方根。
三、问题讨论
计算1、?01.02= ?52= =216 =-2)16(
归纳与发现: ;
计算2、=2)01.0( =2)16( =2)5(
归纳与发现: ;
尝试练习:
四、课堂检测
1、一个数的算术平方根等于本身,这个数是 。
2、若x ²=16,则5-x 的算术平方根是 。
3、若4a+1的平方根是±5, 则a ²的算术平方根是 。
4、 的平方根等于 ,算术平方根等于 的数是 。
5、对于代数式3m-9,当m 取何值时,(1)有两个平方根,并且它们互为相反数?(2)只有一个平方根?(3)没有平方根?
6、2-x 是 x-2 的平方根,则x
7、一个正数的算术平方根是m ,那么比这个正数大1的数的平方根是( )
A 、m 2+1;
B 、±1+m
C 、12+m
D 、±12
+m ????222 ==
= =? =? =? 36
36a 1.能取得最小整数为( )
A. 0
B. 1
C. -1
D. -4
22.()0,___________
x y x y +===则,2-x x -2。