高考数学(理科)刷题小卷练含答案 21
- 格式:doc
- 大小:99.00 KB
- 文档页数:7
2021年普通高等学校招生全国统一考试数学试卷(理科)一、单选题(本大题共12小题,共60.0分)1.设2(z+z−)+3(z−z−)=4+6i,则z=()A. 1−2iB. 1+2iC. 1+iD. 1−i2.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A. ⌀B. SC. TD. Z3.已知命题p:∃x∈R,sinx<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是()A. p∧qB. ¬p∧qC. p∧¬qD. ¬(p∨q)4.设函数f(x)=1−x1+x,则下列函数中为奇函数的是()A. f(x−1)−1B. f(x−1)+1C. f(x+1)−1D. f(x+1)+15.在正方体ABCD−A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A. π2B. π3C. π4D. π66.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A. 60种B. 120种C. 240种D. 480种7.把函数y=f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y=sin(x−π4)的图像,则f(x)=()A. sin(x2−7π12) B. sin(x2+π12) C. sin(2x−7π12) D. sin(2x+π12)8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A. 79B. 2332C. 932D. 299.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”,则海岛的高AB=()A. B.C. D.10.设a≠0,若x=a为函数f(x)=a(x−a)2(x−b)的极大值点,则()A. a<bB. a>bC. ab<a2D. ab>a211.设B是椭圆C:x2a2+y2b2=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是()A. [√22,1) B. [12,1) C. (0,√22] D. (0,12]12.设a=2ln1.01,b=ln1.02,c=√1.04−1,则()A. a<b<cB. b<c<aC. b<a<cD. c<a<b二、单空题(本大题共4小题,共20.0分)13.已知双曲线C:x2m−y2=1(m>0)的一条渐近线为√3x+my=0,则C的焦距为______ .14.已知向量a⃗=(1,3),b⃗ =(3,4),若(a⃗−λb⃗ )⊥b⃗ ,则λ=______ .15.记△ABC的内角A,B,C的对边分别为a,b,c,面积为√3,B=60°,a2+c2=3ac,则b=______ .16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为______ (写出符合要求的一组答案即可).三、解答题(本大题共7小题,共82.0分)17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x−和y−,样本方差分别记为s12和s22.(1)求x−,y−,s12,s22;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y−−x−≥,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不2√s12+s2210认为有显著提高).18.如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC中点,且PB⊥AM.(1)求BC;(2)求二面角A−PM−B的正弦值.19.记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2Sn +1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.20.己知函数f(x)=ln(a−x),已知x=0是函数y=xf(x)的极值点.(1)求a;(2)设函数g(x)=x+f(x)xf(x).证明:g(x)<1.21.已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)若点P在M上,PA,PB为C的两条切线,A,B是切点,求△PAB面积的最大值.22.在直角坐标系xOy中,⊙C的圆心为C(2,1),半径为1.(1)写出⊙C的一个参数方程;(2)过点F(4,1)作⊙C的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.23.已知函数f(x)=|x−a|+|x+3|.(1)当a=1时,求不等式f(x)≥6的解集;(2)若f(x)>−a,求a的取值范围.答案解析1.【答案】C【解析】解:设z =a +bi ,a ,b 是实数, 则z −=a −bi ,则由2(z +z −)+3(z −z −)=4+6i , 得2×2a +3×2bi =4+6i , 得4a +6bi =4+6i , 得{4a =46b =6,得a =1,b =1, 即z =1+i , 故选:C .利用待定系数法设出z =a +bi ,a ,b 是实数,根据条件建立方程进行求解即可. 本题主要考查复数的基本运算,利用待定系数法建立方程是解决本题的关键,是基础题.2.【答案】C【解析】解:当n 是偶数时,设n =2k ,则s =2n +1=4k +1, 当n 是奇数时,设n =2k +1,则s =2n +1=4k +3,k ∈Z , 则T ⊊S , 则S ∩T =T , 故选:C .分别讨论当n 是偶数、奇数时的集合元素情况,结合集合的基本运算进行判断即可. 本题主要考查集合的基本运算,利用分类讨论思想结合交集定义是解决本题的关键,是基础题.3.【答案】A【解析】解:对于命题p :∃x ∈R ,sinx <1,当x =0时,sinx =0<1,故命题p 为真命题,¬p 为假命题; 对于命题q :∀x ∈R ,e |x|≥1,因为|x|≥0,又函数y =e x 为单调递增函数,故e |x|≥e 0=1, 故命题q 为真命题,¬q 为假命题,所以p ∧q 为真命题,¬p ∧q 为假命题,p ∧¬q 为假命题,¬(p ∨q)为假命题,故选:A.先分别判断命题p和命题q的真假,然后由简单的复合命题的真假判断法则进行判断,即可得到答案.本题考查了命题真假的判断,解题的关键是掌握全称命题和存在性命题真假的判断方法,考查了逻辑推理能力,属于基础题.4.【答案】B【解析】解:因为f(x)=1−x1+x =−(x+1)+21+x=−1+2x+1,所以函数f(x)的对称中心为(−1,−1),所以将函数f(x)向右平移一个单位,向上平移一个单位,得到函数y=f(x−1)+1,该函数的对称中心为(0,0),故函数y=f(x−1)+1为奇函数.故选:B.先根据函数f(x)的解析式,得到f(x)的对称中心,然后通过图象变换,使得变换后的函数图象的对称中心为(0,0),从而得到答案.本题考查了函数奇偶性和函数的图象变换,解题的关键是确定f(x)的对称中心,考查了逻辑推理能力,属于基础题.5.【答案】D【解析】解:∵AD1//BC1,∴∠PBC1是直线PB与AD1所成的角(或所成角的补角),设正方体ABCD−A1B1C1D1的棱长为2,则PB1=PC1=12√22+22=√2,BC1=√22+22=2√2,BP=√22+(√2)2=√6,∴cos∠PBC1=PB2+BC12−PC122×PB×BC1=6+8−22×√6×2√2=√32,∴∠PBC1=π6,∴直线PB与AD1所成的角为π6.故选:D.由AD1//BC1,得∠PBC1是直线PB与AD1所成的角(或所成角的补角),由此利用余弦定理,求出直线PB与AD1所成的角.本题考查异面直线所成角和余弦定理,考查运算求解能力,是基础题.6.【答案】C【解析】解:5名志愿者选2个1组,有C 52种方法,然后4组进行全排列,有A 44种, 共有C 52A 44=240种,故选:C .5分先选2人一组,然后4组全排列即可.本题主要考查排列组合的应用,利用先分组后排列的方法是解决本题的关键,是基础题.7.【答案】B【解析】解:∵把函数y =f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变, 再把所得曲线向右平移π3个单位长度,得到函数y =sin(x −π4)的图像, ∴把函数y =sin(x −π4)的图像,向左平移π3个单位长度, 得到y =sin(x +π3−π4)=sin(x +π12)的图像;再把图像上所有点的横坐标变为原来的2倍,纵坐标不变, 可得f(x)=sin(12x +π12)的图像. 故选:B .由题意利用函数y =Asin(ωx +φ)的图像变换规律,得出结论. 本题主要考查函数y =Asin(ωx +φ)的图像变换规律,属基础题.8.【答案】B【解析】解:由题意可得可行域:{0<x <11<y <2x +y >74,可得三角形的面积=12×34×34=932, 1−932=2332. 故选:B .由题意可得可行域:{0<x <11<y <2x +y >74,可得三角形的面积,结合几何概型即可得出结论.本题考查了线性规划知识、三角形的面积、几何概型、对立事件的概率计算公式,考查了推理能力与计算能力,属于基础题.9.【答案】A【解析】解:DEAB =EHAH,FGBA=CGCA,故EHAH =CGCA,即EHAE+EH=CGAE+EG+GC,解得:AE=EH⋅EGCG−EH,AH=AE+EH,故:AB=DE⋅AHEH =DE(AE+EH)EH=DE⋅EGCG−EH+DE.故选:A.根据相似三角形的性质、比例的性质、直角三角形的边角关系即可得出.本题考查了相似三角形的性质、比例的性质、直角三角形的边角关系,考查了推理能力与计算能力,属于基础题.10.【答案】D【解析】解:令f(x)=0,解得x=a或x=b,即x=a及x=b是f(x)的两个零点,当a>0时,由三次函数的性质可知,要使x=a是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则0<a<b;当a<0时,由三次函数的性质可知,要使x=a是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则b<a<0;综上,ab>a2.故选:D.分a>0及a<0,结合三次函数的性质及题意,通过图象发现a,b的大小关系,进而得出答案.本题考查三次函数的图象及性质,考查导数知识的运用,考查数形结合思想,属于中档题.11.【答案】C【解析】解:点B的坐标为(0,b),因为C上的任意一点P都满足|PB|≤2b,所以点P的轨迹可以看成以B为圆心,2b为半径的圆与椭圆至多只有一个交点,即{x2a2+y2b2=1x2+(y−b)2=4b2至多一个解,消去x,可得b2−a2 b2y2−2by+a2−3b2=0,∴△=4b2−4⋅b2−a2b2⋅(a2−3b2)≤0,整理可得4b4−4a2b2+a4≤0,即(a2−2b2)2≤0,解得a2=2b2,∴e=√1−b2a2=√22,故e的范围为(0,√22],故选:C.由题意可得{x2a2+y2b2=1x2+(y−b)2=4b2至多一个解,根据判别式即可得到a与b的关系式,再求出离心率的取值范围.本题考查了椭圆的方程和性质,考查了运算求解能力和转化与化归思想,属于中档题.12.【答案】B【解析】解:∵a=2ln1.01=ln1.0201,b=ln1.02,∴a>b,令f(x)=2ln(1+x)−(√1+4 x−1),0<x<1,令√1+4 x=t,则1<t<√5∴x= t2−14,∴g(t)=2ln(t2+34)−t+1=2ln(t2+3)−t+1−2ln4,∴g′(t)=4tt2+3−1=4t−t2−3t2+3=−(t−1)(t−3)t2+3>0,∴g(t)在(1,√5)上单调递增,∴g(t)>g(1)=2ln4−1+2ln4=0,∴f(x)>0,∴a>c,同理令ℎ(x)=ln(1+2x)−(√1+4 x−1),再令√1+4 x=t,则1<t<√5∴x= t2−14,∴φ(t)=ln(t2+12)−t+1=ln(t2+1)−t+1−ln2,∴φ′(t)=2tt2+1−1=−(t−1)2t2+1<0,∴φ(t)在(1,√5)上单调递减,∴φ(t)<φ(1)=ln2−1+1−ln2=0,∴ℎ(x)<0,∴c>b,∴a>c>b.故选:B.构造函数f(x)=2ln(1+x)−(√1+4 x−1),0<x<1,ℎ(x)=ln(1+2x)−(√1+4 x−1),利用导数和函数的单调性即可判断.本题考查了不等式的大小比较,导数和函数的单调性和最值的关系,考查了转化思想,属于难题.13.【答案】4【解析】解:根据题意,双曲线C:x2m−y2=1(m>0)的一条渐近线为√3x+my=0,则有√3=√m,解可得m=3,则双曲线的方程为x23−y2=1,则c=√3+1=2,其焦距2c=4;故答案为:4.根据题意,由双曲线的性质可得√3=√m,解可得m的值,即可得双曲线的标准方程,据此计算c的值,即可得答案.本题考查双曲线的几何性质,涉及双曲线的渐近线方程的分析,属于基础题.14.【答案】35【解析】解:因为向量a⃗=(1,3),b⃗ =(3,4),则a⃗−λb⃗ =(1−3λ,3−4λ),又(a⃗−λb⃗ )⊥b⃗ ,所以(a⃗−λb⃗ )⋅b⃗ =3(1−3λ)+4(3−4λ)=15−25λ=0,解得λ=35.故答案为:35.利用向量的坐标运算求得a⃗−λb⃗ =(1−3λ,3−4λ),再由(a⃗−λb⃗ )⊥b⃗ ,可得(a⃗−λb⃗ )⋅b⃗ =0,即可求解λ的值.本题主要考查数量积的坐标运算,向量垂直的充要条件,考查方程思想与运算求解能力,属于基础题.15.【答案】2√2【解析】解:∵△ABC的内角A,B,C的对边分别为a,b,c,面积为√3,B=60°,a2+c2=3ac,∴12acsinB=√3⇒12ac×√32=√3⇒ac=4⇒a2+c2=12,又cosB=a2+c2−b22ac ⇒12=12−b28⇒b=2√2,(负值舍)故答案为:2√2.由题意和三角形的面积公式以及余弦定理得关于b的方程,解方程可得.本题考查三角形的面积公式以及余弦定理的应用,属基础题.16.【答案】②⑤或③④【解析】解:观察正视图,推出正视图的长为2和高1,②③图形的高也为1,即可能为该三棱锥的侧视图,④⑤图形的长为2,即可能为该三棱锥的俯视图,当②为侧视图时,结合侧视图中的直线,可以确定该三棱锥的俯视图为⑤,当③为侧视图时,结合侧视图虚线,虚线所在的位置有立体图形的轮廓线,可以确定该三棱锥的俯视图为④.故答案为:②⑤或③④.通过观察已知条件正视图,确定该正视图的长和高,结合长、高、以及侧视图视图中的实线、虚线来确定俯视图图形.该题考查了三棱锥的三视图,需要学生掌握三视图中各个图形边长的等量关系,以及对于三视图中特殊线条能够还原到原立体图形中,需要较强空间想象,属于中等题.17.【答案】解:(1)由题中的数据可得,x−=110×(9.8+10.3+10.0+10.2+9.9+9.8+ 10.0+10.1+10.2+9.7)=10,y−=110×(10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.5)=10.3,s12=110×[(9.8−10)2+(10.3−10)2+(10−10)2+(10.2−10)2+(9.9−10)2 +(9.8−10)2+(10−10)2+(10.1−10)2+(10.2−10)2+(9.7−10)2]=0.036;s22=110×[(10.1−10.3)2+(10.4−10.3)2+(10.1−10.3)2+(10.0−10.3)2+(10.1−10.3)2+(10.3−10.3)2+(10.6−10.3)2+(10.5−10.3)2+(10.4−10.3)2+(10.5−10.3)2]=0.04;(2)y−−x−=10.3−10=0.3,2√s12+s2210=2√0.036+0.0410=2√0.0076≈0.174,所以y−−x−>2√s12+s2210,故新设备生产产品的该项指标的均值较旧设备有显著提高.【解析】(1)利用平均数和方差的计算公式进行计算即可;(2)比较y−−x−与2√s12+s2210的大小,即可判断得到答案.本题考查了样本特征数的计算,解题的关键是掌握平均数与方差的计算公式,考查了运算能力,属于基础题.18.【答案】解:(1)连结BD,因为PD⊥底面ABCD,且AM⊂平面ABCD,则AM⊥PD,又AM⊥PB,PB∩PD=P,PB,PD⊂平面PBD ,所以AM ⊥平面PBD ,又BD ⊂平面PBD ,则AM ⊥BD , 所以∠ABD +∠DAM =90°,又∠DAM +∠MAB =90°, 则有∠ADB =∠MAB ,所以Rt △DAB∽Rt △ABM , 则ADAB =BABM ,所以12BC 2=1,解得BC =√2;(2)因为DA ,DC ,DP 两两垂直,故以点D 为坐标原点建立空间直角坐标系如图所示, 则A(√2,0,0),B(√2,1,0),M(√22,1,0),P(0,0,1),所以AP⃗⃗⃗⃗⃗ =(−√2,0,1),AM ⃗⃗⃗⃗⃗⃗ =(−√22,1,0),BM ⃗⃗⃗⃗⃗⃗ =(−√22,0,0),BP ⃗⃗⃗⃗⃗ =(−√2,−1,1), 设平面AMP 的法向量为n⃗ =(x,y,z), 则有{n ⃗ ⋅AP ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AM ⃗⃗⃗⃗⃗⃗ =0,即{−√2x +z =0−√22x +y =0, 令x =√2,则y =1,z =2,故n ⃗ =(√2,1,2), 设平面BMP 的法向量为m⃗⃗⃗ =(p,q,r), 则有{m ⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0,即{−√22p =0−√2p −q +r =0, 令q =1,则r =1,故m ⃗⃗⃗ =(0,1,1), 所以|cos <n ⃗ ,m ⃗⃗⃗ >|=|n ⃗⃗ ⋅m ⃗⃗⃗ ||n ⃗⃗ ||m ⃗⃗⃗ |=3√7×√2=3√1414, 设二面角A −PM −B 的平面角为α,则sinα=√1−cos 2α=√1−cos 2<n ⃗ ,m ⃗⃗⃗ >=√1−(3√1414)2=√7014,所以二面角A −PM −B 的正弦值为√7014.【解析】(1)连结BD ,利用线面垂直的性质定理证明AM ⊥PD ,从而可以证明AM ⊥平面PBD ,得到AM ⊥BD ,证明Rt △DAB∽Rt △ABM ,即可得到BC 的长度; (2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面的法向量,由向量的夹角公式以及同角三角函数关系求解即可.本题考查了空间中线段长度求解以及二面角的求解,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.19.【答案】解:(1)证明:当n =1时,b 1=S 1,由2b 1+1b 1=1,解得b 1=32,当n ≥2时,b nbn−1=S n ,代入2S n+1b n=2,消去S n ,可得2 b n−1b n+1b n=2,所以b b −b n−1=12,所以{b n }是以32为首项,12为公差的等差数列. (2)由题意,得a 1=S 1=b 1=32, 由(1),可得b n =32+(n −1)×12=n+22,由2S n+1b n=2,可得S n =n+2n+1,当n ≥2时,a n =S n −S n−1= n+2n+1−n+1n=−1n(n+1),显然a 1不满足该式,所以a n ={32,n =1−1n(n+1),n ≥2.【解析】(1)由题意当n =1时,b 1=S 1,代入已知等式可得b 1的值,当n ≥2时,将b nb n−1=S n ,代入2S n+1b n=2,可得b b −b n−1=12,进一步得到数列{b n }是等差数列;(2)由a 1=S 1=b 1=32,可得b n =n+22,代入已知等式可得S n =n+2n+1,当n ≥2时,a n =S n −S n−1=−1n(n+1),进一步得到数列{a n }的通项公式.本题考查了等差数列的概念,性质和通项公式,考查了方程思想,是基础题.20.【答案】(1)解:由题意,f(x)的定义域为(−∞,a),令g(x)=xf(x),则g(x)=xln(a −x),x ∈(−∞,a), 则g′(x)=ln(a −x)+x ⋅−1a−x =ln(a −x)+−xa−x ,因为x =0是函数y =xf(x)的极值点,则有g′(x)=0,即lna =0,所以a =1, 当a =1时,g′(x)=ln(1−x)+−x1−x =ln(1−x)+−11−x +1,且g′(0)=0, 因为g′′(x)=−11−x +−1(1−x)2=x−2(1−x)2<0, 则g′(x)在(−∞,1)上单调递减, 所以当x ∈(−∞,a)时,g′(x)>0, 当x ∈(0,1)时,g′(x)<0,所以a =1时,x =0时函数y =xf(x)的一个极大值. 综上所述,a =1;(2)证明:由(1)可知,xf(x)=xln(1−x),要证x+f(x)xf(x)<1,即需证明x+ln(1−x)xln(1−x)<1,因为当x∈(−∞,0)时,xln(1−x)<0,当x∈(0,1)时,xln(1−x)<0,所以需证明x+ln(1−x)>xln(1−x),即x+(1−x)ln(1−x)>0,令ℎ(x)=x+(1−x)ln(1−x),则ℎ′(x)=(1−x)⋅−11−x+1−ln(1−x),所以ℎ′(0)=0,当x∈(−∞,0)时,ℎ′(x)<0,当x∈(0,1)时,ℎ′(x)>0,所以x=0为ℎ(x)的极小值点,所以ℎ(x)>ℎ(0)=0,即x+ln(1−x)>xln(1−x),故x+ln(1−x)xln(1−x)<1,所以x+f(x)xf(x)<1.【解析】(1)确定函数f(x)的定义域,令g(x)=xf(x),由极值的定义得到g′(x)=0,求出a的值,然后进行证明,即可得到a的值;(2)将问题转化为证明x+ln(1−x)xln(1−x)<1,进一步转化为证明x+ln(1−x)>xln(1−x),令ℎ(x)=x+(1−x)ln(1−x),利用导数研究ℎ(x)的单调性,证明ℎ(x)>ℎ(0),即可证明.本题考查了导数的综合应用,主要考查了利用导数研究函数的极值问题,利用导数证明不等式问题,此类问题经常构造函数,转化为证明函数的取值范围问题,考查了逻辑推理能力与化简运算能力,属于难题.21.【答案】解:(1)点F(0,p2)到圆M上的点的距离的最小值为|FM|−1=p2+4−1=4,解得p=2;(2)由(1)知,抛物线的方程为x2=4y,即y=14x2,则y′=12x,设切点A(x1,y1),B(x2,y2),则易得l PA:y=x12x−x124,l PB:y=x22x−x224,从而得到P(x1+x22,x1x24),设l AB:y=kx+b,联立抛物线方程,消去y并整理可得x2−4ky−4b=0,∴△=16k2+16b>0,即k2+b>0,且x1+x2=4k,x1x2=−4b,∴P(2k,−b),∵|AB|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅√16k 2+16b ,d p→AB =2√k 2+1,∴S △PAB =12|AB|d =4(k 2+b)32①,又点P(2k,−b)在圆M :x 2+(y +4)2=1上,故k 2=1−(b−4)24,代入①得,S △PAB =4(−b 2+12b−154)32,而y p =−b ∈[−5,−3],∴当b =5时,(S △PAB )max =20√5.【解析】(1)由点F 到圆M 上的点最小值为4建立关于p 的方程,解出即可; (2)对y =14x 2求导,由导数的几何意义可得出直线PA 及PB 的方程,进而得到点P 的坐标,再将AB 的方程与抛物线方程联立,可得P(2k,−b),|AB|以及点P 到直线AB 的距离,进而表示出△PAB 的面积,再求出其最小值即可.本题考查圆锥曲线的综合运用,考查直线与抛物线的位置关系,考查运算求解能力,属于中档题.22.【答案】解:(1)⊙C 的圆心为C(2,1),半径为1,则⊙C 的标准方程为(x −2)2+(y −1)2=1, ⊙C 的一个参数方程为{x =2+cosθy =1+sinθ(θ为参数).(2)由题意可知两条切线方程斜率存在,设切线方程为y −1=k(x −4),即kx −y −4k +1=0, 圆心C(2,1)到切线的距离d =√k 2+1=1,解得k =±√33,所以切线方程为y =±√33(x −4)+1,因为x =ρcosθ,y =ρsinθ,所以这两条切线的极坐标方程为ρsinθ=±√33(ρcosθ−4)+1.【解析】(1)求出⊙C 的标准方程,即可求得⊙C 的参数方程;(2)求出直角坐标系中的切线方程,再由x =ρcosθ,y =ρsinθ即可求解这两条切线的极坐标方程.本题主要考查圆的参数方程,普通方程与极坐标方程的转化,考查运算求解能力,属于基础题.23.【答案】解:(1)当a=1时,f(x)=|x−1|+|x+3|={−2x−2,x≤−3 4,−3<x<12x+2,x≥1,∵f(x)≥6,∴{x≤−3−2x−2≥6或{−3<x<1 4≥6或{x≥12x+2≥6,∴x≤−4或x≥2,∴不等式的解集为(−∞,−4]∪[2,+∞).(2)f(x)=|x−a|+|x+3|≥|x−a−x−3|=|a+3|,若f(x)>−a,则|a+3|>−a,两边平方可得a2+6a+9>a2,解得a>−32,即a的取值范围是(−32,+∞).【解析】(1)将a=1代入f(x)中,根据f(x)≥6,利用零点分段法解不等式即可;(2)利用绝对值三角不等式可得f(x)≥|a+3|,然后根据f(x)>−a,得到|a+3|>−a,求出a的取值范围.本题主要考查绝对值不等式的解法,考查运算求解能力,属于基础题.。
2021年高考数学(理)试卷(全国乙卷)含答案2021年普通高等学校招生全国统一考试(全国乙卷)理科数学注意事项:1.考生应在答题卡上填写姓名和准考证号。
2.选择题应在答题卡上涂黑对应的选项,非选择题应在答题卡上作答。
3.考试结束后,将试卷和答题卡一并交回。
一、选择题:共12小题,每小题5分,共60分。
每小题有四个选项,只有一项正确。
1.若 2(z+) + 3(z-) = 4 + 6i,则 z = ( )A。
1-2iB。
1+2iC。
1+iD。
1-i2.已知集合 S = {s|s=2n+1,n∈Z},T = {t|t=4n+1,n∈Z},则S∩T = ( )A。
∅B。
SC。
TD。
Z3.已知命题 p: x∈R,sinx<1;命题 q: x∈R,pq≥1,则下列命题中为真命题的是()A。
p∧qB。
p∨qC。
p→qD。
¬p→q4.若函数 f(x) = f(x-1) + 1,则下列函数中为奇函数的是()A。
f(x-1) -1B。
f(x-1) +1C。
f(x+1) -1D。
f(x+1) +15.在正方体 ABCD-A1B1C1D1 中,P为B1D1的中点,则直线 PB1 与 AD1 所成的角为()A。
45°B。
60°C。
30°D。
75°6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A。
60种B。
120种C。
240种D。
480种7.把函数 y=f(x) 图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移一个单位长度,得到函数y=sin(x-π/2) 的图像,则 f(x) =()A。
sin(x+π/2)B。
sin(x+π)C。
sin(x+π/4)D。
sin(x+3π/4)8.在区间 (0,1) 与 (1,2) 中各随机取1个数,则两数之和大于2的概率为()A。
2021年普通高等学校招生全国统一考试数学(全国新课标卷II)第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.(2021课标全国Ⅱ,理1)集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},那么M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2021课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,那么z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2021课标全国Ⅱ,理3)等比数列{a n }的前n 项与为S n .S 3=a 2+10a 1,a 5=9,那么a 1=( ).A .13B .13-C .19D .19-4.(2021课标全国Ⅱ,理4)m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,那么( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2021课标全国Ⅱ,理5)(1+ax )(1+x )5的展开式中x 2的系数为5,那么a =( ).A .-4B .-3C .-2D .-16.(2021课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++ D .1111+2!3!11!+++7.(2021课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,那么得到的正视图可以为( ).8.(2021课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,那么( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c 9.(2021课标全国Ⅱ,理9)a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩假设z =2x+y 的最小值为1,那么a =( ).A .14B .12 C .1 D .210.(2021课标全国Ⅱ,理10)函数f (x )=x 3+ax 2+bx +c ,以下结论中错误的选项是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .假设x0是f(x)的极小值点,那么f(x)在区间(-∞,x0)单调递减D .假设x0是f(x)的极值点,那么f′(x0)=011.(2021课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,假设以MF 为直径的圆过点(0,2),那么C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2021课标全国Ⅱ,理12)点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两局部,那么b 的取值范围是( ).A .(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭ C.113⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭ 第二卷本卷包括必考题与选考题两局部,第13题~第21题为必考题,每个试题考生都必须做答。
绝密(juémì)★启封(qǐ fēnɡ)并使用完毕前试题(shìtí)类型:A 2021年普通高等学校招生全国(quán ɡuó)统一考试理科(lǐkē)数学考前须知:1.本试卷分第一卷(选择题)和第二卷(非选择题)两局部.第一卷1至3页,第二卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第一卷一.选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕设集合,,那么〔A〕〔B〕〔C〕〔D〕〔2〕设,其中x,y是实数,那么〔A〕1〔B〕〔C〕〔D〕2〔3〕等差数列前9项的和为27,,那么〔A〕100〔B〕99〔C〕98〔D〕97〔4〕某公司的班车在7:00,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,那么他等车时间不超过10分钟的概率是〔A〕〔B〕〔C〕〔D〕〔5〕方程–=1表示双曲线,且该双曲线两焦点间的距离为4,那么n的取值范围是〔A〕(–1,3) 〔B〕(–1,3) 〔C〕(0,3) 〔D〕(0,3)〔6〕如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.假设该几何体的体积是,那么它的外表积是〔A〕17π〔B〕18π〔C〕20π〔D〕28π〔7〕函数y=2x2–e|x|在[–2,2]的图像大致为〔A〕〔B〕〔C〕〔D〕〔8〕假设(jiǎshè),那么(nà me)〔A〕〔B〕〔C〕〔D〕〔9〕执行右面(yòumiàn)的程序图,如果输入的,那么(nà me)输出x,y的值满足(mǎnzú)〔A〕〔B〕〔C〕〔D〕(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E两点.|AB|=,|DE|=,那么C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a过正方体ABCD-A1B1C1D1的顶点A,a//平面CB1D1,平面ABCD=m,a 平面ABA1B1=n,那么m、n所成角的正弦值为(A)(B) (C) (D)12.函数(hánshù)为的零点(línɡ diǎn),为图像(tú xiànɡ)的对称轴,且()f x在单调(dāndiào),那么的最大值为〔A〕11 〔B〕9 〔C〕7 〔D〕5第II卷本卷包括必考题(kǎo tí)和选考题两局部.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每题5分(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,那么m=.(14)的展开式中,x3的系数是.〔用数字填写答案〕〔15〕设等比数列满足a1+a3=10,a2+a4=5,那么a1a2…a n的最大值为。
最新全国高考数学(理)模拟题及答案带解析( 本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分 150 分,考试时间 120 分钟)第Ⅰ卷 ( 选择题 满分 60 分)一、选择题 ( 本题共 合题意 )1.[2016 ·全国卷Ⅲ 12 小题,每小题 5 分,共 60 分,每小题只有一个选项符 ] 设集合 S ={ x|( x - 2)( x -3) ≥0} ,T ={ x| x>0} ,则 S ∩T =( )A . [2,3] C . [3 ,+∞ )B .( -∞, 2] ∪[3 ,+∞)D .(0,2] ∪[3 ,+∞)答案 解析 +∞) .D集合 S =( -∞, 2] ∪[3 ,+∞ ) ,结合数轴,可得 S ∩T =(0,2] ∪[3 , 22.[2016 ·西安市八校联考 ] 设 z = 1+ i(i z 为虚数单位 ) ,则 z - =( )A . i 答案B . 2- i DC .1-iD .02因为 z - 2 =1+i -1+i = - z 解析 - 1+i =1-i -1+i =+ -0,故选 D. πx + 3 131π-x 3 则 cos x +cos 3.[2017 ·福建质检 ] 已知 sin = 3 , 地值为 ( )( ) 3 3 B3 3 1 A .- B. C .- D. 3 答案 πx + 3 1 3 1 π- x3 sin x x cos x +cos =cos x解析 因为 sin =2 + cos =3 , 所以 2 1cos 3 3 3 3 3 1 x + sin x = 2 x + sin x = +2 cos3 cosx + 2 sin x = ,故选 B. 2 2 32 4.[2016 ·天津高考 ] 设{ a n } 为首项为正数地等比数列, 公比为 q ,则“ q <0” n ,a 2n - 1+ a 2n <0”地 ( 为“对任意地正整数 )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件答案 解析 Cn - 1 2n -2 2n - 1 2n - 2由题意得, a n =a 1 q ( a 1>0) ,a 2 n - 1+ a 2 n =a 1q +a 1q = a 1q (1 +q ) .若 q <0,因为 1+q 地符号不确定,所以无法判断 a 2 n - 1+a 2n 地符号;反之,若 2n - 2a 2n - 1+ a 2 n <0,即 a 1q (1 + q )<0 ,可得 q <-1<0. 故“ q <0”为“对任意地正整数 n , a 2n - 1+ a 2 n <0”地必要而不充分条件,选 C.5.[2016 ·全国卷Ⅲ ] 某旅游城市为向游客介绍本地地气温情况,绘制了一 A 点表示十月地平均最高5 ℃. 下面叙述不正确地为年中各月平均最高气温和平均最低气温地雷达图.图中 气温约为 15 ℃, B 点表示四月地平均最低气温约为 ( )A .各月地平均最低气温都在 0 ℃以上B .七月地平均温差比一月地平均温差大C .三月和十一月地平均最高气温基本相同D .平均最高气温高于 20 ℃地月份有 5 个答案 解析 温差约为 D由图形可得各月地平均最低气温都在 0 ℃以上, A 正确;七月地平均 10 ℃,而一月地平均温差约为 5 ℃,故 B 正确;三月和十一月地平均 最高气温都在 10 ℃左右,基本相同, C 正确;平均最高气温高于有 3 个, D 错误.20 ℃地月份只 1 1-3 - 2 1 4 log 3 ,b =( 2 ) πsin x d x ,6.[2017 ·江西南昌统考 ] 已知 a = 2 2 ,c = 则实数 a ,b ,c 地大小关系为 ( )A . a >c >bB .b >a >cC . a >b >cD .c >b >aC答案 1 1 1 6 1 2 1- - 1 2 1 4 1 = 13 3 3 2log 2 3 ,b =( 2 ) a =2 解析 因为 = = =3- 2 =16 π1 ,所以 a>b ,排除 B 、D ;c = 11 =- 1 27 π sin xdx =- cosx (cos π- cos0)4 4 40 0 111 4 2,所以 b >c ,所以 a >b >c ,选 C.= = 2 ] 若正整数 N 除以正整数 m 后地余数为 n ,则记 7.[2016 ·江苏重点高中模拟 为 N = n ( mod m ) ,例如 10= 4( mod 6) .下面程序框图地算法源于我国古代闻名中 n 等于( 外地《中国剩余定理》 .执行该程序框图,则输出地 )A . 17B . 16C . 15D . 13答案 解析 A当 n >10 时,被 3 除余 2,被 5 除也余 2 地最小整数 n =17,故选 A.x +y -1≥0,x -2y -4≤0, 2x -y -2≥0,x ,y 8.[2017 ·湖北武汉调研 ] 已知 满足 如果目标函y + 1m 地取值范围为 ( 数 z =x - m地取值范围为 [0,2) ,则实数 )1 0,2 1-∞, 2A. B. 1-∞, 2 C. D .( -∞, 0]C答案y +1 解析 由约束条件,作出可行域如图中阴影部分所示, 而目标函数 z =x -m地 x +y -1=0, x -2y -4=0,几何意义为可行域内地点 ( x ,y ) 与 A ( m ,-1) 连线地斜率,由 x = 2, y =- 1, 即 B (2 ,-1) .由题意知 m =2 不符合题意,故点 A 与点 B 不得 AB 时,斜率取到最小值0. 由 y =- 1 与 2x -y -2=0,得交点 重合,因而当连接 1 C 2,- 1 ,在点 A 由点 向左移动地过程中, C A 可行域内地点与点 连线地斜率小 12 于 2,因而目标函数地取值范围满足 z ∈[0,2) m < ,则 ,故选 C.9.[2017 ·衡水四调 ] 中国古代数学名著《九章算术》中记载:“今有羡 除”.刘徽注:“羡除,隧道也.其所穿地,上平下邪.”现有一个羡除如图所 ABCD 、ABFE 、CDEF 均为等腰梯形, AB ∥CD ∥ EF ,AB =6,CD = 8, EF 示,四边形 =10, EF 到平面 ABCD 地距离为 3,CD 与 AB 间地距离为10,则这个羡除地体积为 ( ) A . 110 B .116 C .118 D .120D答案 A 作 AP ⊥ CD ,AM ⊥ EF ,过点 B 作 BQ ⊥CD ,B N ⊥EF ,垂足分 解析 如图,过点 别为 P ,M ,Q ,N ,连接 PM ,Q N ,将一侧地几何体补到另一侧, 组成一个直三棱柱,1 底面积为 ×10×3= 15. 棱柱地高为 8,体积 V =15×8= 120. 故选 D. 2→ → 10.[2017 ·山西太原质检 → ] 设 D 为△ AB C 所在平面内一点, B C =3CD ,则( → )1→ 4→ 1→ 4→ A. AD =- 3 AB + AC B. AD = → D. AD = AB - AC 3 3 3 → 4→ 1→ 4→ 1→ C.AD = 3 AB + AC AB - AC 3 3 3 A答案 → → → → 4→ → → 4 . AD = AB +BD = AB +3 BC = AB + ( AC 解析 利用平面向量地线性运算法则求解 3 → 1→ 4→ 3 -AB ) =- 3AB + AC ,故选 A. x 2 2y11.[2017 ·河南郑州检测 ] 已知点 F 2、P 分别为双曲线 a 2-b 2= 1( a >0,b >0) → → → → 2 → 1 2 地右焦点与右支上地一点, O 为坐标原点,若 O M = ( OP + OF 2 ) , OF 2 =F 2M ,且 2→ → 2 2 2OF 2· F 2 M = a +b ,则该双曲线地离心率为 ( ) 3+1 23 2 A. B. C. 3 D .2 3A 答案 → → → 1 解析 设双曲线地左焦点为 F 1 ,依题意知, | PF 2| =2c ,因为 O M =2 ( OP +OF 2) , 2 c → → → → 2 2 所以点 M 为线段 PF 2 2OF 2· F 2M = a +b ,所以 OF 2 ·F 2M = 2 ,所以 地中点.因为 1 1 c o s ∠PF 2x =2,所以∠ PF 2x =60°,所以∠ 2 c ·c ·c o s ∠ PF 2x =2c ,所以 PF 2F 1 = 120°,从而 | PF1| =2 3c ,根据双曲线地定义,得 | PF 1| -| PF 2| =2a ,所以 2 3c c 1 3+1 -2c =2a ,所以 e =a = = ,故选 A. 2 3-1 x + 1 f ( x ) =(3 x +1)e +mx ( m ≥- 4e) ,若有且12.[2017 ·山西联考 ] 已知函数 f ( x ) ≤0,则实数 m 地取值范围为 ( 仅有两个整数使得 )8 5 5 ,2 - ,- A. B. 2 e 2e 3e5 2e 1 ,- 8 - 2-4e ,- C. D. 2 3e B答案 x + 1 x +1 解析 由 f ( x ) ≤0,得(3 x +1) ·e +mx ≤0,即 mx ≤- (3 x +1)e ,设 g( x )=mx ,h( x ) =- (3 x +1)e ,则 h ′(x ) =-[3e +(3 x +1)e ] =- (3 x +4)e ,x + 1 x +1 x + 1 x + 1 4 由 h ′(x )>0 ,得- (3 x +4)>0 ,即 x <-3,由 h ′(x )<0 ,4 4 得-(3 x + 4)<0,即 x >-3 ,故当 x =- 3 时,函数 h( x ) 取得极大值.在同一 y =h( x ) ,y =g( x ) 地大致图象如图所示,当 m ≥0时,满; 当 m <0平面直角坐标系中作出 足 g( x ) ≤h( x ) 地 整 数 解 超 过 两 个 , 不 满 足 条 件 时,要使 g( x) ≤h( x) 地整数解只有两5e ≥- 2m , 8e <- 3m , -1 - - - - , ,个,则需满足 即 -2 5 m ≥- 2e , 5 8 5 8 即 即- ≤m<- 2,即实数 m 地取值范围为 - ,- 2 [ 2e 3e 2e 3e 8m <- 3e2, ) ,故选 B.第Ⅱ卷 ( 非选择题 满分 90 分)二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分)2 9 2 13.[2017 ·济宁检测 ] 已知( x +1)( x - 2) =a 0+a 1( x -1) + a 2 ( x -1) + + 11 a 11( x -1) 答案 解析 a 1+a 2+ +a 11 地值为 . ,则 2令 x =1,可得 2×( - 1) = a 0,即 a 0 =- 2;2 令 x =2,可得 (2 +1) ×0=a 0+ a 1 +a 2+ a 3+ + a 11, 即 a 0+ a 1+a 2+a 3+ 所以 a 1 +a 2+a 3+ + a 11= 0,+ a 11= 2.1 b n14.[2017 ·惠州一调 ] 已知数列 { a n } ,{ b n } 满足 a 1= ,a n +b n =1,b n + 1= 2, 1-a n2 * n ∈N ,则 b 2017= .2017 2018答案 b n b n -b n 1 1 ∵a n +b n =1,a 1= ,∴ b 1= ,∵b n +1 = 2,∴b n + 1= 解析 2= 1-a n2 2 1- 1 b n -1 1 1 1 1 2 1 b 1=1 ,∴ - =- 1,又 ,∴ =- 2,∴数列 为以-2 2-b n b n +1-1 b n -1 b 1-1 n 2017 2018=- n -1,∴b n = . 故 b 2017= 为首项,- 1 为公差地等差数列,∴ . b n + 1 -1 n 2 15.[2017 ·河北正定统考 ] 已知点 A (0,1) ,抛物线 C :y =ax ( a >0) 地焦点为F ,连接 FA ,与抛物线 C 相交于点 M ,延长 FA ,与抛物线 C 地准线相交于点 | F M | ∶| M N | =1∶3,则实数 a 地值为 .N ,若 答案 2 a依题意得焦点 F 地坐标为 ,0 ,设 M 在抛物线地准线上地射影为 K ,解析 4 MK ,由抛物线地定义知 | MF | =| MK | ,因为 | F M | ∶| M N | =1∶3,所以 | K N | ∶| KM | 连接 0-1 -4 | KN| 4=2 2∶1,又 k FN =a ,k F N =-=- 2| KM | a = =2 = 2,所以 a 2,解得 2.a -0 416.[2016 ·成都第二次诊断 ] 已知函数 f ( x) =x +sin2 x. 给出以下四个命题: ①? x >0,不等式 f ( x )<2 x 恒成立;②? k ∈R ,使方程 f ( x ) =k 有四个不相等地实数根;③函数 f ( x) 地图象存在无数个对称中心;④若数列 { a n } 为等差数列, f ( a 1) +f ( a 2) +f ( a 3) =3π,则 a 2=π. 其中正确地命题有 .( 写出所有正确命题地序号 )答案 解析 ③④f ′(x ) =1+ 2cos2x ,则 f ′(x ) =0 有无数个解,再结合 f ( x ) 为奇函 数,且总体上呈上升趋势,可画出 f ( x ) 地大致图象为:(1) 令 g ( x ) =2x - f ( x ) =x - sin2 x ,则 g ′(x ) =1-2cos2x ,令 g ′(x ) =0, π 6 π6 π3π6 x = +k π(k ∈Z ) ,则 g x = >0 使得 f ( x )>2 x ,故则 = - 6 <0,即存在 2 ①错误;(2) 由图象知不存在 y =k 地直线和 f ( x) 地图象有四个不同地交点, 故②错误;k π 2(3) f ( a +x ) +f ( a - x ) =2a +2sin2 a cos2x ,令 sin2 a =0,则 a = ( k ∈Z) , k π 2即( a ,a ) ,其中 a = ( k ∈Z) 均为函数地对称中心,故③正确; (4) f ( a 1) +f ( a 2) +f ( a 3) =3π,则 a 1+a 2+a 3+ sin2 a 1+sin2 a 2+sin2 a 3=3π, 即 3a 2+sin(2 a 2- 2d ) +sin2 a 2 +sin(2 a 2+ 2d ) =3π,∴3a 2+sin2 a 2 +2sin2 a 2cos2d =3π,∴3a 2+sin2 a 2 (1 +2cos2d) =3π,3π 3∴sin2 a 2=1+2cos2d 1+2cos2d a 2,- 3π3则问题转化为 f ( x ) =sin2 x 与 g ( x ) = x 地交点个数.- 1+ 2cos2d 1+2cos2d g ( x ) f ( x ) 有 除 ( π , 0) 之 外 地 交 点 , 则 斜 率 地 范 围 在 如 果 直 线 要 与 43π 3- ,- 2 ,而直线地斜率- 地取值范围为 ( -∞,-1] ∪[3 ,+∞ ) ,1+ 2cos2d 故不存在除 ( π, 0) 之外地交点,故 a 2 =π,④正确.三、解答题 ( 共 6 小题,共 70 分,解答应写出文字说明、证明过程或演算步 骤)17.[2016 ·武汉调研 ]( 本小题满分 12 分) 在△ABC 中,角 A 、B 、C 地对边分1a ,b ,c ,a +a(1) 若 A =90°,求△ ABC 地面积;= 4cos C ,b =1.别为 3 ,求 (2) 若△ABC 地面积为 a ,c .22 2 2= 2 2a +b -c2ab a +1-c a1 解 (1) a +a =4cosC =4× ,2 2 ∵b =1,∴ 2c =a +1.(2 分)2 2 2 2 又∵ A =90°,∴ a =b +c =c + 1,2 2 2 ∴2c =a +1=c +2,∴ c = 2, a = 3, (4 分)1 12 1 2 2∴S = bc sin A = bc = ×1× 2= .(6 分)△AB C 2 2 1 1 3 3∵S = ab sin C = a sin C = sin C = (2) ,则 .△AB C a 2 2 2 1 ∵a +a 3=4cos C ,sin C = ,a1 a + a 1 4 32 2 2 2=1,化简得 ( a -7) =0,∴ + a 1 a 1 4 2 7,a + ∴a = 7,从而 cos C = = 7 2 7+ 1-2× 7×1× 7=2.(12 a 2+b 2- 2bc cos C = ∴c = 分)7 18.[2016 ·广州四校联考 ]( 本小题满分 12 分) 自 2016 年 1 月 1 日起,我国全面二孩政策正式实施,这次人口与生育政策地历史性调整,使得“要不要再生 一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开地话 题.为了解针对产假地不同安排方案形成地生育意愿, 某调查机构随机抽取了 200 户有生育二胎能力地适龄家庭进行问卷调查,得到如下数据:产假安排 ( 单位:周 ) 有生育意愿家庭数 14 4 15 8 16 16 17 20 14 周与 182616 周,估计某家 (1) 若用表中数据所得地频率代替概率, 庭有生育意愿地概率分别为多少?面对产假为 (2) 假设从 5 种不同安排方案中,随机抽取 然后由单位根据单位情况自主选择.2 种不同安排分别作为备选方案, ①求两种安排方案休假周数和不低于 32 周地概率;ξ ξ 地分布列及期望. ②如果用 表示两种方案休假周数和,求随机变量 P 1= 解 (1) 由表中信息可知,当产假为 14 周时某家庭有生育意愿地概率为 41= ;(2 分)200 50 16 2当产假为 16 周时某家庭有生育意愿地概率为 P 2= = .(4 分)200 25 32 周”为事件 A ,由已知从 C 5=10( 种) ,(5 分)(2) ①设“两种安排方案休假周数和不低于 5 种 2 不同安排方案中,随机地抽取 2 种方案选法共有 其和不低于 32 周地选法有 (14,18) ,(15,17) (17,18) ,共 6 种,,(15,18) ,(16,17) ,(16,18) , 6 3由古典概型概率计算公式得 P ( A ) = 10 = .(7 分)5 ξ ②由题知随机变量 地可能取值为 29,30,31,32,33,34,35.112P ( ξ= 29) = =0.1 , P ( ξ= 30) = = 0.1 ,P ( ξ= 31) = = 0.2 ,P ( ξ=10 10 10 221132) = =0.2 ,P ( ξ=33) = =0.2 ,P( ξ=34) = =0.1 ,P( ξ=35) = =0.1 ,10 因而 ξ 地分布列为10 10 10 ξ P 29 0.1 30 0.1 31 0.2 32 0.2 33 0.2 34 0.1 350.1(10 分)所以 E ( ξ) =29×0.1 +30×0.1 +31×0.2 +32×0.2 +33×0.2 +34×0.1 + 35×0.1 = 32.(12 分)19.[2017 ·吉林模拟 ]( 本小题满分 12 分) 如图所示,直三棱柱 AB C -A 1B 1C 1 A 1B 1 上地点. 中, AA 1=AB =A C = 1,E ,F 分别为 CC 1,B C 地中点, AE ⊥A 1B 1,D 为棱(1) 证明 DF ⊥AE ;14 (2) 为否存在一点 D ,使得平面 DE F 与平面 AB C 所成锐二面角地余弦值为若存在,说明点 D 地位置;若不存在,说明理由.? 14AE ⊥ A 1 B 1,A 1B 1∥AB ,所以 AE ⊥AB . 解 因为 因为 (1) 证明:因为 AA 1⊥ AB ,AA 1∩AE = A ,所以 AB ⊥平面 A 1ACC 1 . AC ? 平面 A 1ACC 1,所以 AB ⊥A C . 以 A 为坐标原点, AB ,A C ,AA 1 所在直线分别为 x 轴,y 轴, z 轴,建立如图所示地空间直角坐标系. 1 11 则有 A (0,0,0) ,E 0,1,2 , F 2, , 0 ,A 1(0,0,1) ,B 1(1,0,1) .(4 分) 2 → →设 D ( x 1 ,y 1 ,z 1) ,A 1D =λA 1B 1且 λ∈[0,1] → ,即( x 1,y 1,z 1- 1) =λ(1,0,0) ,11 则 D ( λ, 0,1) ,所以DF = -λ, ,- 1 . 2 2→ 因为AE =→ → 12 1 ,所以 DF ·AE = 1 0,1, DF ⊥AE .(6 - = 0,所以 分)2 2 14(2) 假设存在一点 D ,使得平面 DEF 与平面ABC 所成锐二面角地余弦值为 . 14→由题意可知平面 AB C 地一个法向量为 AA 1= (0,0,1) .(8 分)→ n · FE =0,设平面 DEF 地法向量为 n =( x ,y , z ) ,则→n · DF =0,→ 因为FE =→ 1 1 1 11 - 2, , ,DF = -λ, ,- 1 , 2 2 2 2 1 1 1 z =0, 3-λ 1+2λ -λ - 2 x +2 y + 2x = z ,所以 即1 1- λ y = z .x + y -z =0, 2 2令 z =2(1 - λ) ,则 n =(3,1 +2λ,2(1 -λ)) 为平面 DEF 地一个法向量. (10 分)→ 14DEF 与平面ABC 所成锐二面角地余弦值为,所以 |cos 〈 AA 1,n 〉 因为平面 14→| AA 1·n| → 14 , | == 14 | AA1|| n | - λ 2+14 ,解得 1 或 2 74 λ= λ= 即 = ( 舍去) ,所以 214 +2λ -λ 9+ 当 D 为 A 1B 1 地中点时满足要求. 14故存在一点 D ,使得平面 DEF 与平面ABC 所成锐二面角地余弦值为 ,此 14 时 D 为A 1B 1 地中点. (12 分) 20.[2016 ·兰州质检 ]( 本小题满分 1,0) 、F 2(1,0) ,过点 F 2 垂直于长轴地直线 分) 已知椭圆C 地焦点坐标为 F 1( - 12 l 交椭圆 C 于 B 、D 两点,且 | BD | =3. 求椭圆 C 地方程;为否存在过点 P (2,1) (1) (2) 地直线 1 与椭圆 C 相交于不同地两点 M 、N ,且满足 l → → 5PM · P N =4l ?若存在,求出直线 地方程;若不存在,请说明理由. 1 x 2 y 2 (1) 设椭圆地方程为 a 2+ b 2 =1( a >b >0) ,则 c =1,解22b∵| BD | =3,∴ a=3,又a 2-b 2=1,∴ a =2,b = 3, 2 2 x y∴椭圆 C 地方程为 + = 1.(4 分)4 3l y =k ( x -2) (2) 假设存在直线 1 且由题意得斜率存在,设满足条件地方程为 +1,y =k x - +1,222得(3 +4k ) x -8k (2 k -1) x +16k -16k -8=0,x 2y 2由+ = 1, 4 3因为直线 1 与椭圆 C 相交于不同地两点 l M 、N ,设 M ( x 1, y 1) 、 N ( x 2 ,y 2) , 1 2 2 2 所以 Δ=[ -8k(2 k - 1)] -4(3 + 4k )(16 k -16k -8)>0 ,所以 k>- .228kk -16k -16k - 8又x 1+x 2= ,x 1x 2= ,(8 分) 223+ 4k 3+ 4k→ → 5因为PM ·P N = ( x 1-2)(x 2- 2) +( y 1-1)( y 2- 1) = ,45 2所以( x 1-2)( x 2-2)(1 +k ) =4,5 2即[ x 1x 2 -2( x 1+x 2) +4](1 +k ) =4,2 216k -16k - 8 8k k - 23+4k 4+4k 5 2-2· + 4 k 所以 (1 + ) = = .2 3+ 4k 2 k 3+4 41 ,因为 1 ,所以1 . 解得 k =±2 k >-2 k =212l y = x .(12 分)故存在直线 1 满足条件,其方程为 12 分) 已知函数 f ( x ) =ln ( x +1) - 21.[2017 ·广东广州调研 ]( 本小题满分 1 1 2 23 x + x ,g( x) =( x +1)ln ( x +1) -x +( a - 1) x + x ( a ∈ R) .2 6 求函数 f ( x ) 地单调区间;若当 x ≥0时,g ( x ) ≥0恒成立,求实数 (1) (2) a 地取值范围. 1 2解 (1) 函数 f ( x) =ln ( 2 x + 1) -x + x ,定义域为 ( -1,+∞ ) , (2 分)2x则 f ′(x ) =x +1,所以 f ( x ) 地单调递增区间为 >0 ( - 1,+∞ ) ,无单调递减 区间. (4 分)(2) 由(1) 知,当 x ≥0时,有 f ( x ) ≥f (0) =0,1 2即 ln ( x +1) ≥x - x .21 1 12 2 2x - x g ′(x) =ln ( 1) x .(6 分)x + 1) + 2( a - 1) x + x ≥ + 2( a - 1) x + x = (2 a -2 2 212①当 2a -1≥0,即 a ≥ 时,且 x ≥0时,g ′(x ) ≥0, 所以 g ( x ) 在[0 ,+∞ ) 上为增函数,且 1g (0) =0,所以当 x ≥0时, g ( x ) ≥0,所以 a ≥2符合题意. (8 分) 1 1 1 x +1 2a < 时,令 g ′(x ) =ln ( x +1) + 2( a -1) x + x =φ( x ) ,φ ′(x ) = ②当 2 2x 2+ a - x + 1x +2a -1 ,(9 分) +2( a - 1) +x = 令 x 2+(2 a -1) x +2a - 1= 0,则其判别式 Δ=(2 a - 1)(2 a -5)>0 ,1-2a - a - 2a -两根 x 1 =<0,1-2a +a - 2a -x 2=>0,当x ∈(0 ,x 2) 时, φ′(x )<0 ,所以 φ( x ) 在(0 ,x 2) 上单调递减,且 0,即 x ∈(0 ,x 2) 时, g ′(x )< g ′(0) = 0,g ( x ) 在(0 ,x 2 ) 上单调递减,φ(0) = 所以存在 x 0∈(0 ,x 2) ,使得 g ( x 0)< g (0) = 0,即当 x ≥0时,g ( x ) ≥0不恒成 立,12a < 所以 不符合题意.1综上所述, a 地取值范围为 ,+∞ .(12 分)2请考生在 22、23 两题中任选一题作答,如果多做,则按所做地第一题记分. 22.[2017 ·河北唐山模拟 ]( 本小题满分 10 分) 选修 4- 4:坐标系与参数方 程在直角坐标系 xOy 中, M ( - 2,0) .以坐标原点为极点, x 轴地正半轴为极轴πC 上一点, B ρ,θ+ 3建立极坐标系, A ( ρ,θ) 为曲线 ,| BM | =1.(1) 求曲线 C 地直角坐标方程;(2) 求| OA | +| MA | 地取值范围.22 (1) 设 A ( x ,y ) ,则 x =ρcos θ,y =ρsin θ,解 π θ+ 3 π 1 3所以 x B =ρcos =2x - y , 2 3 1θ+ y B =ρsin = x + 2 y, 3 2 123 3 1 故B x - y , x + y . 2 2 2 3 1 23 1 222 由| BM | =1,得 x - y +2 + x + y = 1,2 2 2 2 2整理得曲线 C 地方程为 ( x +1) +( y -x =- 1+cos α, 3) =1.(5 分)(2) 圆 C : ( α 为参数 ) , y = 3+sin α 22则| OA | +| MA | =4 3sin α+10,22所以| OA | +| MA | ∈[10 -4 3, 10+4 3] .(10 分) 23.[2016 ·大连高三模拟 ]( 本小题满分 10 分) 选修 4-5:不等式选讲 若? x 0∈ R ,使关于 x 地不等式 | x - 1| -| x -2| ≥t 成立,设满足条件地实数 t T .T ;构成地集合为 (1) 求集合 (2) 若 m >1, n >1 且对于 ? t ∈T ,不等式 log 3m ·log 最小值.3 n ≥t m +n 地 恒成立,求 (1)|| x - 1| -| x -2|| ≤|x - 1- ( x -2)| = 1,解 所以| x -1| -| x -2| ≤1,所以 即T ={ t | t ≤1}(5 分) t 地取值范围为 ( -∞, 1] , t ∈T , 不 等 式 log 3m ·log 3n ≥t (2) 由 (1) 知 , 对 于 ? 恒 成 立 , 只 需log 3m ·log 3 n ≥ t max ,所以 log 3m ·log 3n ≥1,又因为 m >1,n>1,所以 log 3m >0,log 3n>0,2(log 3m =log 3n 时取等号, 3 m +log 2 3n 3mn 4log 2 又 1≤log 3 m ·log 3n ≤此时 m =n ) ,(8 分)= 23mn ) ≥4,所以 log 3mn≥2, m n ≥9, 所以(log 所以 m +n ≥2 mn ≥6,即 m +n 地最小值为 m = n =3) .(10 6( 此时 分)。
2021届高考理科数学模拟卷一、选择题 1.设复数2i1iz =+,则复数z 的共轭复数z 在复平面内对应的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限2.已知0m >,设集合{}2{||},230M x x m N x x x =<=-<∣∣,且{1}M N x x n ⋃=-<<∣,则 m n +=( )A.12B.1C.2D.523.在ABC 中,内角,,A B C 的对边分别为,,a b c 。
若2,sin cos a b B B ==+=则角A 的大小为( )。
A.π3或2π3 B.π6 C.π6或5π6 D.5π64.已知12,F F 为双曲线22:2C x y -=的左、右焦点,点 P 在C 上,122PF PF =,则12cos F PF ∠等于( )A.14 B.35C.34D.45 5.根据下表中的数据可以得到线性回归直线方程0.70.35y x =+,则实数,m n 应满足( )6.已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为( ) A.y x =-B.2y x =-+C.y x =D.2y x =+7.25()()y x x y x++的展开式中33x y 的系数为( )A. 5B. 10C. 15D. 208.若πtan 23α⎛⎫+= ⎪⎝⎭,π0,3α⎛⎫∈ ⎪⎝⎭,则πtan 6α⎛⎫-= ⎪⎝⎭( )A. B. 9.若将函数2sin 2y x =的图像向左平移π12个单位长度,则平移后图象的对称轴为( )A. ππ26k x =-(Z)k ∈B. ππ26k x =+(Z)k ∈C. ππ212k x =-(Z)k ∈D. ππ212k x =+(Z)k ∈10.已知四棱锥P ABCD -的体积是,底面ABCD 是正方形,PAB 是等边三角形,平面PAB ⊥平面ABCD ,则四棱锥P ABCD -的外接球的体积为( )A. D.11.设双曲线22221(0)x y a b a b-=>>的两条渐近线与圆2210x y +=相交于A B C D ,,,四点,若四边形ABCD 的面积为12,则双曲线的离心率是( )D .12.函数π()cos lnπxf x x x-=+的图象大致为( ) A. B.C. D.二、填空题13.已知0,0x y >>,且41x y +=,则14x x y++的最小值为_____________. 14.已知向量()()()1,2,2,2,1,λ==-=a b c .若()2+c a b ,则λ=_________________.15.已知12,F F 分别是双曲线22233(0)x y a a -=>的左、右焦点,P 是抛物线28y ax =与双曲线的一个交点.若1212PF PF +=,则抛物线的准线方程为_________. 16.ABC 的内角,,A B C 的对边分别为,,a b c 。
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( ) (A )(31)-, (B )(13)-, (C )(1,)∞+ (D )(3)∞--, 【答案】A考点: 复数的几何意义.【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).复数z =a +b i(a ,b ∈R ) 平面向量OZ .(2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 【答案】C 【解析】试题分析:集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以A B {0,1,2,3}=,故选C.考点: 集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.(3)已知向量(1,)(3,2)a m a =-,=,且()a b b ⊥+,则m =( ) (A )-8 (B )-6 (C )6 (D )8 【答案】D 【解析】试题分析:向量a b (4,m 2)+=-,由(a b)b +⊥得43(m 2)(2)0⨯+-⨯-=,解得m 8=,故选D. 考点: 平面向量的坐标运算、数量积.【名师点睛】已知非零向量a =(x 1,y 1),b =(x 2,y 2):结论 几何表示 坐标表示模 |a |=a·a |a |=x 21+y 21夹角cos θ=a·b|a||b|cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22a ⊥b 的充要条件a·b =0x 1x 2+y 1y 2=0(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=( )(A )43-(B )34- (C )3 (D )2 【答案】A考点: 圆的方程、点到直线的距离公式. 【名师点睛】直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d 与半径长r 的大小关系来判断. 若d >r ,则直线与圆相离;若d=r,则直线与圆相切;若d<r,则直线与圆相交.(2)代数法:联立直线与圆的方程,消元后得到关于x(或y)的一元二次方程,根据一元二次方程的解的个数(也就是方程组解的个数)来判断.如果Δ<0,方程无实数解,从而方程组也无实数解,那么直线与圆相离;如果Δ=0,方程有唯一实数解,从而方程组也有唯一一组实数解,那么直线与圆相切;如果Δ>0,方程有两个不同的实数解,从而方程组也有两组不同的实数解,那么直线与圆相交.提醒:直线与圆的位置关系的判断多用几何法.(5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()(A)24 (B)18 (C)12 (D)9【答案】B考点:计数原理、组合.【名师点睛】分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.(6)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C 【解析】试题分析:由题意可知,圆柱的侧面积为122416S ππ=⋅⋅=,圆锥的侧面积为2122482S ππ=⋅⋅⋅=,圆柱的底面面积为2324S ππ=⋅=,故该几何体的表面积为12328S S S S π=++=,故选C. 考点: 三视图,空间几何体的体积. 【名师点睛】由三视图还原几何体的方法:(7)若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( ) (A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈ 【答案】B考点: 三角函数的图象变换与对称性.【名师点睛】平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.(8)中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的2,2x n==,依次输入的a为2,2,5,则输出的s=()(A)7 (B)12 (C)17 (D)34【答案】C考点:程序框图,直到型循环结构.【名师点睛】直到型循环结构:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.(9)若3cos()45πα-=,则sin2α=()(A)725(B)15(C)15-(D)725-【答案】D 【解析】试题分析:2237 cos22cos12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.考点:三角恒等变换.【名师点睛】三角函数的给值求值,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系.(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )(A )4n m (B )2n m (C )4m n (D )2m n【答案】C 【解析】试题分析:利用几何概型,圆形的面积和正方形的面积比为224S R mS R nπ==圆正方形,所以4m n π=.选C.考点: 几何概型.【名师点睛】求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.(11)已知12,F F 是双曲线2222:1x y E a b -=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )(A )2 (B )32(C )3 (D )2【答案】A考点:双曲线的性质.离心率.【名师点睛】区分双曲线中a ,b ,c 的关系与椭圆中a ,b ,c 的关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1).(12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】B考点: 函数图象的性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.第Ⅱ卷本卷包括必考题和选考题两部分.第13 ~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13) ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin[()]sin()sin cos cos sin 65B AC A B A C A C π=-+=+=+=,又因为sin sin a b A B=,所以sin 21sin 13a Bb A ==.考点: 三角函数和差公式,正弦定理.【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(14) ,αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等.【答案】②③④考点: 空间中的线面关系.【名师点睛】求解本题应注意在空间中考虑线、面关系.(15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 . 【答案】1和3 【解析】试题分析:由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2. 考点: 逻辑推理.【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用.逻辑推理包括演绎、归纳和溯因三种方式.(16)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = . 【答案】1ln2-考点: 导数的几何意义.【名师点睛】函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).注意:求曲线切线时,要分清在点P 处的切线与过P 点的切线的不同.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,.(Ⅰ)求111101b b b ,,;(Ⅱ)求数列{}n b 的前1 000项和.【答案】(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893. 【解析】试题分析:(Ⅰ)先用等差数列的求和公式求公差d ,从而求得通项n a ,再根据已知条件[]x 表示不超过x 的最大整数,求111101b b b ,,;(Ⅱ)对n 分类讨论,再用分段函数表示n b ,再求数列{}n b 的前1 000项和. 试题解析:(Ⅰ)设{}n a 的公差为d ,据已知有72128d +=,解得 1.d = 所以{}n a 的通项公式为.n a n =111101[lg1]0,[lg11]1,[lg101] 2.b b b ======考点:等差数列的的性质,前n 项和公式,对数的运算.【名师点睛】解答新颖性的数学题,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.18.(本题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数 0 1234≥5保费0.85aa1.25a 1.5a 1.75a 2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数1234≥5概率 0.30 0.15 0.20 0.20 0.10 0.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.【答案】(Ⅰ)0.55;(Ⅱ);(Ⅲ)1.23.【解析】试题分析:(Ⅰ)根据互斥事件的概率公式求一续保人本年度的保费高于基本保费的概率;(Ⅱ)一续保人本年度的保费高于基本保费,当且仅当一年内出险次数大于3,由条件概率公式求解;(Ⅲ)记续保人本年度的保费为X ,求X 的分布列,再根据期望公式求解.试题解析:(Ⅰ)设A 表示事件:“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故()0.20.20.10.050.55.P A =+++=(Ⅱ)设B 表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故()0.10.050.15.P B =+=又()()P AB P B =,故()()0.153(|).()()0.5511P AB P B P B A P A P A ==== 因此所求概率为3.11考点: 条件概率,随机变量的分布列、期望.【名师点睛】条件概率的求法:(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P (AB )P (A ),求P (B |A ); (2)基本事件法:当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数n (AB ),得P (B |A )=n (AB )n (A ). 求离散型随机变量均值的步骤:(1)理解随机变量X 的意义,写出X 可能取得的全部值;(2)求X 的每个值的概率;(3)写出X 的分布列;(4)由均值定义求出E (X ).19.(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O , 5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,10OD '=.(Ⅰ)证明:D H '⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)29525.又D H EF '⊥,而OH EF H ⋂=,所以D H ABCD '⊥平面.B(II )如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -,则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量,则00m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩,即11111340330x y x y z -=⎧⎨++=⎩, 所以可以取()4,3,5m =-.设()222,,n x y z =是平面'ACD 的法向量,则00n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩,即222260330x x y z =⎧⎨++=⎩,所以可以取()0,3,1n =-.于是cos ,||||50m n m n m n ⋅<>===⋅,295sin ,25m n <>=. 因此二面角B D A C '--. 考点:线面垂直的判定、二面角. 【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α⇒b ⊥α;③α∥β,a ⊥α⇒a ⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.20.(本小题满分12分)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围. 【答案】(Ⅰ)14449;(Ⅱ)()32,2.试题解析:(I )设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -. 由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749=⨯⨯⨯=.因此()33212k k t k -=-.3t >等价于()()232332132022k k k k k k k -+-+-=<--,即3202k k -<-.由此得32020k k ->⎧⎨-<⎩,或32020k k -<⎧⎨->⎩,解得322k <<. 因此k 的取值范围是()32,2. 考点:椭圆的性质,直线与椭圆的位置关系.【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数,另一个元作为自变量求解.(21)(本小题满分12分)(Ⅰ)讨论函数x x 2f (x)x 2-=+e 的单调性,并证明当0x >时,(2)20x x e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2x =(0)x e ax a g x x -->()有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.【答案】(Ⅰ)详见解析;(Ⅱ)21(,].24e .(II )22(2)(2)2()(()),x x e a x x g x f x a x x-+++==+ 由(I )知,()f x a +单调递增,对任意[0,1),(0)10,(2)0,a f a a f a a ∈+=-<+=≥因此,存在唯一0(0,2],x ∈使得0()0,f x a +=即0'()0g x =,当00x x <<时,()0,'()0,()f x a g x g x +<<单调递减;当0x x >时,()0,'()0,()f x a g x g x +>>单调递增.因此()g x 在0x x =处取得最小值,最小值为000000022000(1)+()(1)().2x x x e a x e f x x e g x x x x -++===+考点: 函数的单调性、极值与最值.【名师点睛】求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求导数f ′(x );(3)由f ′(x )>0(f ′(x )<0)解出相应的x 的范围.当f ′(x )>0时,f (x )在相应的区间上是增函数;当f ′(x )<0时,f (x )在相应的区间上是减函数,还可以列表,写出函数的单调区间.注意:求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD 中,,E G 分别在边,DA DC 上(不与端点重合),且DE DG =,过D 点作 DF CE ⊥,垂足为F .(Ⅰ) 证明:,,,B C G F 四点共圆;(Ⅱ)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.【答案】(Ⅰ)详见解析;(Ⅱ)12.(II )由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥,连结GB ,由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故,Rt BCG Rt BFG ∆~∆因此四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍,即111221.222GCB S S ∆==⨯⨯⨯=考点: 三角形相似、全等,四点共圆【名师点睛】判定两个三角形相似要注意结合图形性质灵活选择判定定理,特别要注意对应角和对应边.证明线段乘积相等的问题一般转化为有关线段成比例问题.相似三角形的性质可用来证明线段成比例、角相等;可间接证明线段相等.(23)(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||10AB =,求l 的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)15±.试题解析:(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++=(II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得 212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=22121212||||()4144cos 44,AB ρρρρρρα=-=+-=-由||10AB =得2315cos ,tan 8αα==±, 所以l 的斜率为15或15-. 考点:圆的极坐标方程与普通方程互化, 直线的参数方程,点到直线的距离公式.【名师点睛】极坐标与直角坐标互化的注意点:在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.在曲线的方程进行互化时,一定要注意变量的范围.要注意转化的等价性.(24)(本小题满分10分)选修4—5:不等式选讲已知函数11()||||22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ;(Ⅱ)证明:当,a b M ∈时,|||1|a b ab +<+.【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析. 试题解析:(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-; 当1122x -<<时, ()2f x <;当12x ≥时,由()2f x <得22,x <解得1x <. 所以()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时,11,11a b -<<-<<,从而22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<,因此|||1|.a b ab +<+考点:绝对值不等式,不等式的证明.【名师点睛】形如||||x a x b c -+-≥(或c ≤)型的不等式主要有三种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞ (此处设a b <)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)几何法:利用||||(0)x a x b c c -+->>的几何意义:数轴上到点1x a =和2x b =的距离之和大于c 的全体,|||||()|||x a x b x a x b a b -+-≥---=-.(3)图象法:作出函数1||||y x a x b =-+-和2y c =的图象,结合图象求解.。
2021年全国统一高考数学试卷(理科)(乙卷)一、单选题(本大题共12小题,共60.0分)1.(2021·全国·历年真题)设2(z+z−)+3(z−z−)=4+6i,则z=()A. 1−2iB. 1+2iC. 1+iD. 1−i2.(2021·全国·历年真题)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A. ⌀B. SC. TD. Z3.(2021·全国·历年真题)已知命题p:∃x∈R,sinx<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是()A. p∧qB. ¬p∧qC. p∧¬qD. ¬(p∨q)4.(2021·全国·历年真题)设函数f(x)=1−x1+x,则下列函数中为奇函数的是()A. f(x−1)−1B. f(x−1)+1C. f(x+1)−1D. f(x+1)+15.(2021·全国·历年真题)在正方体ABCD−A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A. π2B. π3C. π4D. π66.(2021·全国·历年真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A. 60种B. 120种C. 240种D. 480种7.(2021·全国·历年真题)把函数y=f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y=sin(x−π4)的图像,则f(x)=()A. sin(x2−7π12) B. sin(x2+π12) C. sin(2x−7π12) D. sin(2x+π12)8.(2021·全国·历年真题)在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A. 79B. 2332C. 932D. 299.(2021·全国·历年真题)魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC 和EH都称为“表目距”,GC与EH的差称为“表目距的差”,则海岛的高AB= ()A. B.C. D.10.(2021·全国·历年真题)设a≠0,若x=a为函数f(x)=a(x−a)2(x−b)的极大值点,则()A. a<bB. a>bC. ab<a2D. ab>a211.(2021·全国·历年真题)设B是椭圆C:x2a2+y2b2=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是()A. [√22,1) B. [12,1) C. (0,√22] D. (0,12]12.(2021·全国·历年真题)设a=2ln1.01,b=ln1.02,c=√1.04−1,则()A. a<b<cB. b<c<aC. b<a<cD. c<a<b二、单空题(本大题共4小题,共20.0分)13.(2021·全国·历年真题)已知双曲线C:x2m−y2=1(m>0)的一条渐近线为√3x+ my=0,则C的焦距为______ .14.(2021·全国·历年真题)已知向量a⃗=(1,3),b⃗ =(3,4),若(a⃗−λb⃗ )⊥b⃗ ,则λ=______ .15.(2021·全国·历年真题)记△ABC的内角A,B,C的对边分别为a,b,c,面积为√3,B=60°,a2+c2=3ac,则b=______ .16.(2021·全国·历年真题)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为______ (写出符合要求的一组答案即可).三、解答题(本大题共7小题,共82.0分)17.(2021·全国·历年真题)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x−和y−,样本方差分别记为s12和s22.(1)求x−,y−,s12,s22;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y−−x−≥,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不2√s12+s2210认为有显著提高).18.(2021·全国·历年真题)如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC中点,且PB⊥AM.(1)求BC;(2)求二面角A−PM−B的正弦值.19.(2021·全国·历年真题)记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2 S n +1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.20.(2021·全国·历年真题)己知函数f(x)=ln(a−x),已知x=0是函数y=xf(x)的极值点.(1)求a;(2)设函数g(x)=x+f(x)xf(x).证明:g(x)<1.21.(2021·全国·历年真题)已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)若点P在M上,PA,PB为C的两条切线,A,B是切点,求△PAB面积的最大值.22.(2021·全国·历年真题)在直角坐标系xOy中,⊙C的圆心为C(2,1),半径为1.(1)写出⊙C的一个参数方程;(2)过点F(4,1)作⊙C的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.23.(2021·全国·历年真题)已知函数f(x)=|x−a|+|x+3|.(1)当a=1时,求不等式f(x)≥6的解集;(2)若f(x)>−a,求a的取值范围.答案和解析1.【答案】C【知识点】复数的四则运算【解析】解:设z =a +bi ,a ,b 是实数, 则z −=a −bi ,则由2(z +z −)+3(z −z −)=4+6i , 得2×2a +3×2bi =4+6i , 得4a +6bi =4+6i , 得{4a =46b =6,得a =1,b =1, 即z =1+i , 故选:C .利用待定系数法设出z =a +bi ,a ,b 是实数,根据条件建立方程进行求解即可. 本题主要考查复数的基本运算,利用待定系数法建立方程是解决本题的关键,是基础题.2.【答案】C【知识点】交集及其运算【解析】解:当n 是偶数时,设n =2k ,则s =2n +1=4k +1, 当n 是奇数时,设n =2k +1,则s =2n +1=4k +3,k ∈Z , 则T ⊊S , 则S ∩T =T , 故选:C .分别讨论当n 是偶数、奇数时的集合元素情况,结合集合的基本运算进行判断即可. 本题主要考查集合的基本运算,利用分类讨论思想结合交集定义是解决本题的关键,是基础题.3.【答案】A【知识点】复合(或、且、非)命题的判定 【解析】解:对于命题p :∃x ∈R ,sinx <1,当x =0时,sinx =0<1,故命题p 为真命题,¬p 为假命题; 对于命题q :∀x ∈R ,e |x|≥1,因为|x|≥0,又函数y=e x为单调递增函数,故e|x|≥e0=1,故命题q为真命题,¬q为假命题,所以p∧q为真命题,¬p∧q为假命题,p∧¬q为假命题,¬(p∨q)为假命题,故选:A.先分别判断命题p和命题q的真假,然后由简单的复合命题的真假判断法则进行判断,即可得到答案.本题考查了命题真假的判断,解题的关键是掌握全称命题和存在性命题真假的判断方法,考查了逻辑推理能力,属于基础题.4.【答案】B【知识点】函数的奇偶性【解析】解:因为f(x)=1−x1+x =−(x+1)+21+x=−1+2x+1,所以函数f(x)的对称中心为(−1,−1),所以将函数f(x)向右平移一个单位,向上平移一个单位,得到函数y=f(x−1)+1,该函数的对称中心为(0,0),故函数y=f(x−1)+1为奇函数.故选:B.先根据函数f(x)的解析式,得到f(x)的对称中心,然后通过图象变换,使得变换后的函数图象的对称中心为(0,0),从而得到答案.本题考查了函数奇偶性和函数的图象变换,解题的关键是确定f(x)的对称中心,考查了逻辑推理能力,属于基础题.5.【答案】D【知识点】异面直线所成角【解析】解:∵AD1//BC1,∴∠PBC1是直线PB与AD1所成的角(或所成角的补角),设正方体ABCD−A1B1C1D1的棱长为2,则PB1=PC1=12√22+22=√2,BC1=√22+22=2√2,BP=√22+(√2)2=√6,∴cos∠PBC1=PB2+BC12−PC122×PB×BC1=6+8−22×√6×2√2=√32,∴∠PBC1=π6,∴直线PB与AD1所成的角为π6.故选:D.由AD1//BC1,得∠PBC1是直线PB与AD1所成的角(或所成角的补角),由此利用余弦定理,求出直线PB与AD1所成的角.本题考查异面直线所成角和余弦定理,考查运算求解能力,是基础题.6.【答案】C【知识点】排列、组合的综合应用【解析】解:5名志愿者选2个1组,有C52种方法,然后4组进行全排列,有A44种,共有C52A44=240种,故选:C.5分先选2人一组,然后4组全排列即可.本题主要考查排列组合的应用,利用先分组后排列的方法是解决本题的关键,是基础题.7.【答案】B【知识点】函数y=A sin(ωx+φ)的图象与性质【解析】解:∵把函数y=f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y=sin(x−π4)的图像,∴把函数y=sin(x−π4)的图像,向左平移π3个单位长度,得到y=sin(x+π3−π4)=sin(x+π12)的图像;再把图像上所有点的横坐标变为原来的2倍,纵坐标不变,可得f(x)=sin(12x+π12)的图像.故选:B.由题意利用函数y=Asin(ωx+φ)的图像变换规律,得出结论.本题主要考查函数y=Asin(ωx+φ)的图像变换规律,属基础题.8.【答案】B【知识点】几何概型【解析】解:由题意可得可行域:{0<x <11<y <2x +y >74,可得三角形的面积=12×34×34=932, 1−932=2332.故选:B .由题意可得可行域:{0<x <11<y <2x +y >74,可得三角形的面积,结合几何概型即可得出结论.本题考查了线性规划知识、三角形的面积、几何概型、对立事件的概率计算公式,考查了推理能力与计算能力,属于基础题.9.【答案】A【知识点】正余弦定理在解三角形计算中的综合应用 【解析】解:DEAB =EHAH ,FGBA =CGCA ,故EHAH =CGCA ,即EHAE+EH =CGAE+EG+GC , 解得:AE =EH⋅EGCG−EH ,AH =AE +EH , 故:AB =DE⋅AH EH =DE(AE+EH)EH=DE⋅EGCG−EH +DE .故选:A .根据相似三角形的性质、比例的性质、直角三角形的边角关系即可得出.本题考查了相似三角形的性质、比例的性质、直角三角形的边角关系,考查了推理能力与计算能力,属于基础题.10.【答案】D【知识点】利用导数研究函数的极值【解析】解:令f(x)=0,解得x =a 或x =b ,即x =a 及x =b 是f(x)的两个零点, 当a >0时,由三次函数的性质可知,要使x =a 是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则0<a<b;当a<0时,由三次函数的性质可知,要使x=a是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则b<a<0;综上,ab>a2.故选:D.分a>0及a<0,结合三次函数的性质及题意,通过图象发现a,b的大小关系,进而得出答案.本题考查三次函数的图象及性质,考查导数知识的运用,考查数形结合思想,属于中档题.11.【答案】C【知识点】椭圆的性质及几何意义【解析】解:点B的坐标为(0,b),因为C上的任意一点P都满足|PB|≤2b,所以点P的轨迹可以看成以B为圆心,2b为半径的圆与椭圆至多只有一个交点,即{x2a2+y2b2=1x2+(y−b)2=4b2至多一个解,消去x,可得b2−a2 b2y2−2by+a2−3b2=0,∴△=4b2−4⋅b2−a2b2⋅(a2−3b2)≤0,整理可得4b4−4a2b2+a4≤0,即(a2−2b2)2≤0,解得a2=2b2,∴e=√1−b2a2=√22,故e的范围为(0,√22],故选:C.由题意可得{x2a2+y2b2=1x2+(y−b)2=4b2至多一个解,根据判别式即可得到a与b的关系式,再求出离心率的取值范围.本题考查了椭圆的方程和性质,考查了运算求解能力和转化与化归思想,属于中档题.12.【答案】B【知识点】对数函数及其性质、利用导数研究函数的单调性【解析】解:∵a=2ln1.01=ln1.0201,b=ln1.02,∴a>b,令f(x)=2ln(1+x)−(√1+4 x−1),0<x<1,令√1+4 x=t,则1<t<√5∴x= t2−14,∴g(t)=2ln(t2+34)−t+1=2ln(t2+3)−t+1−2ln4,∴g′(t)=4tt2+3−1=4t−t2−3t2+3=−(t−1)(t−3)t2+3>0,∴g(t)在(1,√5)上单调递增,∴g(t)>g(1)=2ln4−1+2ln4=0,∴f(x)>0,∴a>c,同理令ℎ(x)=ln(1+2x)−(√1+4 x−1),再令√1+4 x=t,则1<t<√5∴x= t2−14,∴φ(t)=ln(t2+12)−t+1=ln(t2+1)−t+1−ln2,∴φ′(t)=2tt2+1−1=−(t−1)2t2+1<0,∴φ(t)在(1,√5)上单调递减,∴φ(t)<φ(1)=ln2−1+1−ln2=0,∴ℎ(x)<0,∴c>b,∴a>c>b.故选:B.构造函数f(x)=2ln(1+x)−(√1+4 x−1),0<x<1,ℎ(x)=ln(1+2x)−(√1+4 x−1),利用导数和函数的单调性即可判断.本题考查了不等式的大小比较,导数和函数的单调性和最值的关系,考查了转化思想,属于难题.13.【答案】4【知识点】双曲线的性质及几何意义−y2=1(m>0)的一条渐近线为√3x+my=0,【解析】解:根据题意,双曲线C:x2m=√m,解可得m=3,则有√3−y2=1,则c=√3+1=2,则双曲线的方程为x23其焦距2c=4;故答案为:4.=√m,解可得m的值,即可得双曲线的标准方程,根据题意,由双曲线的性质可得√3据此计算c的值,即可得答案.本题考查双曲线的几何性质,涉及双曲线的渐近线方程的分析,属于基础题.14.【答案】35【知识点】向量垂直的判断与证明【解析】解:因为向量a⃗=(1,3),b⃗ =(3,4),则a⃗−λb⃗ =(1−3λ,3−4λ),又(a⃗−λb⃗ )⊥b⃗ ,所以(a⃗−λb⃗ )⋅b⃗ =3(1−3λ)+4(3−4λ)=15−25λ=0,.解得λ=35.故答案为:35利用向量的坐标运算求得a⃗−λb⃗ =(1−3λ,3−4λ),再由(a⃗−λb⃗ )⊥b⃗ ,可得(a⃗−λb⃗ )⋅b⃗ =0,即可求解λ的值.本题主要考查数量积的坐标运算,向量垂直的充要条件,考查方程思想与运算求解能力,属于基础题.15.【答案】2√2【知识点】余弦定理【解析】解:∵△ABC的内角A,B,C的对边分别为a,b,c,面积为√3,B=60°,a2+c2=3ac,∴12acsinB=√3⇒12ac×√32=√3⇒ac=4⇒a2+c2=12,又cosB=a2+c2−b22ac ⇒12=12−b28⇒b=2√2,(负值舍)故答案为:2√2.由题意和三角形的面积公式以及余弦定理得关于b的方程,解方程可得.本题考查三角形的面积公式以及余弦定理的应用,属基础题.16.【答案】②⑤或③④【知识点】空间几何体的三视图【解析】解:观察正视图,推出正视图的长为2和高1,②③图形的高也为1,即可能为该三棱锥的侧视图,④⑤图形的长为2,即可能为该三棱锥的俯视图,当②为侧视图时,结合侧视图中的直线,可以确定该三棱锥的俯视图为⑤,当③为侧视图时,结合侧视图虚线,虚线所在的位置有立体图形的轮廓线,可以确定该三棱锥的俯视图为④.故答案为:②⑤或③④.通过观察已知条件正视图,确定该正视图的长和高,结合长、高、以及侧视图视图中的实线、虚线来确定俯视图图形.该题考查了三棱锥的三视图,需要学生掌握三视图中各个图形边长的等量关系,以及对于三视图中特殊线条能够还原到原立体图形中,需要较强空间想象,属于中等题.17.【答案】解:(1)由题中的数据可得,x−=110×(9.8+10.3+10.0+10.2+9.9+9.8+10.0+10.1+10.2+9.7)=10,y −=110×(10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.5=10.3, s 12=110×[(9.8−10)2+(10.3−10)2+(10−10)2+(10.2−10)2+(9.9−10)2+(9.8−10)2+(10−10)2+(10.1−10)2+(10.2−10)2+(9.7−10)2]=0.036;s 22=110×[(10.1−10.3)2+(10.4−10.3)2+(10.1−10.3)2+(10.0−10.3)2+(10.1−10.3)2+(10.3−10.3)2+(10.6−10.3)2+(10.5−10.3)2+(10.4−10.3)2+(10.5−10.3)2]=0.04;(2)y −−x −=10.3−10=0.3, 2√s 12+s 2210=2√0.036+0.0410=2√0.0076≈0.174,所以y −−x −>2√s 12+s 2210,故新设备生产产品的该项指标的均值较旧设备有显著提高.【知识点】众数、中位数、平均数、方差与标准差【解析】本题考查了样本特征数的计算,解题的关键是掌握平均数与方差的计算公式,考查了运算能力,属于基础题.(1)利用平均数和方差的计算公式进行计算即可; (2)比较y −−x −与2√s 12+s 2210的大小,即可判断得到答案.18.【答案】解:(1)连结BD ,因为PD ⊥底面ABCD ,且AM ⊂平面ABCD ,则AM ⊥PD ,又AM ⊥PB ,PB ∩PD =P ,PB ,PD ⊂平面PBD ,所以AM ⊥平面PBD ,又BD ⊂平面PBD ,则AM ⊥BD , 所以∠ABD +∠DAM =90°,又∠DAM +∠MAB =90°, 则有∠ADB =∠MAB ,所以Rt △DAB∽Rt △ABM , 则ADAB =BABM ,所以12BC 2=1,解得BC =√2;(2)因为DA ,DC ,DP 两两垂直,故以点D 为坐标原点建立空间直角坐标系如图所示, 则A(√2,0,0),B(√2,1,0),M(√22,1,0),P(0,0,1),所以AP⃗⃗⃗⃗⃗ =(−√2,0,1),AM ⃗⃗⃗⃗⃗⃗ =(−√22,1,0),BM ⃗⃗⃗⃗⃗⃗ =(−√22,0,0),BP ⃗⃗⃗⃗⃗ =(−√2,−1,1),设平面AMP 的法向量为n⃗ =(x,y,z), 则有{n ⃗ ⋅AP ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AM ⃗⃗⃗⃗⃗⃗ =0,即{−√2x +z =0−√22x +y =0,令x =√2,则y =1,z =2,故n ⃗ =(√2,1,2), 设平面BMP 的法向量为m⃗⃗⃗ =(p,q,r), 则有{m ⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0,即{−√22p =0−√2p −q +r =0, 令q =1,则r =1,故m ⃗⃗⃗ =(0,1,1), 所以|cos <n ⃗ ,m ⃗⃗⃗ >|=|n ⃗⃗ ⋅m ⃗⃗⃗ ||n ⃗⃗ ||m ⃗⃗⃗ |=3√7×√2=3√1414, 设二面角A −PM −B 的平面角为α,则sinα=√1−cos 2α=√1−cos 2<n ⃗ ,m ⃗⃗⃗ >=√1−(3√1414)2=√7014,所以二面角A −PM −B 的正弦值为√7014.【知识点】利用空间向量求线线、线面和面面的夹角【解析】(1)连结BD ,利用线面垂直的性质定理证明AM ⊥PD ,从而可以证明AM ⊥平面PBD ,得到AM ⊥BD ,证明Rt △DAB∽Rt △ABM ,即可得到BC 的长度; (2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面的法向量,由向量的夹角公式以及同角三角函数关系求解即可.本题考查了空间中线段长度求解以及二面角的求解,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.19.【答案】解:(1)证明:当n =1时,b 1=S 1,由2b 1+1b 1=1,解得b 1=32,当n ≥2时,b nbn−1=S n ,代入2S n+1b n=2,消去S n ,可得2 b n−1b n+1b n=2,所以b b −b n−1=12,所以{b n }是以32为首项,12为公差的等差数列. (2)由题意,得a 1=S 1=b 1=32, 由(1),可得b n =32+(n −1)×12=n+22,由2S n+1b n=2,可得S n =n+2n+1,当n ≥2时,a n =S n −S n−1= n+2n+1−n+1n=−1n(n+1),显然a 1不满足该式,所以a n ={32,n =1−1n(n+1),n ≥2.【知识点】等差数列的性质、数列的递推关系【解析】(1)由题意当n =1时,b 1=S 1,代入已知等式可得b 1的值,当n ≥2时,将b nb n−1=S n ,代入2S n+1b n=2,可得b b −b n−1=12,进一步得到数列{b n }是等差数列;(2)由a 1=S 1=b 1=32,可得b n =n+22,代入已知等式可得S n =n+2n+1,当n ≥2时,a n =S n −S n−1=−1n(n+1),进一步得到数列{a n }的通项公式.本题考查了等差数列的概念,性质和通项公式,考查了方程思想,是基础题.20.【答案】(1)解:由题意,f(x)的定义域为(−∞,a),令g(x)=xf(x),则g(x)=xln(a −x),x ∈(−∞,a), 则g′(x)=ln(a −x)+x ⋅−1a−x =ln(a −x)+−xa−x ,因为x =0是函数y =xf(x)的极值点,则有g′(x)=0,即lna =0,所以a =1, 当a =1时,g′(x)=ln(1−x)+−x1−x =ln(1−x)+−11−x +1,且g′(0)=0, 因为g′′(x)=−11−x +−1(1−x)2=x−2(1−x)2<0, 则g′(x)在(−∞,1)上单调递减, 所以当x ∈(−∞,a)时,g′(x)>0, 当x ∈(0,1)时,g′(x)<0,所以a =1时,x =0时函数y =xf(x)的一个极大值. 综上所述,a =1;(2)证明:由(1)可知,xf(x)=xln(1−x), 要证x+f(x)xf(x)<1,即需证明x+ln(1−x)xln(1−x)<1, 因为当x ∈(−∞,0)时,xln(1−x)<0, 当x ∈(0,1)时,xln(1−x)<0,所以需证明x +ln(1−x)>xln(1−x),即x +(1−x)ln(1−x)>0, 令ℎ(x)=x +(1−x)ln(1−x), 则ℎ′(x)=(1−x)⋅−11−x +1−ln(1−x), 所以ℎ′(0)=0,当x ∈(−∞,0)时,ℎ′(x)<0,当x∈(0,1)时,ℎ′(x)>0,所以x=0为ℎ(x)的极小值点,所以ℎ(x)>ℎ(0)=0,即x+ln(1−x)>xln(1−x),故x+ln(1−x)xln(1−x)<1,所以x+f(x)xf(x)<1.【知识点】利用导数研究闭区间上函数的最值、利用导数研究函数的极值【解析】(1)确定函数f(x)的定义域,令g(x)=xf(x),由极值的定义得到g′(x)=0,求出a的值,然后进行证明,即可得到a的值;(2)将问题转化为证明x+ln(1−x)xln(1−x)<1,进一步转化为证明x+ln(1−x)>xln(1−x),令ℎ(x)=x+(1−x)ln(1−x),利用导数研究ℎ(x)的单调性,证明ℎ(x)>ℎ(0),即可证明.本题考查了导数的综合应用,主要考查了利用导数研究函数的极值问题,利用导数证明不等式问题,此类问题经常构造函数,转化为证明函数的取值范围问题,考查了逻辑推理能力与化简运算能力,属于难题.21.【答案】解:(1)点F(0,p2)到圆M上的点的距离的最小值为|FM|−1=p2+4−1=4,解得p=2;(2)由(1)知,抛物线的方程为x2=4y,即y=14x2,则y′=12x,设切点A(x1,y1),B(x2,y2),则易得l PA:y=x12x−x124,l PB:y=x22x−x224,从而得到P(x1+x22,x1x24),设l AB:y=kx+b,联立抛物线方程,消去y并整理可得x2−4ky−4b=0,∴△=16k2+16b>0,即k2+b>0,且x1+x2=4k,x1x2=−4b,∴P(2k,−b),∵|AB|=√1+k2⋅√(x1+x2)2−4x1x2=√1+k2⋅√16k2+16b,d p→AB=2√k2+1,∴S△PAB=12|AB|d=4(k2+b)32①,又点P(2k,−b)在圆M:x2+(y+4)2=1上,故k2=1−(b−4)24,代入①得,S△PAB=4(−b2+12b−154)32,而y p=−b∈[−5,−3],∴当b =5时,(S △PAB )max =20√5.【知识点】圆锥曲线中的综合问题【解析】(1)由点F 到圆M 上的点最小值为4建立关于p 的方程,解出即可; (2)对y =14x 2求导,由导数的几何意义可得出直线PA 及PB 的方程,进而得到点P 的坐标,再将AB 的方程与抛物线方程联立,可得P(2k,−b),|AB|以及点P 到直线AB 的距离,进而表示出△PAB 的面积,再求出其最小值即可.本题考查圆锥曲线的综合运用,考查直线与抛物线的位置关系,考查运算求解能力,属于中档题.22.【答案】解:(1)⊙C 的圆心为C(2,1),半径为1,则⊙C 的标准方程为(x −2)2+(y −1)2=1, ⊙C 的一个参数方程为{x =2+cosθy =1+sinθ(θ为参数).(2)由题意可知两条切线方程斜率存在,设切线方程为y −1=k(x −4),即kx −y −4k +1=0, 圆心C(2,1)到切线的距离d =√k 2+1=1,解得k =±√33,所以切线方程为y =±√33(x −4)+1,因为x =ρcosθ,y =ρsinθ,所以这两条切线的极坐标方程为ρsinθ=±√33(ρcosθ−4)+1.【知识点】简单曲线的极坐标方程、圆的参数方程【解析】(1)求出⊙C 的标准方程,即可求得⊙C 的参数方程;(2)求出直角坐标系中的切线方程,再由x =ρcosθ,y =ρsinθ即可求解这两条切线的极坐标方程.本题主要考查圆的参数方程,普通方程与极坐标方程的转化,考查运算求解能力,属于基础题.23.【答案】解:(1)当a =1时,f(x)=|x −1|+|x +3|={−2x −2,x ≤−34,−3<x <12x +2,x ≥1,∵f(x)≥6,∴{x ≤−3−2x −2≥6或{−3<x <1 4≥6或{x ≥12x +2≥6,∴x ≤−4或x ≥2,∴不等式的解集为(−∞,−4]∪[2,+∞).(2)f(x)=|x−a|+|x+3|≥|x−a−x−3|=|a+3|,若f(x)>−a,则|a+3|>−a,,两边平方可得a2+6a+9>a2,解得a>−32,+∞).即a的取值范围是(−32【知识点】不等式和绝对值不等式【解析】(1)将a=1代入f(x)中,根据f(x)≥6,利用零点分段法解不等式即可;(2)利用绝对值三角不等式可得f(x)≥|a+3|,然后根据f(x)>−a,得到|a+3|>−a,求出a的取值范围.本题主要考查绝对值不等式的解法,考查运算求解能力,属于基础题.。
2021年普通高等学校招生全国统一考试理科数学(含解析)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设2()3(46i z z z z ++-=+,则z =()A .12i-B .12i+C .1i+D .1i-2.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ⋂=()A .∅B .SC .TD .Z3.已知命题:p x ∃∈R ,sin 1x <;命题:q x ∀∈R ,||e 1x ≥,则下列命题中为真命题的是()A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨4.设函数1()1xf x x-=+,则下列函数中为奇函数的是()A .(1)1f x --B .(1)1f x -+C .(1)1f x +-D .(1)1f x ++5.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .2πB .3πC .4πD .6π6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A .60种B .120种C .240种D .480种7.把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =()A .7sin 212x π⎛⎫-⎪⎝⎭B .sin 212x π⎛⎫+⎪⎝⎭C .7sin 212x π⎛⎫-⎪⎝⎭D .sin 212x π⎛⎫+⎪⎝⎭8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A .79B .2332C .932D .299.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”,则海岛的高AB =()A .⨯+表高表距表高表目距的差B .⨯-表高表距表高表目距的差C .⨯+表高表距表距表目距的差D .⨯表高表距-表距表目距的差10.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则()A .a b<B .a b>C .2ab a<D .2ab a>11.设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .22⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .22⎛ ⎝⎦D .10,2⎛⎤ ⎥⎝⎦12.设2ln1.01a =,ln1.02b =,1c =-.则()A .a b c<<B .b c a<<C .b a c <<D .c a b<<二、填空题:本题共4小题,每小题5分,共20分.13.已知双曲线22:1(0)x C y m m-=>的一条渐近线为0my +=,则C 的焦距为_________.14.已知向量()()1,3,3,4a b == ,若()a b b λ-⊥,则λ=__________.15.记ABC 的内角,,A B C 的对边分别为,,a b c ,60B =︒,223a c ac +=,则b =________.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为___________(写出符合要求的一组答案即可).三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求2212,,,x y s s ﹔(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥不认为有显著提高).18.(12分)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ,(2)求二面角A PM B --的正弦值.19.(12分)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.20.(12分)设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点.(1)求a ;(2)设函数()()()x f x g x xf x +=.证明:()1g x <.21.(12分)已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB 面积的最大值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,C 的圆心为()2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点()4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.23.[选修4-5:不等式选讲](10分)已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.答案与解析一、选择题1.C2.C3.A4.B5.D6.C7.B8.B9.A 10.D11.C12.B二、填空题13.414.3515.16.③④(答案不唯一)三、解答题(一)必考题17.(1)221210,10.3,0.036,0.04x y s s ====;(2)新设备生产产品的该项指标的均值较旧设备有显著提高.18.(1);(2)1419.(1)由已知212n nS b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n nb b b b +++=-,进而证明数列{}n b 是等差数列;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩20.(1)1a =;(2)由(Ⅰ)知,ln(1)11()ln(1)ln(1)+-==+--x x g x x x x x,其定义域为(,0)(0,1)-∞ .要证()1g x <,即证111ln(1)+<-x x ,即证1111ln(1)-<-=-x x x x .(ⅰ)当(0,1)x ∈时,10ln(1)<-x ,10x x -<,即证ln(1)1->-xx x .令()ln(1)1=---x F x x x ,因为2211()01(1)(1)--=-=>--'-x F x x x x ,所以()F x 在区间(0,1)内为增函数,所以()(0)0F x F >=.(ⅱ)当(,0)x ∈-∞时,10ln(1)>-x ,10x x ->,即证ln(1)1->-x x x ,由(ⅰ)分析知()F x 在区间(,0)-∞内为减函数,所以()(0)0F x F >=.综合(ⅰ)(ⅱ)有()1g x <.21.(1)2p =;(2)(二)选考题22.(1)2cos 1sin x y αα=+⎧⎨=+⎩,(α为参数);(2)5sin 262πρθ⎛⎫+=- ⎪⎝⎭和sin 262πρθ⎛⎫+=+ ⎪⎝⎭.23.(1)(][),42,-∞-+∞ .(2)3,2⎛⎫-+∞ ⎪⎝⎭.。
四川省高考数学(理)试卷真题答案及解析一、选择题1.设集合{|(1)(2)0}A x x x ,集合{|13}B x x ,则ABA.{|13}xxB. {|11}x xC. {|12}x x D. {|23}xx【答案】A 【解析】{|12}A x x,且{|13}Bx x {|13}A B x x ,故选A2.设i 是虚数单位,则复数32iiA.iB.3iC. iD. 3i【答案】C 【解析】3222i i ii ii,故选C3.执行如图所示的程序框图,输出S 的值是A.32B.32C.12D.12【答案】D【解析】进入循环,当5k时才能输出k 的值,则51sin62S ,故选D4.下列函数中,最小正周期为且图象关于原点对称的函数是A. cos(2)2y xB. sin(2)2y xC. sin 2cos2yx x D. sin cos yx x【答案】A 【解析】A. cos(2)si n 22y xx 可知其满足题意B. sin(2)cos 22y xx 可知其图像的对称中心为(,0)()42k k Z ,最小正周期为C. sin 2cos22si n(2)4yxxx可知其图像的对称中心为(,0)()28k k Z ,最小正周期为D. sin cos 2sin()4y x x x可知其图像的对称中心为(,0)()4kk Z 小正周期为25.过双曲线2213y x的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A 、B 两点,则||AB A. 433B. 23C. 6D. 43【答案】D【解析】由题可知渐近线方程为3yx ,右焦点(2,0),则直线2x与两条渐近线的交点分别为A (2,23),B (2,23),所以||43AB 6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有(A )144个(B )120个(C )96个(D )72个【答案】B 【解析】分类讨论①当5在万位时,个位可以排0、2、4三个数,其余位置没有限制,故有133472CA种。