江苏专用2018版高考数学复习三角函数解三角形第28练正弦定理余弦定理练习理
- 格式:docx
- 大小:56.77 KB
- 文档页数:4
1.(2016·隆化期中)在△ABC 中,如果sin A ∶sin B ∶sin C =2∶3∶4,那么cos C =________.2.(2016·银川月考)如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离为50m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点间的距离为______________m.3.(2016·安庆检测)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c .若a 2-c 2=3bc ,sin B =23sin C ,则A =________.4.(2016·苏北四市一模)在△ABC 中,已知AB =3,A =120°,且△ABC 的面积为1534,那么边BC 的长为________.5.(2016·常州一模)在△ABC 中,已知内角A ,B ,C 的对边分别为a ,b ,c .若tan A=7tan B ,a 2-b 2c =3,则c =________.6.(2016·东营期中)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S 表示△ABC 的面积,若a cos B +b cos A =c sin C ,S =14(b 2+c 2-a 2),则B =________.7.(2016·南京、盐城、徐州二模)如图,在△ABC 中,D 是BC 边上一点,已知∠B =60°,AD =2,AC =10,DC =2,那么AB =________.8.已知点O 是△ABC 的外接圆圆心,且AB =3,AC =4.若存在非零实数x ,y ,使得AO→=xAB →+yAC →,且x +2y =1,则cos ∠BAC 的值为________. 9.△ABC 中,A 、B 、C 是其内角,若sin2A +sin(A -C )-sin B =0,则△ABC 的形状是________________三角形.10.(2016·惠州二调)在△ABC 中,设角A ,B ,C 的对边分别是a ,b ,c ,且∠C =60°,c =3,则a +23cos A sin B=________. 11.(2016·佛山期中)如图,一艘船以每小时15km 的速度向东航行,船在A 处看到一灯塔M 在北偏东60°方向,行驶4h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.12.(2016·吉安期中)在△ABC 中,D 为BC 边上一点,若△ABD 是等边三角形,且AC =43,则△ADC 的面积的最大值为________.13.(2016·如东高级中学期中)在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.14.(2016·南通二模)若一个钝角三角形的三个内角成等差数列,且最大边与最小边之比为m ,则实数m 的取值范围是________.答案精析1.-14 2.502 3.π6 4.7 5.46.45°解析 由正弦定理可知a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c sin C =2R sin C ·sin C ,∴sin C =1,C =90°.∴S =12ab =14(b 2+c 2-a 2),解得a =b ,因此B =45°. 7.263解析 在△ADC 中,AD =2,AC =10,DC =2,则cos ∠ADC =-22,所以∠ADC =135°,从而在△ABD 中,∠ADB =45°.又因为∠B =60°,由正弦定理得AD sin B =AB sin ∠ADB ,即232=AB 22,解得AB =263. 8.23解析 设线段AC 的中点为点D ,则直线OD ⊥AC .因为AO→=xAB →+yAC →,所以AO →=xAB →+2yAD →. 又x +2y =1,所以点O 、B 、D 三点共线,即点B 在线段AC 的中垂线上,则AB =BC =3.在△ABC 中,由余弦定理,得cos ∠BAC =32+42-322×3×4=23. 9.等腰或直角解析 因为sin2A +sin(A -C )-sin B=sin2A +sin(A -C )-sin(A +C )=2sin A cos A -2sin C cos A=2cos A (sin A -sin C )=0,所以cos A =0或sin A =sin C ,所以A =π2或A =C .故△ABC 为等腰或直角三角形.10.4解析 由正弦定理知a sin A =c sin C =2,所以a =2sin A ,代入得原式=2sin A +23cos A sin B=4·sin (A +60°)sin B =4.11.30 2解析 依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°,在△AMB 中,由正弦定理得60sin45°=BM sin30°,解得BM =30 2.12.4 3解析 在△ACD 中,cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =AD 2+DC 2-482AD ·DC =-12,整理得AD 2+DC 2=48-AD ·DC ≥2AD ·DC ,∴AD ·DC ≤16,当且仅当AD =CD 时等号成立,∴△ADC 的面积S =12AD ·DC ·sin ∠ADC =34AD ·DC ≤4 3.13.533解析 由题意得203=12×8×10×sin C ⇒sin C =32⇒C =π3或C =2π3(舍),由余弦定理得c 2=82+102-2×8×10×12=84,由三角形中大边对大角知角B 最大,则cos B =82+84-1022×8×84=384,所以tan B =533. 14.(2,+∞)解析 设A 为钝角,C 为最小角,则A +C =120°,C ∈(0°,30°),由正弦定理得m=a c =sin A sin C =sin (120°-C )sin C =32tan C +12.而0<tan C <33,∴1tan C >3,则m >2.。
2018届高考数学正弦定理、余弦定理的应用复习题及答案
5 c 高三数学(理)一轮复习教案第五编平面向量、解三角形总第25期
§55 正弦定理、余弦定理的应用
基础自测
1在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,c点的俯角为70°,则∠BAc=
答案130°
2从A处望B处的仰角为,从B处望A处的俯角为,则、的大小关系为
答案 =
3在△ABc中,若(a+b+c)(a+b-c)=3ab,且sinc=2sinAcsB,则△ABc是三角形
答案等边
4已知A、B两地的距离为10 ,B、c两地的距离为 =5,
∴AB= ()∴A、B之间的距离为
例2.沿一条小路前进,从A到B,方位角(从正北方向顺时针转到AB方向所成的角)是50°,距离是3 ,从B到c方位角是110°,距离是3 ,从c到D,方位角是140°,距离是(9+3 )试画出示意图,并计算出从A到D的方位角和距离(结果保留根号)解示意图如图所示,连接Ac,在△ABc中,
∠ABc=50°+(180°-110°)=1(70°+30°)=14cs
∴=S△Pc+S△PcD= ×1×2sin + (5-4cs )=2sin( - )+
∴当 - = ,即 = 时,ax=2+
所以四边形PDc面积的最大值为2+
巩固练习
1某观测站c在A城的南偏西60°)=sin cs60°-cs sin60°。
第四章三角函数、解三角形 4.6 正弦定理、余弦定理教师用书理苏教版1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则2.在△ABC中,已知a、b和A时,解的情况如下(1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形内切圆半径).【知识拓展】 1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C2. 2.三角形中的三角函数关系 (1)sin(A +B )=sin C ; (2)cos(A +B )=-cos C ; (3)sinA +B2=cos C2;(4)cosA +B2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ; c =b cos A +a cos B .【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)在△ABC 中,若sin A >sin B ,则A >B .( √ )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( × ) (4)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( × )(5)在△ABC 中,a sin A =a +b -csin A +sin B -sin C.( √ )(6)在三角形中,已知两边和一角就能求三角形的面积.( √ )1.(教材改编)在△ABC 中,a =2,A =30°,C =45°,则△ABC 的面积S △ABC = . 答案3+1解析 ∵b =a sin B sin A =2×sin 105°sin 30°=6+2,∴S △ABC =12ab sin C =(6+2)×22=3+1.2.(教材改编)在△ABC 中,A =60°,B =75°,a =10,则c = . 答案1063解析 由A +B +C =180°,知C =45°,由正弦定理得a sin A =c sin C ,即1032=c22,∴c =1063.3.(教材改编)在△ABC 中,A =60°,AC =2,BC =3,则AB = . 答案 1解析 方法一 在△ABC 中,根据余弦定理,即BC 2=AB 2+AC 2-2·AB ·AC ·cos 60°,得(3)2=AB 2+22-2AB ×2×cos 60°,整理得AB 2-2AB +1=0,解得AB =1. 方法二 在△ABC 中,根据正弦定理, 得ACsin B =BC sin A ,即2sin B =3sin 60°,解得sin B =1, 因为B ∈(0°,180°),所以B =90°, 所以AB =22- 3 2=1.4.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =120°,a =2,b =233,则B = .答案π6解析 ∵A =120°,a =2,b =233,∴由正弦定理a sin A =bsin B 可得,sin B =b a sin A =2332×32=12.∵A =120°,∴B =30°,即B =π6.5.(教材改编)在△ABC 中,已知CB =7,AC =8,AB =9,则AC 边上的中线长为 . 答案 7解析 由条件知cos A =AB 2+AC 2-BC 22AB ·AC=92+82-722×9×8=23, 设AC 边上的中线长为x ,由余弦定理知x 2=(AC 2)2+AB 2-2×AC2×AB cos A=42+92-2×4×9×23=49,∴x =7,故所求中线长为7.题型一 利用正弦定理、余弦定理解三角形例1 (1)(2016·南京、盐城调研)在△ABC 中,设a ,b ,c 分别为角A ,B ,C 的对边,若a =5,A =π4,cos B =35,则c = .答案 7解析 因为cos B =35,所以B ∈(0,π2),从而sin B =45,所以sin C =sin(A +B )=sin A cos B +cos A sin B =22×35+22×45=7210,又由正弦定理得asin A =c sin C ,即522=c7210,解得c =7. (2)(2016·四川)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a+cos B b=sin Cc. ①证明:sin A sin B =sin C ; ②若b 2+c 2-a 2=65bc ,求tan B .①证明 根据正弦定理,可设 a sin A =b sin B =csin C=k (k >0), 则a =k sin A ,b =k sin B ,c =k sin C , 代入cos A a +cos B b =sin C c中,有cos A k sin A +cos B k sin B =sin Ck sin C,变形可得 sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C .所以sin A sin B =sin C . ②解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35.所以sin A =1-cos 2A =45.由①知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B .故tan B =sin B cos B=4.思维升华 应用正弦、余弦定理的解题技巧 (1)求边:利用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin Csin A或其他相应变形公式求解. (2)求角:先求出正弦值,再求角,即利用公式sin A =a sin B b ,sin B =b sin A a ,sin C =c sin Aa或其他相应变形公式求解.(3)已知两边和夹角或已知三边可利用余弦定理求解.(4)灵活利用式子的特点转化:如出现a 2+b 2-c 2=λab 形式用余弦定理,等式两边是关于边或角的正弦的齐次式用正弦定理.(1)△ABC 的三个内角A ,B ,C 所对边的长分别为a ,b ,c ,a sin A sin B +b cos 2A=2a ,则ba= .(2)在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=b ,且sin(A -C )=2cosA sin C ,则b = .答案 (1) 2 (2)2 解析 (1)(边化角)由a sin A sin B +b cos 2A =2a 及正弦定理,得 sin A sin A sinB +sin B cos 2A =2sin A ,即sin B =2sin A ,所以b a =sin Bsin A= 2.(2)(角化边)由题意,得sin A cos C -cos A sin C =2cos A sin C , 即sin A cos C =3cos A sin C , 由正弦、余弦定理,得a ·a 2+b 2-c 22ab =3c ·b 2+c 2-a 22bc,整理得2(a 2-c 2)=b 2, ①又a 2-c 2=b ,②联立①②得b =2.题型二 和三角形面积有关的问题例2 (2016·南通模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(a +b -c )(a +b +c )=ab . (1)求角C 的大小;(2)若c =2a cos B ,b =2,求△ABC 的面积. 解 (1)在△ABC 中,由(a +b -c )(a +b +c )=ab ,得a 2+b 2-c 22ab =-12,即cos C =-12.因为0<C <π,所以C =2π3.(2) 方法一 因为c =2a cos B ,由正弦定理,得 sin C =2sin A cos B .因为A +B +C =π,所以sin C =sin(A +B ), 所以sin(A +B )=2sin A cos B ,即sin A cos B -cos A sin B =0,即sin(A -B )=0, 又-π3<A -B <π3,所以A -B =0,即A =B ,所以a =b =2. 所以△ABC 的面积为S △ABC =12ab sin C =12×2×2×sin2π3= 3. 方法二 由c =2a cos B 及余弦定理,得c =2a ×a 2+c 2-b 22ac,化简得a =b , 所以△ABC 的面积为S △ABC =12ab sin C =12×2×2×sin2π3= 3. 思维升华 (1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是 . 答案332解析 ∵c 2=(a -b )2+6, ∴c 2=a 2+b 2-2ab +6. ①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.题型三 正弦定理、余弦定理的简单应用 命题点1 判断三角形的形状例3 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb<cos A ,则△ABC 的形状为 三角形.(2)设ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则△ABC 的形状为 三角形. 答案 (1)钝角 (2)钝角解析 (1)由c b <cos A ,得sin Csin B<cos A ,所以sin C <sin B cos A , 即sin(A +B )<sin B cos A , 所以sin A cos B <0,因为在三角形中sin A >0,所以cos B <0, 即B 为钝角,所以△ABC 为钝角三角形. (2)由3sin A =5sin B 及正弦定理得3a =5b , 故a =53b ,c =73b .所以cos C =a 2+b 2-c 22ab =-12,即C =23π.从而△ABC 为钝角三角形.引申探究1.例3(2)中,若将条件变为2sin A cos B =sin C ,判断△ABC 的形状. 解 ∵2sin A cos B =sin C =sin(A +B ), ∴2sin A cos B =sin A cos B +cos B sin A , ∴sin(A -B )=0, 又A ,B 为△ABC 的内角. ∴A =B ,∴△ABC 为等腰三角形.2.例3(2)中,若将条件变为a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,判断△ABC 的形状.解 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又0<C <π,∴C =π3,又由2cos A sin B =sin C 得sin(B -A )=0,∴A =B , 故△ABC 为等边三角形. 命题点2 求解几何计算问题例4 (2016·连云港调研)如图,在梯形ABCD 中,已知AD ∥BC ,AD =1,BD =210,∠CAD =π4,tan∠ADC =-2.(1)求CD 的长; (2)求△BCD 的面积.解 (1)因为tan∠ADC =-2,且∠ADC ∈(0,π), 所以sin∠ADC =255,cos∠ADC =-55.所以sin∠ACD =sin(π-∠ADC -π4)=sin(∠ADC +π4)=sin∠ADC ·cos π4+cos∠ADC ·sin π4=1010, 在△ADC 中,由正弦定理得CD =AD ·sin∠DAC sin∠ACD= 5.(2)因为AD ∥BC ,所以cos∠BCD =-cos∠ADC =55,sin∠BCD =sin∠ADC =255. 在△BDC 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos∠BCD ,得BC 2-2BC -35=0,解得BC =7,所以S △BCD =12BC ·CD ·sin∠BCD =12×7×5×255=7.思维升华 (1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.(1)如图,在△ABC 中,D 是BC 上的一点,已知∠B =60°,AD =2,AC =10,DC=2,则AB = .(2)(2015·课标全国Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .答案 (1)263(2)(6-2,6+2)解析 (1)由题意得cos∠ADC =AD 2+CD 2-AC 22AD ·CD=4+2-102×2×2=-22, ∴sin∠ADC =22,∴sin∠ADB =sin(π-∠ADC )=22. 由正弦定理可得,AD sin 60°=ABsin∠ADB ,∴AB =232·22=263. (2)如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F ,则BF <AB <BE .在等腰三角形CBF 中,∠FCB =30°,CF =BC =2, ∴BF =22+22-2×2×2cos 30°=6- 2. 在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°,BE =CE ,BC =2,BEsin 75°=2sin 30°,∴BE =212×6+24=6+ 2.∴6-2<AB <6+ 2.二审结论会转换典例 (14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -c =66b ,sin B =6sin C . (1)求cos A 的值; (2)求cos ⎝⎛⎭⎪⎫2A -π6的值.(1)求cos A ―――――→根据余弦定理求三边a ,b ,c 的长或长度问题 ――――――→已有a -c =66b利用正弦定理将sin B =6sin C 化为b =6c (2)求cos ⎝ ⎛⎭⎪⎫2A -π6―→求cos 2A ,sin 2A ―→求sin A ,cos A ――――→第 1 问已求出cos A根据同角关系求sin A 规范解答解 (1)在△ABC 中,由b sin B =csin C 及sin B =6sin C ,可得b =6c ,[2分]又由a -c =66b ,有a =2c , [4分] 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c2=64.[7分](2)在△ABC 中,由cos A =64, 可得sin A =104.[9分]于是,cos 2A =2cos 2A -1=-14,[10分] sin 2A =2sin A ·cos A =154.[11分]所以cos ⎝ ⎛⎭⎪⎫2A -π6=cos 2A cos π6+sin 2A sin π6 =⎝ ⎛⎭⎪⎫-14×32+154×12=15-38.[14分]1.(教材改编)若△ABC 中,a =1,b =2,cos C =14,则S △ABC = .答案154解析 由cos C =14,得sin C =154,∴S △ABC =12ab sin C =154.2.(2016·全国乙卷改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b = .答案 3解析 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝ ⎛⎭⎪⎫b =-13舍去.3.(2016·盐城模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,且sin 2B =sin 2C ,则△ABC 的形状为 三角形. 答案 等腰直角解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin A =sin 2A ,在三角形中sin A ≠0, ∴sin A =1,∴A =90°, 由sin 2B =sin 2C ,知b =c ,综上可知,△ABC 为等腰直角三角形.4.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是有 解.(填0,1,2) 答案 0解析 由正弦定理得b sin B =csin C ,∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A 2=b +c 2c,则△ABC 的形状是 三角形. 答案 直角解析 在△ABC 中,∵cos 2A 2=b +c 2c, ∴1+cos A 2=b 2c +12,∴cos A =bc, ∴由余弦定理知cos A =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =b c,∴b 2+c 2-a 2=2b 2.即a 2+b 2=c 2.故△ABC 是直角三角形.6.(2016·连云港模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C=π4,则△ABC 的面积为 . 答案3+1解析 ∵b =2,B =π6,C =π4.由正弦定理b sin B =csin C,得c =b sin Csin B =2×2212=22,A =π-(π6+π4)=712π,∴sin A =sin(π4+π3)=sin π4cos π3+cos π4sin π3=2+64. 则S △ABC =12bc ·sin A =12×2×22×6+24=3+1.7.(2016·全国甲卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b = .答案2113解析 在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A ·sin C =6365,由正弦定理得b =a sin B sin A =2113. 8.如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连结EC ,ED ,则sin∠CED = .答案1010解析 由题意得EB =EA +AB =2,则在Rt△EBC 中,EC =EB 2+BC 2=4+1= 5. 在△EDC 中,∠EDC =∠EDA +∠ADC =π4+π2=3π4,由正弦定理得sin∠CED sin∠EDC =DC EC =15=55,所以sin∠CED =55·sin∠EDC =55·sin 3π4=1010. 9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为 .答案 8解析 ∵cos A =-14,0<A <π,∴sin A =154,S △ABC =12bc sin A =12bc ×154=315,∴bc =24, 又b -c =2,∴b 2-2bc +c 2=4,b 2+c 2=52, 由余弦定理得a 2=b 2+c 2-2bc cos A =52-2×24×⎝ ⎛⎭⎪⎫-14=64, ∴a =8.*10.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为 . 答案 12解析 由正弦定理a sin A =bsin B,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A =(b +c )2-3bc ≥(b +c )2-3(b +c2)2,则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立), ∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12.11.(2016·苏锡常镇一调)若一个钝角三角形的三内角成等差数列,且最大边与最小边之比为m ,则实数m 的取值范围是 .答案 (2,+∞)解析 由三角形的三个内角成等差数列,得中间角为60°.设最小角为α,则最大角为120°-α,其中0°<α<30°.由正弦定理得m =sin 120°-α sin α=32·1tan α+12>32×3+12=2.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若∠B =∠C 且7a 2+b 2+c 2=43,则△ABC 的面积的最大值为 . 答案55解析 由∠B =∠C ,得b =c ,代入7a 2+b 2+c 2=43, 得7a 2+2b 2=43,即2b 2=43-7a 2,由余弦定理,得cos C =a 2+b 2-c 22ab =a2b,所以sin C =1-cos 2C =4b 2-a22b=83-15a 22b ,则△ABC 的面积S =12ab sin C =12ab ×83-15a 22b =14a 83-15a 2=14a 2 83-15a 2=14×115 15a 2 83-15a 2 ≤14×115×15a 2+83-15a 22 =14×115×43=55, 当且仅当15a 2=83-15a 2时取等号,此时a 2=4315.所以△ABC 的面积的最大值为55. 13.四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C , ① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,BD =7,因为C 是三角形内角,故C =60°. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2si n 60° =2 3.14.(2015·湖南)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A . (1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .(1)证明 由正弦定理知a sin A =b sin B =csin C =2R ,∴a =2R sin A ,b =2R sin B ,代入a =b tan A 得 sin A =sin B ·sin Acos A ,又∵A ∈(0,π),∴sin A >0,∴1=sin B cos A ,即sin B =cos A .(2)解 由sin C -sin A cos B =34知,sin(A +B )-sin A cos B =34,∴cos A sin B =34.由(1)知,sin B =cos A ,∴cos 2A =34,由于B 是钝角,故A ∈⎝ ⎛⎭⎪⎫0,π2,∴cos A =32,A =π6.sin B =32,B =2π3,∴C =π-(A +B )=π6. 15.(2015·陕西)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a ,3b )与n =(cos A ,sin B )平行. (1)求A ;(2)若a =7,b =2,求△ABC 的面积.解 (1)因为m ∥n ,所以a sin B -3b cos A =0, 由正弦定理,得sin A sin B -3sin B cos A =0, 又sin B ≠0,从而tan A =3, 由于0<A <π,所以A =π3.(2)方法一 由余弦定理,得a 2=b 2+c 2-2bc cos A , 而由a =7,b =2,A =π3,得7=4+c 2-2c ,即c 2-2c -3=0,因为c >0,所以c =3,故△ABC 的面积为S =12bc sin A =332.方法二 由正弦定理,得7sinπ3=2sin B , 从而sin B =217, 又由a >b ,知A >B ,所以cos B =277,故sin C =sin(A +B )=sin ⎝⎛⎭⎪⎫B +π3=sin B cos π3+cos B sin π3=32114.所以△ABC 的面积为S =12ab sin C =332.。
高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。
4-61.(2018·石家庄二检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则“sin A >sinB ”是“a >b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 设△ABC 外接圆的半径为R ,若sin A >sin B ,则2R sin A >2R sin B ,即a >b ;若a >b ,则a 2R >b2R ,即sin A >sin B ,所以在△ABC 中,“sin A >sin B ”是“a >b ”的充要条件,故选C.【答案】 C2.(2016·全国乙卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b 等于( )A. 2B. 3 C .2D .3【解析】 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝ ⎛⎭⎪⎫b =-13舍去,故选D.【答案】 D3.(2018·西安模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,且sin 2B =sin 2C ,则△ABC 的形状为( )A .等腰三角形B .锐角三角形C .直角三角形D .等腰直角三角形【解析】 由b cos C +c cos B =a sin A , 得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin A =sin 2A ,在三角形中sin A ≠0, ∴sin A =1,∴A =90°, 由sin 2B =sin 2C ,知b =c , 综上可知△ABC 为等腰直角三角形. 【答案】 D4.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a ,3sin A =5sin B ,则角C 等于( )A.2π3 B.π3 C.3π4D.5π6【解析】 因为3sin A =5sin B ,所以由正弦定理可得3a =5b .因为b +c =2a ,所以c =2a -35a =75a .令a =5,b =3,c =7,则由余弦定理c 2=a 2+b 2-2ab cos C ,得49=25+9-2×3×5cos C ,解得cos C =-12,所以C =2π3.【答案】 A5.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B 等于( )A.π6 B.π4 C.π3D.3π4【解析】 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.【答案】 C6.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC的面积为( )A .23+2 B.3+1 C .23-2D.3-1【解析】 ∵b =2,B =π6,C =π4.由正弦定理b sin B =csin C,得c =b sin Csin B =2×2212=22,A =π-⎝ ⎛⎭⎪⎫π6+π4=712π,∴sin A =sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+cos π4sin π3=6+24. 则S △ABC =12bc ·sin A =12×2×22×6+24=3+1.【答案】 B7.(2016·全国甲卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cosC =513,a =1,则b =________.【解析】 在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B=sin(A +C )=sin A cos C +cos A ·sin C =6365,由正弦定理得b =a sin B sin A =2113.【答案】 21138.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________.【解析】 由余弦定理,得a 2+c 2-b 22ac=cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,∴B =π3或2π3. 【答案】 π3或2π39.(2018·昆明检测)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,若cos B =45,a =10,△ABC 的面积为42,则b +asin A的值等于________. 【解析】 依题可得sin B =35,又S △ABC =12ac sin B =42,则c =14.故b =a 2+c 2-2ac cos B =62, 所以b +a sin A =b +bsin B =16 2.【答案】 16 210.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________.【解析】 由正弦定理a sin A =bsin B,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A. 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A=(b +c )2-3bc ≥(b +c )2-3⎝ ⎛⎭⎪⎫b +c 22,则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立), ∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12. 【答案】 1211. (2017·全国Ⅱ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2.(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .【解析】 (1)由题设及A +B +C =π得sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),或cos B =1517.故cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B )=36-2×172×⎝ ⎛⎭⎪⎫1+1517=4.所以b =2.12.(2018·云南二检)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 对的边,b = 3. (1)若C =5π6,△ABC 的面积为32,求c ;(2)若B =π3,求2a -c 的取值范围.【解析】 (1)∵C =5π6,△ABC 的面积为32,b =3,∴12ab sin C =12×a ×3×12=32. ∴a =2.由余弦定理得c 2=a 2+b 2-2ab cos C =4+3-2×2×3×⎝ ⎛⎭⎪⎫-32=13. ∴c =13.(2)由正弦定理得a sin A =b sin B =csin C ,∴a =b sin A sin B =2sin A ,c =b sin Csin B=2sin C . ∴2a -c =4sin A -2sin C =4sin ⎝ ⎛⎭⎪⎫2π3-C -2sin C=4⎝ ⎛⎭⎪⎫sin 2π3cos C -cos 2π3sin C -2sin C=23cos C . ∵B =π3,∴0<C <2π3,∴-12<cos C <1,∴-3<23cos C <23,∴2a -c 的取值范围为(-3,23).。
2018届江苏高考二轮数学专题测试 正、余弦定理及其应用1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若tan A =2tan B ,a 2-b 2=13c ,则c 的值为________.解析:由tan A =2tan B 可得sin A cos A =2sin B cos B ,由正、余弦定理可得2abc b 2+c 2-a 2=2·2abc a 2+c 2-b 2,则a 2-b 2=13c 2,又因为a 2-b 2=13c ,可得 13c =13c 2,即c =1.2.(2017·浙江卷)在△ABC 中,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是________,cos∠BDC =________.3.(2017·长沙市零模)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos C =35,D 是线段BC 上的点,cos∠ADC =210. (1)若b =5,a =7,求c 的大小; (2)若b =7,B D =10,求△ABC 的面积.解析:(1)在△ABC 中,由余弦定理可得c 2=a 2+b 2-2ab cos c =72+52-2×7×5×35=32,即c =4 2.(2)因为0<C <π,所以sin C =1-cos 2C =45,同理sin ∠ADC =1-cos 2∠ADC =7210,所以cos ∠CAD =-cos(∠ADC +C )=-cos ∠ADC cos C +sin ∠ADC sin C =22,即∠CAD =π4,在△ACD 中,由正弦定理,得CDsin ∠CAD=AC sin ∠ADC ,得CD =AC sin ∠CAD sin ∠ADC =7×227210=5,所以S △ABC =12AC ·BC ·sin C =12×7×15×45=42. 4. (2017·北京卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且∠A =π3,c =37a .(1)求sin C 的值;(2)若a =7,求△ABC 的面积.解析:(1)在△ABC 中,由正弦定理可得sin C =c sin A a =37×32=3314.(2)因为a =7,可得c =3,在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,可得49=b 2+9-2b ×3×12,解得b =8,所以△ABC 的面积为S △ABC =12bc sin A =12×8×3×32=6 3.5.(2017·天津卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2).(1)求cos A 的值; (2)求sin(2B -A )的值.解析:(1)由正弦定理得a sin A =bsin B ,又因为由a sin A =4b sin B ,可得a =2b ,又因为ac =5(a 2-b2-c 2),即b 2+c 2-a 2=-55ac ,所以由余弦定理可得cos A =b 2+c 2-a 22bc =-55ac ac =-55.(2)因为0<A <π,可得sin A =255,代入a sin A =4b sin B ,可得sin B =a sin A 4b =55,由(1)知,A 为钝角,所以cos B =1-sin 2B =255,于是sin 2B =2sin B cos B =45,cos 2B =1-2sin 2B =35,所以sin(2B -A )=sin 2B cos A -cos 2B sin A =45×(-55)-35×255=-255.6. (2017·山东卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,AB →·AC →=-6,S △ABC =3,求A 和a 的值.7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列. (1)若b =23,c =2,求△ABC 的面积;(2)若sin A ,sin B ,sin C 成等比数列,试判断△ABC 的形状.解析:(1)因为A ,B ,C 成等差数列,即2B =A +C ,因为A +B +C =π,可得B =π3,由余弦定理b 2=a 2+c 2-2ac cos B ,即12=a 2+4-2·a ·2·12,解得a =4或a =-2(舍去),所以S △ABC =12ac sin B =12×4×2sinπ3=2 3.(2)由sin A ,sin B ,sin C 成等比数列,可得a ,b ,c 成等比数列,即b 2=ac ,由余弦定理b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,即a 2+c 2=2ac ,可得a =c ,可得a =b =c ,所以△ABC 为等边三角形. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A a +cos B b =sin Cc.(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .解析:(1)证明:因为cos A a +cos B b =sin C c ,由正弦定理a sin A =b sin B =c sin C 可得cos A sin A +cos B sin B =sin Csin C =1,可得sin B cos A +sin A cos B =sin A sin B ,又因为sin B cos A +sin A cos B =sin(A +B )=sin (π-C )=sin C ,即sin A sin B =sin C .(2)因为b 2+c 2-a 2=65bc ,由余弦定理可知,cos A =b 2+c 2-a 22bc =35,因为A ∈(0,π),所以sin A >0,则sin A =1-(35)2=45,即cos A sin A =34,由(1)可知cos A sin A +cos B sin B =sin C sin C =1,可得cos B sin B =1tan B =14,所以tan B =4.9. (2017·新余市高三调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b tan A ,c tan B ,b tan B 成等差数列. (1)求角A ;(2)若a =2,试判断当bc 取最大值时△ABC 的形状,并说明理由.10. (2017·河南百校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b =3,cos A sin B +(c -sin A )cos(A +C )=0. (1)求角B 的大小; (2)若△ABC 的面积为32,求sin A +sin C 的值. 解析:(1)因为cos A sin B +(c -sin A )cos(A +C )=0,可得cos A sin B -(c -sin A )cos B =0,即sin(A +B )=c cos B ,可得sin C c =cos B ,又由正弦定理可得sin C c =sin B b ,所以可得sin B3=cos B ,即tan B=3,由△ABC 可得B =π3.(2)由S △ABC =12ac sin B =32,可得ac =2,由余弦定理得b 2=a 2+c 2-2ac cos B ,可得a 2+c 2-ac =3,即(a+c )2-3ac =3,所以a +c =3,由正弦定理可得sin A +sin C =sin B b ·(a +c )=32.11.(2017·课标Ⅰ)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为a 23sin A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.(2)由sin B sin C =23,cos B cos C =16,可得cos A =-cos(B +C )=sin B sin C -cos B cos C =12,由△ABC可得A =π3,所以可得B =2π3-C ,代入2a 2=3bc sin 2A 可得bc =8,由余弦定理a 2=b 2+c 2-2bc cos A =b2+c 2-bc =9,即(b +c )2-3bc =(b +c )2-24=9,所以b +c =33,所以△ABC 的周长为3+33. 12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且4b sin A =7a . (1)求sin B 的值;(2)若a ,b ,c 成等差数列,且公差大于0,求cos A -cos C 的值.解析:(1)因为4b sin A =7a ,由正弦定理可得4sin B sin A =7sin A ,由△ABC 可得sin A ≠0,所以sinB =74. (2)因为a ,b ,c 成等差数列,由正弦定理可得sin A +sin C =2sin B =72,设cos A -cos C =x ,二式平方相加可得2-2cos(A +C )=74+x 2,又有公差大于0可得a <b <c ,即A <B <C ,所以0<B <π2,可得cos B =34,所以cos(A +C )=-cos B =-34,可得x 2=74,又因为y =cos x 在x ∈(0,π)上单调递减,可得cos A >cosC ,即cos A -cos C >0,所以cos A -cos C =72.。
【步步高】(某某专用)2017版高考数学 专题4 三角函数、解三角形 28 三角恒等变换 文1.(2015·某某某某中学上学期第六次月考)已知α为第二象限角,sin α=5,则sin 2α=________.2.已知sin(α-π4)=7210,cos 2α=725,则sin α=________. 3.化简cos(45°-α)cos(α+15°)-sin(45°-α)sin(α+15°)=________.4.(2015·某某一模)已知sin(π3+α)+sin α=435,则sin(α+7π6)=________. 5.若cos(α-β)=13,则(sin α+sin β)2+(cos α+cos β)2=________. 6.已知cos α=13,cos(α+β)=-13,且α,β∈(0,π2),则cos(α-β)=________. 7.函数f (x )=sin x sin(x -π3)的最大值为________. 8.(2015·某某一诊)若sin 2α=55,sin(β-α)=1010,且α∈[π4,π],β∈[π,3π2],则α+β=________.9.cos 10°-3sin 10°sin 20°=________. 10.已知2sin 2x +sin 2x 1+tan x =12(π4<x <π2),则sin x -cos x =________. 11.(2015·某某一模)设a =c os 50°cos 127°+cos 40°×cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,d =12(cos 80°-2cos 250°+1),则a ,b ,c ,d 的大小关系是________. 12.函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________.13.若关于x 的方程3sin(x +10°)+4cos(x +40°)-a =0有实数解,则实数a 的取值X围是________.14.设向量a =(1,cos 2θ),b =(2,1),c =(4sin θ,1),d =(12sin θ,1),其中θ∈(0,π4).若f (x )=x -1,f (a b )+f (c d )=62+22,则cos θ-sin θ的值为________.答案解析1.-2425 2.35 3.124.-45解析 sin(π3+α)+sin α=435⇒sin π3cos α+cos π3sin α+sin α=435⇒32sin α+32cos α=435 ⇒32sin α+12cos α=45, ∴sin(α+7π6)=sin αcos 7π6+cos αsin 7π6=-(32sin α+12cos α)=-45. 5.836.23277.348.7π49.210.2211.a >c >b >d 12.113.[-13,13 ]解析 a =3sin(x +10°)+4cos(x +40°)=3sin(x +10°)+4cos[(x +10°)+30°]=3sin(x +10°)+4cos(x +10°)cos 30°-4sin(x +10°)sin 30°=23cos(x +10°)+sin(x +10°)=13sin(x +10°+φ)(其中tan φ=23), 故-13≤a ≤13.14.32-12解析 f (a ·b )=a ·b -1=1+cos 2θ=2|cos θ|=2cos θ, f (c ·d )=c ·d -1=2|sin θ| =2sin θ,f (a ·b )+f (c ·d )=2(cos θ+sin θ) =62+22.∴cos θ+sin θ=32+12,∴(cos θ+sin θ)2=1+32,∴sin 2θ=32,又θ∈(0,π4),∴2θ∈(0,π2),∴2θ=π3,即θ=π6,∴cos θ-sin θ=32-12.。
1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β,(C (α-β)) cos(α+β)=cos αcos β-sin αsin β,(C (α+β)) sin(α-β)=sin αcos β-cos αsin β,(S (α-β)) sin(α+β)=sin αcos β+cos αsin β,(S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β,(T (α-β))tan(α+β)=tan α+tan β1-tan αtan β.(T (α+β))2.二倍角公式sin 2α=2sin αcos α,(S 2α)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,(C 2α) tan 2α=2tan α1-tan 2α.(T 2α)【知识拓展】1.降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.2.升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.3.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中sin φ=b a 2+b 2,cos φ=aa 2+b 2. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)若α+β=45°,则tan α+tan β=1-tan αtan β.( √ ) (4)对任意角α都有1+sin α=(sin α2+cos α2)2.( √ )(5)y =3sin x +4cos x 的最大值是7.( × ) (6)在非直角三角形中,tan A +tan B +tan C =tan A tan B tan C .( √ )1.tan 20°+tan 40°+3tan 20°tan 40°= . 答案3解析 ∵tan 60°=tan(20°+40°)=tan 20°+tan 40°1-tan 20°tan 40°,∴tan 20°+tan 40°=tan 60°(1-tan 20°tan 40°) =3-3tan 20°tan 40°,∴原式=3-3tan 20°tan 40°+3tan 20°tan 40°= 3. 2.(2016·四川)cos 2π8-sin 2π8= .答案22解析 由题意可知,cos 2π8-sin 2π8=cos π4=22(二倍角公式).3.(2016·全国丙卷改编)若tan θ=-13,则cos 2θ= .答案 45解析 tan θ=-13,则cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45. 4.(2015·江苏)已知tan α=-2,tan(α+β)=17,则tan β的值为 .答案 3解析 tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.5.(2016·全国甲卷改编)函数f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x 的最大值为 .答案 5解析 由f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x =1-2sin 2x +6sin x =-2⎝⎛⎭⎫sin x -322+112,所以当sin x =1时函数的最大值为5.第1课时 两角和与差的正弦、余弦和正切公式题型一 和差公式的直接应用例1 (2016·盐城模拟)已知α为锐角,cos(α+π4)=55.(1)求tan(α+π4)的值;(2)求sin(2α+π3)的值.解 (1)因为α∈(0,π2),所以α+π4∈(π4,3π4),所以sin(α+π4)=1-cos 2(α+π4)=255,所以tan(α+π4)=sin (α+π4)cos (α+π4)=2.(2)因为sin(2α+π2)=sin 2(α+π4)=2sin(α+π4)cos(α+π4)=45,cos(2α+π2)=cos 2(α+π4)=2cos 2(α+π4)-1=-35,所以sin(2α+π3)=sin[(2α+π2)-π6]=sin(2α+π2)cos π6-cos(2α+π2)sin π6=43+310.思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)(2016·全国丙卷改编)若tan α=34,则cos 2α+2sin 2α= .(2)计算:sin 110°sin 20°cos 2155°-sin 2155°的值为 .答案 (1)6425 (2)12解析 (1)tan α=34,则cos 2α+2sin 2α=cos 2α+2sin 2αcos 2α+sin 2α=1+4tan α1+tan 2α=6425.(2)sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.题型二 和差公式的综合应用 命题点1 角的变换例2 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β= . (2)(2016·镇江期末)由sin 36°=cos 54°,可求得cos 2 016°的值为 . 答案 (1)2525 (2)-5+14解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos [(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)由sin 36°=cos 54°,得sin 36°=2sin 18°cos 18°=cos(36°+18°)=cos 36°cos 18°-sin 36°sin 18°=(1-2sin 218°)·cos 18°-2sin 218°cos 18°=cos 18°-4sin 218°·cos 18°,即4sin 218°+2sin 18°-1=0,解得sin 18°=-2+22+162×4=5-14,cos 2 016°=cos(6×360°-144°)=cos 144°=-cos 36°=2sin 218°-1=-5+14. 命题点2 三角函数式的变形例3 (1)(2016·无锡调研)若tan α=12,tan(α-β)=-13,则tan(β-2α)= .答案 -17解析 方法一 因为tan α=12,所以tan 2α=2tan α1-tan 2α=11-14=43. 又tan(α-β)=tan α-tan β1+tan αtan β=12-tan β1+12tan β=-13,故tan β=1.所以tan(β-2α)=tan β-tan 2α1+tan βtan 2α=1-431+43=-17.方法二 tan(β-2α)=-tan(2α-β)=-tan(α+α-β) =-tan α+tan (α-β)1-tan αtan (α-β)=-12-131-12×(-13)=-17.(2)求值:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).解 原式=2cos 210°2×2sin 10°cos 10°-sin 10°(cos 5°sin 5°-sin 5°cos 5°)=cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2(12cos 10°-32sin 10°)2sin 10°=3sin 10°2sin 10°=32.引申探究化简:(1+sin θ-cos θ)(sin θ2-cos θ2)2-2cos θ(0<θ<π).解 ∵0<θ2<π2,∴2-2cos θ=2sin θ2,又1+sin θ-cos θ=2sin θ2cos θ2+2sin 2θ2=2sin θ2(sin θ2+cos θ2)∴原式=2sin θ2(sin θ2+cos θ2)(sin θ2-cos θ2)2sinθ2=-cos θ.思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等.(1)(2016·泰州模拟)若sin(π4+α)=13,则cos(π2-2α)= .(2)(2016·南京模拟)化简(tan α+1tan α)·12sin 2α-2cos 2α= .(3)计算:sin 50°(1+3tan 10°)= . 答案 (1)-79(2)-cos 2α (3)1解析 (1)∵sin(π4+α)=13,∴cos(π4-α)=13,∴cos(π2-2α)=cos 2(π4-α)=2×19-1=-79.(2)原式=1sin αcos α·12sin 2α-2cos 2α=1-2cos 2α=-cos 2α.(3)sin 50°(1+3tan 10°)=sin 50°(1+3sin 10°cos 10°)=sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2(12cos 10°+32sin 10°)cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.8.利用联系的观点进行角的变换典例 (1)设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为 .(2)若tan α=2tan π5,则cos (α-3π10)sin (α-π5)= .思想方法指导 三角变换的关键是找出条件中的角与结论中的角的联系,通过适当地拆角、凑角来利用所给条件.常见的变角技巧有α+β2=(α-β2)-(α2-β);α=(α-β)+β;α+π12=(α+π3)-π4;15°=45°-30°等. 解析 (1)∵α为锐角且cos(α+π6)=45>0,∴α+π6∈(π6,π2),∴sin(α+π6)=35.∴sin(2α+π12)=sin[2(α+π6)-π4]=sin 2(α+π6)cos π4-cos 2(α+π6)sin π4=2sin(α+π6)cos(α+π6)-22[2cos 2(α+π6)-1]=2×35×45-22[2×(45)2-1]=12225-7250=17250. (2)cos (α-3π10)sin (α-π5)=sin (α-3π10+π2)sin (α-π5)=sin (α+π5)sin (α-π5)=sin αcos π5+cos αsinπ5sin αcos π5-cos αsinπ5=sin αcos αcos π5+sin π5sin αcos αcos π5-sin π5=2·sinπ5cos π5cos π5+sinπ52·sinπ5cos π5cos π5-sinπ5=3sinπ5sin π5=3.答案 (1)17250(2)31.(2016·苏州暑假测试)已知α∈(0,π),cos α=-45,则tan(α+π4)= .答案 17解析 由α∈(0,π),cos α=-45,得tan α=-34,则tan(α+π4)=tan α+11-tan α=-34+11+34=17.2.(2016·盐城三模)若角α+π4的顶点为坐标原点,始边与x 轴的非负半轴重合,终边在直线y=12x 上,则tan α的值为 . 答案 -13解析 若角α+π4的顶点为坐标原点,始边与x 轴的非负半轴重合,终边在直线y =12x 上,则tan(α+π4)=12,又tan(α+π4)=tan α+11-tan α,所以tan α=-13.3.(2015·重庆改编)若tan α=13,tan(α+β)=12,则tan β=________.答案 17解析 tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17.4.(2016·江苏启东中学阶段检测)若α、β均为锐角,且cos α=117,cos(α+β)=-4751,则cos β= . 答案 13解析 由于α、β都是锐角,所以α+β∈(0,π), 又cos α=117,cos(α+β)=-4751,所以sin α=12217,sin(α+β)=14251,所以cos β=cos [(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-4751×117+14251×12217=13.5.2cos 10°-sin 20°sin 70°的值是 .答案3解析 原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.6.已知锐角α,β满足sin α-cos α=16,tan α+tan β+3tan αtan β=3,则α,β的大小关系是 . 答案 β<α解析 ∵α为锐角,sin α-cos α=16>0,∴α>π4.又tan α+tan β+3tan αtan β=3, ∴tan(α+β)=tan α+tan β1-tan αtan β=3,∴α+β=π3,又α>π4,∴β<π4<α.7.化简2tan (45°-α)1-tan 2(45°-α)·sin αcos αcos 2α-sin 2α= .答案 12解析 原式=tan(90°-2α)·12sin 2αcos 2α=sin (90°-2α)cos (90°-2α)·12·sin 2αcos 2α=cos 2αsin 2α·12·sin 2αcos 2α=12. 8.(2016·江苏无锡普通高中期末)已知sin(α-45°)=-210且0°<α<90°,则cos 2α的值为 . 答案725解析 因为sin(α-45°)=-210且0°<α<90°, 所以cos(α-45°)=1-(-210)2=7210. cos 2α=sin(90°-2α)=-sin(2α-90°)=-sin [2(α-45°)]=-2sin(α-45°)cos(α-45°) =-2×(-210)×7210=725. *9.(2016·南京模拟)已知cos(π4+θ)cos(π4-θ)=14,则sin 4θ+cos 4θ的值为 .答案 58解析 因为cos(π4+θ)cos(π4-θ)=(22cos θ-22sin θ)(22cos θ+22sin θ) =12(cos 2θ-sin 2θ)=12cos 2θ=14. 所以cos 2θ=12.故sin 4θ+cos 4θ=(1-cos 2θ2)2+(1+cos 2θ2)2=116+916=58. 10.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得的图象关于y 轴对称,则m 的最小值是 .答案 π6解析 y =3cos x +sin x =2sin(x +π3), 所以此函数的图象向左平移m (m >0)个单位长度后得到y =2sin(x +m +π3)的图象,由题意得m +π3=π2+k π(k ∈Z ),∵m >0,∴m =π6+k π(k ∈Z 且k ≥0), ∴m 的最小值是π6. 11.已知α∈(π2,π),sin α=55. (1)求sin(π4+α)的值; (2)求cos(5π6-2α)的值. 解 (1)因为α∈(π2,π),sin α=55, 所以cos α=-1-sin 2α=-255. 故sin(π4+α)=sin π4cos α+cos π4sin α =22×(-255)+22×55=-1010. (2)由(1)知sin 2α=2sin αcos α=2×55×(-255)=-45, cos 2α=1-2sin 2α=1-2×(55)2=35, 所以cos(5π6-2α)=cos 5π6cos 2α+sin 5π6sin 2α =(-32)×35+12×(-45)=-4+3310. 12.已知α∈(0,π2),tan α=12,求tan 2α和sin(2α+π3)的值. 解 ∵tan α=12, ∴tan 2α=2tan α1-tan 2α=2×121-14=43, 且sin αcos α=12,即cos α=2sin α,又sin 2α+cos 2α=1,∴5sin 2α=1,而α∈(0,π2),∴sin α=55,cos α=255. ∴sin 2α=2sin αcos α=2×55×255=45, cos 2α=cos 2α-sin 2α=45-15=35, ∴sin(2α+π3)=sin 2αcos π3+cos 2αsin π3=45×12+35×32=4+3310. *13.已知cos(π6+α)cos(π3-α)=-14,α∈(π3,π2). (1)求sin 2α的值; (2)求tan α-1tan α的值. 解 (1)cos(π6+α)·cos(π3-α) =cos(π6+α)·sin(π6+α) =12sin(2α+π3)=-14, 即sin(2α+π3)=-12. ∵α∈(π3,π2),∴2α+π3∈(π,4π3), ∴cos(2α+π3)=-32, ∴sin 2α=sin[(2α+π3)-π3] =sin(2α+π3)cos π3-cos(2α+π3)sin π3=12. (2)∵α∈(π3,π2),∴2α∈(2π3,π), 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。
1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tan α.2.各角的终边与角α的终边的关系3.六组诱导公式【知识拓展】1.诱导公式的记忆口诀:奇变偶不变,符号看象限.2.同角三角函数基本关系式的常用变形 (sin α±cos α)2=1±2sin αcos α; (sin α+cos α)2+(sin α-cos α)2=2; (sin α+cos α)2-(sin α-cos α)2=4sin αcos α. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × ) (2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin(π+α)=-sin α成立的条件是α为锐角.( × )(4)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.( √ )1.(2015·福建改编)若sin α=-513,且α为第四象限角,则tan α的值为 .答案 -512解析 ∵sin α=-513,且α为第四象限角,∴cos α=1213,∴tan α=sin αcos α=-512.2.(教材改编)已知cos θ=35,且3π2<θ<2π,那么tan θ的值为 .答案 -43解析 因为θ为第四象限角,所以tan θ<0,sin θ<0, sin θ=-1-cos 2θ=-45,所以tan θ=sin θcos θ=-43.3.(2016·连云港模拟)计算:sin116π+cos 103π= .答案 -1 解析 ∵sin 116π=sin(π+56π)=-sin 5π6=-12, cos103π=cos(2π+4π3)=cos 4π3=-12, ∴sin116π+cos 103π=-1. 4.(教材改编)已知tan α=1,则2sin α-cos αsin α+cos α= .答案 12解析 原式=2tan α-1tan α+1=2-11+1=12.5.(教材改编)化简:tan (3π-α)sin (π-α)sin (3π2-α)+sin (2π-α)cos (α-7π2)sin (3π2+α)cos (2π+α)= .答案 1解析 因为tan(3π-α)=-tan α,sin(π-α)=sin α, sin(3π2-α)=-cos α,sin(2π-α)=-sin α,cos(α-7π2)=cos(α+π2)=-sin α,sin(3π2+α)=-cos α,cos(2π+α)=cos α,所以原式=-tan αsin α(-cos α)+-sin α(-sin α)-cos αcos α=1cos 2α-sin 2αcos 2α =1-sin 2αcos 2α=cos 2αcos 2α=1.题型一 同角三角函数关系式的应用例1 (1)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为 .(2)(2016·苏州期末)已知θ是第三象限角,且sin θ-2cos θ=-25,则sin θ+cos θ= .答案 (1)32 (2)-3125解析 (1)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32. (2)由⎩⎪⎨⎪⎧sin θ-2cos θ=-25,sin 2θ+cos 2θ=1,得5cos 2θ-85cos θ-2125=0,解得cos θ=35或-725.因为θ是第三象限角,所以cos θ=-725,从而sin θ=-2425,所以sin θ+cos θ=-3125.思维升华 (1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.已知sin α-cos α=2,α∈(0,π),则tan α= .答案 -1解析 由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,消去sin α得2cos 2α+22cos α+1=0, 即(2cos α+1)2=0, ∴cos α=-22. 又α∈(0,π),∴α=3π4,∴tan α=tan 3π4=-1.题型二 诱导公式的应用例2 (1)(2016·宿迁模拟)已知f (x )=sin (2π-x )·cos (32π+x )cos (3π-x )·sin (112π-x ),则f (-21π4)= .(2)已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是 .答案 (1)-1 (2){2,-2}解析 (1)f (x )=-sin x ·sin x-cos x ·(-cos x )=-tan 2x ,f (-21π4)=-tan 2(-21π4)=-tan 234π=-1.(2)当k 为偶数时,A =sin αsin α+cos αcos α=2;当k 为奇数时,A =-sin αsin α-cos αcos α=-2.∴A 的值构成的集合是{2,-2}. 思维升华 (1)诱导公式的两个应用①求值:负化正,大化小,化到锐角为终了. ②化简:统一角,统一名,同角名少为终了. (2)含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如cos(5π-α)=cos(π-α)=-cos α.(1)化简:tan (π+α)cos (2π+α)sin (α-3π2)cos (-α-3π)sin (-3π-α)= .(2)(2016·南京模拟)已知角α终边上一点P (-4,3),则 cos (π2+α)·sin (-π-α)cos (11π2-α)·sin (9π2+α)的值为 .答案 (1)-1 (2)-34解析 (1)原式=tan αcos αsin[-2π+(α+π2)]cos (3π+α)[-sin (3π+α)]=tan αcos αsin (π2+α)(-cos α)sin α=tan αcos αcos α(-cos α)sin α=-tan αcos αsin α=-sin αcos α·cos αsin α=-1.(2)原式=(-sin α)sin α(-sin α)cos α=tan α,根据三角函数的定义得tan α=-34.题型三 同角三角函数关系式、诱导公式的综合应用例3 (1)已知α为锐角,且有2tan(π-α)-3cos(π2+β)+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是 . 答案31010解析 2tan(π-α)-3cos(π2+β)+5=0化简为-2tan α+3sin β+5=0,①tan(π+α)+6sin(π+β)-1=0化简为 tan α-6sin β-1=0.②由①②消去sin β,解得tan α=3. 又α为锐角,根据sin 2α+cos 2α=1, 解得sin α=31010.(2)已知-π<x <0,sin(π+x )-cos x =-15.①求sin x -cos x 的值; ②求sin 2x +2sin 2x 1-tan x的值.解 ①由已知,得sin x +cos x =15,sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925.由-π<x <0,知sin x <0, 又sin x +cos x >0, ∴cos x >0,sin x -cos x <0,故sin x -cos x =-75.②sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.引申探究本题(2)中,若将条件“-π<x <0”改为“0<x <π”,求sin x -cos x 的值. 解 若0<x <π,又2sin x cos x =-2425,∴sin x >0,cos x <0,∴sin x -cos x >0,又(sin x -cos x )2=1-2sin x cos x =4925,故sin x -cos x =75.思维升华 (1)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形. (2)注意角的范围对三角函数符号的影响.已知sin α是方程5x 2-7x -6=0的根,求sin (α+3π2)sin (3π2-α)tan 2(2π-α)tan (π-α)cos (π2-α)cos (π2+α)的值.解 由于方程5x 2-7x -6=0的两根为2和-35,所以sin α=-35,再由sin 2α+cos 2α=1,得cos α=±1-sin 2α=±45,所以tan α=±34,所以原式=-cos α(-cos α)·tan 2α(-tan α)sin α·(-sin α)=tan α=±34.7.分类讨论思想在三角函数中的应用典例 (1)已知sin α=255,则tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α= .(2)已知k ∈Z ,化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)= .思想方法指导 (1)在利用同角三角函数基本关系式中的平方关系时,要根据角的范围对开方结果进行讨论.(2)利用诱导公式化简时要对题中整数k 是奇数或偶数进行讨论. 解析 (1)∵sin α=255>0,∴α为第一或第二象限角.tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α. ①当α是第一象限角时,cos α=1-sin 2 α=55, 原式=1sin αcos α=52.②当α是第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综合①②知,原式=52或-52.(2)当k =2n (n ∈Z )时,原式=sin (2n π-α)cos[(2n -1)π-α]sin[(2n +1)π+α]cos (2n π+α)=sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α(-cos α)-sin α·cos α=-1;当k =2n +1(n ∈Z )时,原式=sin[(2n +1)π-α]·cos[(2n +1-1)π-α]sin[(2n +1+1)π+α]·cos[(2n +1)π+α]=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α(-cos α)=-1.综上,原式=-1. 答案 (1)52或-52(2)-11.(2016·盐城模拟)已知cos α=45,α∈(0,π),则tan α的值为 .答案 34解析 ∵α∈(0,π), ∴sin α= 1-cos 2α=1-(45)2=35,由tan α=sin αcos α,得tan α=34. 2.已知cos α=13,且-π2<α<0,则cos (-α-π)sin (2π+α)tan (2π-α)sin (3π2-α)cos (π2+α)= .答案 -2 2解析 原式=(-cos α)·sin α·(-tan α)(-cos α)·(-sin α)=tan α,∵cos α=13,-π2<α<0,∴sin α=-1-cos 2α=-223,∴tan α=sin αcos α=-2 2.3.若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为 .答案 -3解析 由角α的终边落在第三象限, 得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3.4.若sin(π-α)=-2sin(π2+α),则sin α·cos α的值为 .答案 -25解析 由sin(π-α)=-2sin(π2+α),可得sin α=-2cos α,则tan α=-2,sin α·cos α=sin α·cos αsin 2α+cos 2α=tan α1+tan 2α=-25. 5.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 017)的值为 . 答案 -3解析 ∵f (4)=a sin(4π+α)+b cos(4π+β) =a sin α+b cos β=3,∴f (2 017)=a sin(2 017π+α)+b cos(2 017π+β) =a sin(π+α)+b cos(π+β) =-a sin α-b cos β =-3.*6.(2016·扬州模拟)若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为 . 答案 1- 5解析 由题意知sin θ+cos θ=-m 2,sin θcos θ=m 4,又(sin θ+cos θ)2=1+2sin θcos θ, ∴m 24=1+m2, 解得m =1±5,又Δ=4m 2-16m ≥0, ∴m ≤0或m ≥4,∴m =1- 5.7.已知α为钝角,sin(π4+α)=34,则sin(π4-α)= .答案 -74解析 因为α为钝角,所以cos(π4+α)=-74,所以sin(π4-α)=cos[π2-(π4-α)]=cos(π4+α)=-74.8.(2016·江苏如东高级中学期中)若sin α=2cos α,则sin 2α+2cos 2α的值为 . 答案 65解析 由sin α=2cos α,得tan α=2,因此sin 2α+2cos 2α=sin 2α+2cos 2αsin 2α+cos 2α =tan 2α+2tan 2α+1=4+24+1=65. 9.已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线2x -y =0上,则sin (3π2+θ)+cos (π-θ)sin (π2-θ)-sin (π-θ)= . 答案 2解析 由题意可得tan θ=2,原式=-cos θ-cos θcos θ-sin θ=-21-tan θ=2. 10.(2016·无锡模拟)已知α为第二象限角,则cos α1+tan 2α+sin α 1+1tan 2α= . 答案 0解析 原式=cos α sin 2α+cos 2αcos 2α+sin α sin 2α+cos 2αsin 2α =cos α1|cos α|+sin α1|sin α|, 因为α是第二象限角,所以sin α>0,cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0. 11.已知sin(3π+α)=2sin ⎝⎛⎭⎫3π2+α,求下列各式的值: (1)sin α-4cos α5sin α+2cos α; (2)sin 2α+sin 2α.解 由已知得sin α=2cos α.(1)原式=2cos α-4cos α5×2cos α+2cos α=-16. (2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85. 12.已知在△ABC 中,sin A +cos A =15.(1)求sin A cos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形;(3)求tan A 的值.解 (1)∵(sin A +cos A )2=125, ∴1+2sin A cos A =125, ∴sin A cos A =-1225. (2)∵sin A cos A <0,又0<A <π,∴cos A <0,∴A 为钝角,∴△ABC 为钝角三角形.(3)(sin A -cos A )2=1-2sin A cos A =4925. 又sin A -cos A >0,∴sin A -cos A =75, ∴sin A =45,cos A =-35, 故tan A =-43. *13.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π).求:(1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值.解 (1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12. (2)由sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ=(sin θ+cos θ)2,得m =32. (3)由⎩⎪⎨⎪⎧ sin θ+cos θ=3+12,sin θ·cos θ=34,知⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧ sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π3或θ=π6.。
(江苏专用)2018版高考数学专题复习 专题4 三角函数、解三角形
第28练 正弦定理、余弦定理练习 理
1.(2016·隆化期中)在△ABC 中,如果sin A ∶sin B ∶sin C =2∶3∶4,那么cos C =________.
2.(2016·银川月考)如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点间的距离为______________ m.
3.(2016·安庆检测)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c .若a 2-c 2=3bc ,sin B =23sin C ,则A =________.
4.(2016·苏北四市一模)在△ABC 中,已知AB =3,A =120°,且△ABC 的面积为1534,那么边BC 的长为________.
5.(2016·常州一模)在△ABC 中,已知内角A ,B ,C 的对边分别为a ,b ,c .若tan A =7tan B ,a 2-b 2
c
=3,则c =________. 6.(2016·东营期中)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S 表示△ABC 的面
积,若a cos B +b cos A =c sin C ,S =14
(b 2+c 2-a 2),则B =________. 7.(2016·南京、盐城、徐州二模)
如图,在△ABC 中,D 是BC 边上一点,已知∠B =60°,AD =2,AC =10,DC =2,那么AB =________.
8.已知点O 是△ABC 的外接圆圆心,且AB =3,AC =4.若存在非零实数x ,y ,使得AO →=xAB
→+yAC →,且x +2y =1,则cos∠BAC 的值为________.
9.△ABC 中,A 、B 、C 是其内角,若sin 2A +sin(A -C )-sin B =0,则△ABC 的形状是________________三角形.
10.(2016·惠州二调)在△ABC 中,设角A ,B ,C 的对边分别是a ,b ,c ,且∠C =60°,c =3,则a +23cos A sin B
=________. 11.(2016·佛山期中)如图,一艘船以每小时15 km 的速度向东航行,船在A 处看到一灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________ km.
12.(2016·吉安期中)在△ABC 中,D 为BC 边上一点,若△ABD 是等边三角形,且AC =43,则△ADC 的面积的最大值为________.
13.(2016·如东高级中学期中)在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.
14.(2016·南通二模)若一个钝角三角形的三个内角成等差数列,且最大边与最小边之比为m ,则实数m 的取值范围是________.
答案精析
1.-14 2.50 2 3.π6
4.7
5.4 6.45°
解析 由正弦定理可知a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c sin C =2R sin C ·sin C ,
∴sin C =1,C =90°.∴S =12ab =14
(b 2+c 2-a 2),解得a =b ,因此B =45°. 7.263
解析 在△ADC 中,AD =2,AC =10,DC =2,则cos∠ADC =-22
,所以∠ADC =135°,从而在△ABD 中,∠ADB =45°.又因为∠B =60°,由正弦定理得AD sin B =AB sin∠ADB ,即23
2=AB
2
2
,解得AB =263. 8.23
解析 设线段AC 的中点为点D ,则直线OD ⊥AC .
因为AO →=xAB →+yAC →,所以AO →=xAB →+2yAD →.
又x +2y =1,所以点O 、B 、D 三点共线,
即点B 在线段AC 的中垂线上,则AB =BC =3.
在△ABC 中,由余弦定理,得cos∠BAC =32+42-322×3×4=23
. 9.等腰或直角
解析 因为sin 2A +sin(A -C )-sin B
=sin 2A +sin(A -C )-sin(A +C )
=2sin A cos A -2sin C cos A
=2cos A (sin A -sin C )=0,
所以cos A =0或sin A =sin C ,
所以A =π2
或A =C . 故△ABC 为等腰或直角三角形.
10.4
解析 由正弦定理知a sin A =c sin C =2,所以a =2sin A ,代入得原式=2sin A +23cos A sin B
=4·A +
sin B =4.
11.30 2
解析 依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°,在△AMB 中,由正弦定理得
60sin 45°=BM sin 30°,解得BM =30 2. 12.4 3
解析 在△ACD 中,cos∠ADC =AD 2+DC 2-AC 22AD ·DC =AD 2+DC 2-482AD ·DC =-12
,整理得AD 2+DC 2=48-AD ·DC ≥2AD ·DC ,
∴AD ·DC ≤16,当且仅当AD =CD 时等号成立,
∴△ADC 的面积S =12
AD ·DC · sin∠ADC =
34
AD ·DC ≤4 3. 13.533 解析 由题意得203=12×8×10×sin C ⇒sin C =32⇒C =π3或C =2π3
(舍),由余弦定理得c 2=82+102-2×8×10×12
=84,由三角形中大边对大角知角B 最大,则cos B =82+84-1022×8×84=384
,所以tan B =533. 14.(2,+∞)
解析 设A 为钝角,C 为最小角,则A +C =120°,C ∈(0°,30°),由正弦定理得m =a c =sin A sin C
=-C sin C =32tan C +12.而0<tan C <33,∴1tan C >3,则m >2.。