第3章_变量之间的关系测试卷
- 格式:doc
- 大小:248.00 KB
- 文档页数:4
第三章变量之间的关系一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.1~6个月的婴儿生长发育非常快,他们的体重y(g)随月份t(月)的变化而变化,可以用700=+(其中a是婴儿出生时的体重)来表示.在这一变化过程中,自变量y a t是( )A.yB.aC.700D.t2.某市出租车起步价为2公里内8元,超过2公里的部分计价为每公里1.6元.则该市出租车载客行驶路程(2)x x≥千米与收费y(元)之间的关系式为( )A. 1.68= D.4 1.6y xy x=+ y x=+ C.8=+ B. 1.6 4.8y x3.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设开始工作的时间为t,剩下的水量为s,下面能反映s与t之间的关系的大致图像是( )A. B.C. D.4.在烧开水时,水温达到100℃水就会沸腾,下表是小红同学做“观察水的沸腾”试验时所记录的时间t(min)和水温T(℃)的数据:10t<A.7 30,=+ B.1430T t T=-, D.3014,T t tT t t=+, C.1416=-T t T5.2021年泰安市市区出租车调整收费标准,起步价由原来2公里内6元调整为2公里内8元,超过2公里,超过部分由原来1.5元每公里调整为1.6元每公里.外地游客小明在泰安搭乘出租车沿环山路欣赏泰山美景,则行驶路程(2)x x≥千米与收费y(元)之间的函数关系式为( )A. 1.68= D.4 1.6y xy x=+ =+ B. 1.6 4.8y xy x=+ C.86.《龟兔赛跑》是我们非常熟悉的故事.大意是乌龟和兔子赛跑,兔子开始就超过乌龟好远,兔子不耐烦了就在路边睡了一觉,乌龟一直往目的地奔跑,最终乌龟获得了胜利.下面能反映这个故事情节的图像是哪个?( )A. B.C. D.7.2022年2月5日,电影《长津湖》在青海剧场首映,小李一家开车去观看.最初以某一速度匀速行驶,中途停车加油耽误了十几分钟,为了按时到达剧场,小李在不违反交通规则的前提下加快了速度,仍保持匀速行驶.在此行驶过程中,汽车离剧场的距离y(千米)与行驶时间t(小时)的函数关系的大致图象是( )A. B. C. D.8.皮皮小朋友燃放一种手持烟花,这种烟花每隔1.4秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h(米)随飞行时间t(秒)变化的规律如下表所示.下列说法正确的是( )B.飞行时间t 每增加0.5秒,飞行高度h 就减少5.5米C.估计飞行时间t 为5秒时,飞行高度h 为11.8米D.只要飞行时间t 超过1.5秒后该花弹爆炸,就视为合格9.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象,下列说法错误的是( )A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B 地比乙到A 地早112小时 10.中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km ðkm .一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM OM 表示货车离西昌距离1(km)y y 1(km )与时间x (h)x (h )之间的函数关系:折线OABN 表示轿车离西昌距离y 2(km )与()2km y 时间x (h)x (h )之间的函数关系,则以下结论错误的是( )A.货车出发1.8小时后与轿车相遇B.货车从西昌到雅安的速度为60km/hC.轿车从西昌到雅安的速度为110km/hn km/hD.轿车到雅安20分钟后,货车离雅安还有40km(km二、填空题(每小题4分,共20分)11.某道路安装的护栏平面示意图如图所示,每根立柱宽为0.1米,立柱间距为3米设有x根立柱,护栏总长度为y米,则y与x之间的关系式为_______________.12.在关系式302=-中,v随着t的变化而变化,其中自变量是________,因变量是v t________,当t=________时,0v=.13.如表反映的是高速路上匀速行驶的汽车在行驶过程中时间x(时)与油箱的余油量y(升)之间的关系,这种关系可以表示为_______.14.2018年5月14日川航3U8633航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生下面表格是成都当日海拔h(千米)与相应高度处的气温T(℃)的关系.(成都地处四川盆地,海拔较低,为方便计算,在此题中近似为0米)(1)由表格可知海拔5千米的气温约为__________℃.(2)由表格中的规律写出当日气温T与海拔h之间的关系式为___________.如图是当日飞机下降过程中海拔h与玻璃爆裂后立即返回地面所用的时间t的关系图.根据图象回答以下问题:(3)挡风玻璃在高空爆裂时飞机所处的高度为_______千米,返回地面用了_______分钟.(4)飞机在2千米高空水平面上大约盘旋了________分钟.(5)利用所学知识预测,挡风玻璃在高空爆裂时,当时飞机所处高空的气温为__________℃,由此可见机长在高空经历了多大的艰险.15.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了________元.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)据测定,海底扩张的速度是很缓慢的,在太平洋底,某海沟的某处宽度为100米,其地壳向外扩张的速度是每年6厘米,假设海沟扩张速度恒定,扩张时间为x 年,海沟的宽度为y米.(1)写出海沟扩张时间x(年)与海沟的宽度y(米)之间的关系式;(2)计算出海沟宽度扩张到400米需要的年数.17.(8分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(030≤≤,单位:分)之间的关系如表所示:x(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用的时间是10分钟时,学生对概念的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用的时间为多少时,学生对概念的接受能力最强?(4)根据表格中的数据,当提出概念所用的时间x在什么范围内时,学生对概念的接受能力逐步增强?当提出概念所用的时间x在什么范围内时,学生对概念的接受能力逐步降低?18.(10分)小红帮弟弟荡秋千,秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图所示.(1)根据函数的定义,请判断变量h是不是关于t的函数;(2)结合图象回答:①当0.7t s时,h的值是多少?并说明它的实际意义;②秋千摆动第一个来回需要多长时间?19.(10分)小明、小亮从图书馆出发,沿相同的线路跑向体育场,小明先跑一点路程后,小亮开始出发,当小亮超过小明150米时,小亮停下等候小明,两人相遇后,一起以小明原来的速度跑向体育场,图反映了两人所跑路程y(米)与所用时间x(秒)之间的关系,请根据题意解答下列问题:(1)自变量是_______,因变量是_________;(填“x”或“y”)(2)小明共跑了_________米,小明的速度为________米/秒;(3)图中a _________米,小亮在途中等候小明的时间是_______秒;(4)小亮在AB段的平均速度为________米/秒.20.(12分)为了参加“圆梦抚州、冬季旅游文化节”活动,甲、乙两山地自行车选手进行骑行训练.他们同地出发,反向而行,分别前往A地和B地甲先出发1 min且先到达A地.两人到达目的地后均以原速按原路立即返回,直至两人相遇.两人之间的距离y (km)与乙出发时间x(min)之间关系的图象如图所示请根据图象解决下列问题:(1)直接写出甲车和乙车的速度;(2)求图中a,b的值;(3)乙车出发多长时间两车首次相距22.6 km?21.(12分)在疫情期间,某口罩生产厂为提高生产效益引进了新的设备,其中甲表示新设备的产量y(万个)与生产时间x(天)的关系,乙表示旧设备的产量y(万个)与生产时间x(天)的关系:(1)由图象可知,新设备因工人操作不当停止生产了__________天;(2)求新,旧设备每天分别生产多少万个口罩?(3)在生产过程中,x为何值时,新旧设备所生产的口罩数量相同.答案以及解析1.答案:D 解析:体重y (g )随月份t (月)的变化而变化,所以自变量是时间t ,故选D.2.答案:B解析:由题意得:()8 1.62y x =+-,即 1.6 4.8y x =+,故选:B.3.答案:D解析:根据题意可知随着抽水机工作,剩下的水量越来越少.而且一台抽水机工作的效率比两台抽水机工作效率慢,所以两台抽水机工作时,剩下的水量减少的速度更快. 故选:D.4.答案:A解析:开始时水温为30℃,每增加1 min ,水温增加7 ℃,所以水温T 与时间t 之间的关系式为730T =+.因为水温T 随时间t 的变化而变化,所以因变量为T .故选A.5.答案:B解析:由题意得:()8 1.62 1.6 4.8y x x =+-=+,故选B.6.答案:D解析:从图D 提供的信息可知:表示乌龟赛跑的图象应该是一条一直上升的直线,且比兔子早到达终点;表示兔子赛跑的图象应该是开始时是一条上升的直线,中途变为水平直线,然后又变为上升,且比乌龟晚到达终点.故选:D.7.答案:B解析:随着时间的增多,汽车离剧场的距离y (千米)减少,排除A 、C 、D ;由于途中停车加油耽误了几分钟,此时时间在增多,汽车离剧场的距离y 没有变化;后来加快了速度,仍保持匀速行进,所以后来的函数图象的走势应比前面匀速前进的走势要陡.故选:B.8.答案:C解析:由表格可知从0秒到3秒的过程中,随着飞行时间t 的增加,飞行高度h 增加;3秒以后,随着飞行时间t 的增加,飞行高度h 减小.所以A 、B 选项不正确;由表格可知飞行高度h 在3秒左右是对称的,所以C 选项正确;已知中没有涉及合格的标准,所以D 选项不正确.故选C.9.答案:D解析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意; B.乙先出发,0.5小时,两车相距()10070km -,∴乙车的速度为:60km/h ,故乙行驶全程所用时间为:10021603=(小时), 由最后时间为1.75小时,可得乙先到到达A 地,故甲车整个过程所用时间为:1.750.5 1.25-=(小时),故甲车的速度为:()100 1.2580km/h ÷=,故B 选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km ,乙车行驶的距离为:60km ,4060100+=,故两车相遇,故C 选项正确,不合题意;D.由以上所求可得,乙到A 地比甲到B 地早:211.751312-=,(小时),故此选项错误,符合题意.故选:D.10.答案:D解析:由题意可知,货车从西昌到雅安的速度为:240460(km/h)÷=,故选项B 不合题意;轿车从西昌到雅安的速度为:(24075)(3 1.5)110(km/h)-÷-=,故选项C 不合题意;轿车从西昌到雅安所用时间为:2240110211÷=(小时), 29321111-=(小时), 设货车出发x 小时后与轿车相遇,根据题意得:96011011x x ⎛⎫=- ⎪⎝⎭, 解得 1.8x =,∴货车出发1.8小时后与轿车相遇,故选项A 不合题意;轿车到雅安20分钟后,货车离雅安还有60206040(km)60-⨯=,故选项D 符合题意. 故选:D.11.答案: 3.1 -3y x =解析:由题意得,y 与x 之间的关系式为(0.13) -3 3.1 -3y x x =+=12.答案:t ,v ,15解析:根据函数的定义,则自变量是t ,因变量是v ;要使0v =,则3020t -=,解得15t =.13.答案:6010y x =-解析:由表格数据可知,行驶时间每延长1小时,剩余油量减少10升,即耗油量为10升/时,所以6010y x =-.14.答案:(1)-10;(2)206T h =-;(3)9.8;20;(4)2;(5)-38.8解析:(1)由题中表格可知,海拔5千米的气温约为-10℃.(2)由题中表格可知,海拔每上升1千米,气温下降6℃,所以当日气温T 与海拔h 之间的关系式为206T h =-.(3)由题中图象可知挡风玻璃在高空爆裂时飞机所处的高度为9.8千米,返回地面用了20分钟.(4)飞机在2千米高空水平面上大约盘旋了12102-=(分).(5)当9.8h =时,2069.838.8T =-⨯=-(℃).15.答案:36解析:解:根据题意得:由降价前40千克西瓜卖了64元,那么售价为:6440 1.6÷=元,降价0.4元后单价变为1.60.4 1.2-=,钱变为了76元,说明降价后卖了766412-=元,那么降价后卖了12 1.210÷=千克.总质量将变为401050+=千克,那么小李的成本为:500.840⨯=元,赚了764036-=元.16.答案:(1)根据题意得,海沟每年扩张的宽度为0.06米,∴海沟扩张时间x (年)与海沟的宽度y (米)之间的关系式为0.06100y x =+.(2)当400y =时,0.06100400x +=,解得5000x =.答:海沟宽度扩张到400米需要5000年.17.答案:(1)题中表格反映了提出概念所用的时间x 和学生对概念的接受能力y 之间的关系,其中x 是自变量,y 是因变量.(2)由题中表格可知,当提出概念所用的时间是10分钟时,学生对概念的接受能力是59.(3)由题中表格可知;当提出概念所用的时间为13分钟时,学生对概念的接受能力最强.(4)由题中表格可知,当提出概念所用的时间x 在2分钟至13分钟范围内时,学生对概念的接受能力逐步增强;当提出概念所用的时间x 在13分钟至20分钟范围内时,学生对概念的接受能力逐步降低.18.答案:(1)对于每一个摆动时间t ,h 都有唯一确定的值与其对应,∴变量h 是关于t 的函数.(2)①当0.7t =s 时,0.5h =m ,它的实际意义是秋千摆动0.7s 时,离地面的高度为0.5m.②由题图可知,秋千摆动第一个来回需2.8s.19.答案:(1)由题意可得自变量是x ,因变量是y ,故答案为x ;y .(2)小明共跑了900米,小明的速度为900600 1.5÷=米/秒,故答案为900;1.5.(3) 1.5500750a =⨯=,小亮在途中等候小明的时间是500(750150) 1.5100--÷=秒,故答案为750;100.(4)小亮在AB 段的平均速度为750[(750150) 1.5100] 2.5÷-÷-=米/秒,故答案为2.5.20.答案:(1)甲的速度是0.636160=(km/h ). 乙的速度是33.60.6366636303060--=-=(km/h ). (2)根据题意,得3630(3630)0.660-⨯-=(km ), 33.6-0.6=33(km ),所以33a =.因为33(3630)0.5÷+=(h ),0.5 h=30 min ,36+30=66(min ),所以66b =.(3)设乙车出发x min 两车首次相距22.6 km , 根据题意,得36300.622.66060x x ⨯+⨯+=,解得20x =. 所以乙车出发20 min 后两车首次相距22.6 km.21.答案:(1)2;(2)甲设备每天生产4.8万个口罩,乙设备每天生产2.4万个口罩;(3)在生产过程中,x 为2或4时,新旧设备所生产的口罩数量相同 解析:(1)由图象知,新设备因工人操作不当停止生产了2天, 故答案为:2;(2)新设备:4.81 4.8÷=(万个/天),乙设备:16.87 2.4÷=(万个/天), 答:甲设备每天生产4.8万个口罩,乙设备每天生产2.4万个口罩;(3)①2.4 4.8x =,解得2x =;②()2.4 4.82x x =-,解得4x =;答:在生产过程中,x 为2或4时,新旧设备所生产的口罩数量相同.。
第3章变量之间的关系单元测试(B卷提升篇)(北师版)参考答案与试题解析一.选择题(共10小题,每小题3分,共30分)1.(2019春•平和县期中)如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么S,p,a中是变量的是()A.S和p B.S和a C.p和a D.S,p,a【答案】解:∵篱笆的总长为60米,∴周长P是定值,而面积S和一边长a是变量,故选:B.【点睛】本题考查了常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量.2.(2018春•永登县期中)生活中太阳能热水器已进入千家万户,你知道吗,在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.所晒时间D.热水器【答案】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:A.【点睛】本题主要考查的是对函数的定义以及对自变量和因变量的认识和理解.3.(2019秋•安庆期中)电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A.B.C.D.【答案】解:由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.∴y=4﹣0.4t(0≤t≤10),故只有选项D符合题意.故选:D.【点睛】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.4.(2019春•沙坪坝区校级期中)一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A.蓄水池每分钟放水2m3B.放水18分钟后,水池中水量为14m3C.蓄水池一共可以放水25分钟D.放水12分钟后,水池中水量为24m3【答案】解:设蓄水量为y,时间为t,则可得y=50﹣2t,A、蓄水池每分钟放水2m3,故本选项不合题意;B、放水18分钟后,水池中水量为:y=50﹣2×18=14m3,故本选项不合题意;C、蓄水池一共可以放水25分钟,故本选项不合题意;D、放水12分钟后,水池中水量为:y=50﹣2×12=26m3,故本选项符合题意;故选:D.【点睛】本题考查了函数关系式的知识,解答本题的关键是根据题意确定函数关系式.5.(2017春•东明县期中)远通工程队承建一条长30km的乡村公路,预计工期为120天,若每天修建公路的长度保持不变,则还未完成的公路长度y(km)与施工时间x(天)之间的关系式为()A.y=30﹣x B.y=30+x C.y=30﹣4x D.y=x【答案】解:由题意,得每天修30÷120=km,y=30﹣x,故选:A.【点睛】本题考查了函数关系式,利用总工程量减去已修的工程量是解题关键.6.(2019秋•平顶山期中)10月13日上午,2019“郑州银行杯”郑州国际马拉松赛在郑东新区CBD如意湖畔鸣枪开赛.今年的比赛共设置全程、半程马拉松和健康跑、家庭跑四个大项,吸引了来自全球32个国家和地区的2.6万名选手参加比赛在男子半程比赛中,中国选手刘洪亮起跑后,一直保持匀速前进,冲刺阶段突然加速,以1小时09分21秒的成绩获得男子半程冠军.下列能够反映刘洪亮在比赛途中速度v与时间t之间的函数关系的大致图象是()A.B.C.D.【答案】解:因为起跑时需要提速,中间时间段一直保持匀速前进,冲刺阶段突然加速,指导1小时09分21秒跑完全程,可知选项D的图象符合题意.故选:D.【点睛】此题考查函数图象,关键是根据题意得出图象的几个特征.7.(2019春•璧山区期中)小红骑自行车到离家为2千米书店买书,行驶了5分钟后,遇到一个同学因说话停留10分钟,继续骑了5分钟到书店.下图中的哪一个图象能大致描述她去书店过程中离书店的距离s (千米)与所用时间t(分)之间的关系()A.B.C.D.【答案】解:根据分析中位移先减小,再不变,再减小,一直到0.故选:D.【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.8.(2018春•南开区期中)如图1,直角梯形ABCD,∠B=90°,DC∥AB,动点P从B点出发,以每秒2个单位长度,由B﹣C﹣D﹣A沿边运动,设点P运动的时间为x秒,△P AB的面积为y,如果关于x的函数y的图象如图2,则函数y的最大值为()A.18B.32C.48D.72【答案】解:过点D作DE⊥AB,则DE=BC=8,BE=CD=12在Rt△ADE中,AE =∴AB=8,S△ABP =×AB×BC =×18×8=72,即△ABP的最大面积为72.故选:D.【点睛】此题考查动点函数问题,本题的关键是确定△ABP的面积最大时点P的位置.9.(2018春•凤翔县期中)一蓄水池中有水40m3,如果每分钟放出2m3的水,水池里的水量与放水时间有如下关系:放水时间(分)1234…38363432…水池中水量(m3)下列数据中满足此表格的是()A.放水时间8分钟,水池中水量25m3B.放水时问20分钟,水池中水量4m3C.放水时间26分钟,水池中水量14m3D.放水时间18分钟,水池中水量4m3【答案】解:设蓄水量为y,时间为t,则可得y=40﹣2t,A、放水8分钟,水池中水量为24m3,故本选项错误;B、放水时问20分钟,水池中水量0,故本选项错误;C、放水时间26分钟,水池中水量0,故本选项错误;D、放水时间18分钟,水池中水量4m3,故本选项正确;故选:D.【点睛】本题考查了函数关系式的知识,解答本题的关键是根据题意确定函数关系式.10.(2017春•高邑县期中)甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示,则乙比甲每小时快()A.20km/h B.30km/h C.40km/h D.50km/h【答案】解:由图象可得:甲车速度为:km/h;乙车速度为:km/h;所以乙比甲每小时快40km/h;故选:C.【点睛】本题主要考查一次函数的图象,掌握一次函数图象的意义是解题的关键.二.填空题(共8小题,满分24分,每小题3分)11.(2018秋•新密市校级期中)米店买米,数量x(千克)与售价y(元)之间的关系如下表:x/千克0.51 1.52…y/元 1.3+0.1 2.6+0.1 3.9+0.1 5.2+0.1…则售价y与数量x之间的关系式是y=2.6x+0.1.【答案】解:售价y与数量x之间的关系式是y=2.6x+0.1,故答案为:y=2.6x+0.1.【点睛】本题考查了函数关系式,观察发现规律是解题关键.12.(2018秋•莱西市期中)某水库的水位在6小时内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤6)的函数关系式为y=8+0.2x.【答案】解:∵初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,∴水库的水位高度y米与时间x小时(0≤x≤6)的函数关系式为y=8+0.2x,故答案为:y=8+0.2x.【点睛】本题考查的是函数关系式,根据题中水位以每小时0.2米的速度匀速上升列出关系式是解题的关键.13.(2019春•城关区校级期中)太原市出租车价格是这样规定的:不超过3千米,付车费8元,超过的部分按每千米1.6元收费,已知李老师乘出租车行驶了x(x>3)千米,付车费y元,则所付车费y元与出租车行驶的路程x千米之间的关系式为y=1.6x+3.2.【答案】解:y=8+1.6(x﹣3)=1.6x+3.2,故答案为:y=1.6x+3.2【点睛】本题考查函数关系式,解题的关键是找出等量关系,本题属于基础题型.14.(2012春•晋江市校级期中)小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.下面的图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.请你根据图象说出小明散步过程中的两个信息:小明家到阅报栏250米;小明散步离家最远450米(答案不唯一).【答案】解:根据图象,小明家到阅报栏250米;小明阅报用了8﹣3=5分钟;小明散步离家最远450米;小明外出共用了16分钟(任选两个即可).【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,通常从函数图象考虑信息.15.(2012春•当涂县校级期中)如图y1反映某公司的销售收入与销量的关系,y2反映了该公司产品的销售成本与销量的关系,当公司赢利时销量必须x>40.【答案】解:根据图象得到当x>40时,y1>y2.故答案为x>40.【点睛】本题考查了函数图象:函数图象直观的反应了两变量之间的变化规律;学会从函数图象中获取信息.16.(2018春•于洪区校级期中)如图,图象L1反映了某公司产品的销售收入与销售量之间的关系,图象L2反映了某公司产品的销售成本与销售量之间的关系,当销售量小于4吨时,公司亏本.【答案】解:由图象知,当销售量小于4吨时,该公司亏损,故答案为:小于4.【点睛】本题考查了利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.17.(2018春•榆社县期中)如图(1),在长方形ABCD中,动点P从B点出发,沿B、C、D、A匀速运动,设点P运动的路程为x,△ABP的面积为y,若y与x的关系图象为图(2),则矩形ABCD的面积为32.【答案】解:由图象可知,当点P在边CD上运动时,△ABP的面积不变则可知,当第P由B到C时,BC=4点P由C到D时,x=12,则CD=12﹣4=8则矩形面积为4×8=32故答案为:32【点睛】本题为动点问题的函数图象探究题,考查了动点运动到临界点前后的图象变化规律,解答关键是数形结合.18.(2018秋•锡山区校级期中)小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)2.8s?之间的关系如图2所示,秋千摆动第一个来回需故答案为:2.8.【点睛】本题考查了函数的图象,观察函数图象结合生活实践找出结论是解题的关键.三.解答题(共5小题,满分46分)19.(9分)(2019春•龙岗区期中)研究发现,地表以下岩层的温度与它所处的深度有表中的关系:岩层的深123456…度h/km5590125160195230…岩层的温度t/℃根据以上信息,回答下列问题:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)岩层的深度h每增加1km,温度t是怎样变化的?(3)估计岩层10km深处的温度是多少?【答案】解:(1)上表反映了岩层的深度h(km)与岩层的温度t(℃)之间的关系;其中岩层深度h(km)是自变量,岩层的温度t(℃)是因变量;(2)岩层的深度h每增加1km,温度t上升35℃,关系式:t=55+35(h﹣1)=35h+20;(3)当h=10km时,t=35×10+20=370(℃).【点睛】此题主要考查了函数关系式以及常量与变量,正确得出函数关系式是解题关键.20.(10分)(2019春•岐山县期中)如图,甲、乙两地打电话需付的电话费y(元)是随时间t(分钟)的变化而变化的,试根据下表列出的几组数据回答下列问题:123456…通话时间t(分钟)0.150.300.450.60.750.9…电话费y(元)(1)自变量是通话时间,因变量是电话费;(2)写出电话费y(元)与通话时间t(分钟)之间的关系式;(3)若小明通话10分钟,则需付话费多少元;(4)若小明某次通话后,需付话费4.8元,则小明通话多少分钟.【答案】解:(1)自变量是通话时间,因变量是电话费.故答案为:通话时间;电话费;(2)y=0.15t;(3)当t=10时,y=0.15t=0.15×10=1.5.所以小明通话10分钟,则需付话费1.5元;(4)把y=4.8代入y=0.15t中得:4.8=0.15t,∴t=32.所以当付话费为4.8元,小明通话32分钟.【点睛】本题主要考查了函数的定义,理清题意,得出电话费y(元)与通话时间t(分钟)之间的关系式是解答本题的关键.21.(10分)(2019春•岐山县期中)如图,是反映一辆出租车从甲地到乙地的速度(千米/时)与时间(分钟)的关系图象;根据图象,回答下列问题:(1)汽车从出发到最后停止共经过了多长时间?它的最高时速是多少?(2)汽车在哪段时间保持匀速行驶?时速是多少?(3)出发后25分钟到30分钟之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.【答案】解:(1)汽车从出发到最后停止共经过了60分钟时间,最高时速是80千米/时;(2)汽车在出发后35分钟到50分钟之间保持匀速,时速是80千米/时;(3)汽车可能遇到红灯或可能到达站点,停留了5分钟;(4)汽车先加速行驶至第10分钟,然后减速行驶至第25分钟,接着停下5分钟,再加速行驶至第35分钟,然后匀速行驶至第50分钟,再减速行驶直至第60分钟停止.【点睛】本题考查了一次函数的应用,具备在直角坐标系中的读图能力并准确识图从图中获取信息是解题的关键.22.(7分)(2019春•仓山区期中)如图是甲、乙两人从同一地点出发后,路程随时间变化的图象.(1)在此变化过程中,t是自变量;(2)甲的速度小于乙的速度;(填“大于”、“等于”、或“小于”)(3)甲出发后6时与乙相遇;(4)甲比乙先走3小时;(5)9时甲在乙的后面(填“前面”、“后面”、“相同位置”);(6)路程为150千米,甲行驶了9小时,乙行驶了 4.5小时.【答案】解:(1)函数图象反映路程随时间变化的图象,则t是自变量,s为因变量;(2)甲的速度=千米/小时,所以甲的速度小于乙的速度;(3)6时表示他们相遇,即乙追赶上了甲;(4)甲比乙先走3小时;(5)t=9时,乙的图象在甲的上方,即乙行驶的路程远些,所以9时甲在乙的后面;(6)路程为150千米,甲行驶了9时,乙行驶的时间为:150÷(100÷3)=4.5(小时).故答案为:(1)t;(2)小于;(3)6时;(4)3;(5)后面;(6)9;4.5.【点睛】本题考查了函数图象:利用函数图象反映两变量之间的变化规律,通过该规律解决有关的实际问题.23.(10分)(2019春•太原期中)周末,小明乘坐家门口的公交车到和平公园游玩,他先乘坐公交车0.8小时后达到书城,逗留一段时间后继续坐公交车到和平公园,小明出发一段时间后,小明的妈妈不放心,于是驾车沿相同的路线前往和平公园,如图是他们离家的路程y(km)与离家时间x(h)的关系图,请根据图回答下列问题:(1)小明家到和平公园的路程为30km,他在书城逗留的时间为 1.7h;(2)图中A点表示的意义是小明离开书城,继续坐公交到公园;(3)求小明的妈妈驾车的平均速度(平均速度=).【答案】解:(1)从图象可以看出,小明距离公园的路程为30千米,小明逗留的时间为:2.5﹣0.8=1.7,故答案为30,1.7;(2)表示小明离开书城,继续坐公交到公园,故答案为:小明离开书城,继续坐公交到公园;(3)30÷(3.5﹣2.5)=30(km/h),即:小明的妈妈驾车的平均速度为30km/h.【点睛】本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚。
第三章 变量之间的关系 章末检测卷注意事项:本试卷满分100分,考试时间120分钟,试题共25题。
答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置一、选择题(10小题,每小题2分,共20分)1.笔记本每本a 元,买3本笔记本共支出y 元,下列选项判断正确的有( ) A .a 是常量时,y 是变量 B .a 是变量时,y 是常量C .a 是变量时,y 也是变量D .无论a 是常量还是变量,y 都是变量2.若三角形底边长为a ,底边上的高为h ,则三角形的面积S =12ah .若h 为定长,则( ) A .S ,a 是变量,12,h 是常量 B .S ,h ,a 是变量,12是常量 C .S ,12是常量,a ,h 是变量D .以上答案均不对3.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点,用S 1,S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是( )A .B .C .D .4.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q (升)与流出时间t (分钟)的关系式是( ) A .()0.20100Q t t =≤≤ B .()200.20100Q t t =-≤≤ C .()0.2020t Q Q =≤≤D .()200.2020t Q Q =-≤≤5.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的质量x (kg )间有下面的关系:下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4kg时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.y与x之间的关系式为100.5=+y x6.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系,下列说法不正确的是()A.x与y都是变量,且x是自变量,y是x的函数B.用电量每增加1千瓦时,电费增加0.55元C.若用电量为8千瓦时,则应交电费4.4元D.y不是x的函数7.弹簧挂重物后会伸长,测得弹簧长度y(cm)最长为20cm,与所挂物体重量x(kg)间有下面的关系:下列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6kg,弹簧长度为11cmC.体每增加1kg,弹簧长度就增加0.5cmD.挂30kg物体时一定比原长增加15cm8.五一小长假的某一天,亮亮全家上午8时自驾小汽车从家里出发,到某旅游景点游玩,该小汽车离家的距离(千米)与时间(时)之间的关系如图所示,根据图象提供的有关信息,判断下列说法中错误的是()A.景点离亮亮的家180千米B.亮亮到家的时间为17时C.小汽车返程的速度为60千米/时D.10时至14时小汽车匀速行驶9.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是【】A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h10.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.二、填空题(6小题,每小题2分,共12分)11.某种储蓄的月利率为0.15%,现存入1000元,则本息和(本金与利息的和)y(元)与所存月数x 之间的函数关系式是 ___________.12.声音在空气中传播的速度y (米/秒)(简称音速)与气温(C)x ︒之间的关系如下: 气温(C)x ︒5101520音速y (米/秒) 331 334 337 340 343从表中可知音速y 随温度x 的升高而_____.在气温为20C ︒的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点________米.13.一根弹簧长8cm ,它所挂的物体质量不能超过5kg ,并且所挂的物体每增加1kg 弹簧就伸长0.5cm ,则挂上物体后弹簧的长度()cm y 与所挂物体的质量()kg x (05x ≤≤)之间的表达式为_________.14.某超市进了一批草莓,出售时销售量x 与销售总价y 的关系如下表: 销售量x (kg ) 1 2 3 4 … 销售总价y (元) 40+0.580+1.0120+1.5160+2.0…根据上表中的数据写出销售总价y (元)与销售量x (kg )之间的关系式:___________. 15.如图所示,在三角形ABC 中,已知16BC =,高10AD =,动点Q 由点C 沿CB 向点B 移动(不与点B 重合).设CQ 的长为x ,三角形ACQ 的面积为S ,则S 与x 之间的关系式为___________________.16.如图,某计算装置有一数据输入口A 和一运算结果的输出口B ,如表是小明输入的一些数据和这些数据经该装置计算后输出的相应结果按照这个计算装置的计算规律,若输入的数是n ,则输出的数是________.三、解答题(9小题,共68分)17.某市出租车收费标准如下:3km以内(含3km)收费8元;超过3km的部分每千米收费1.6元.x );(1)写出应收费y(元)与出租车行驶路程x(km)之间的关系式(其中3(2)小亮乘出租车行驶4 km,应付多少元?(3)小波付车费16元,那么出租车行驶了多少千米?18.假设圆柱的高是8cm,圆柱的底面半径由小到大变化时,圆柱的体积也随之发生变化.(1)在这个变化的过程中,自变量为________,因变量为________.(2)如果圆柱底面半径为r(cm),那么圆柱的体积V(cm3)可以表示为________.(3)当r由1cm变化到6cm时,V由________cm3变化到________cm3.19.如图所示是一位病人的体温记录图,看图回答下列问题:(1)自变量是________,因变量是________.(2)这位病人的最高体温是________摄氏度,最低体温是________摄氏度.(3)他在这天12时的体温是________摄氏度.20.为了更好地放松心情,上周六,小红妈妈开车带着小红一家去郊游,出发前汽车油箱内有一定量的汽油.行驶过程中油箱中剩余油量y(升)与行驶时间t(小时)的关系如下表,请根据表格回答下列问题:时间(t)/小时0 1 2 3 4 5 油箱剩余油量(y)/升50 45 40 35 30 25(1)汽车行驶前油箱里有______升汽油,汽车每小时耗油______升;(2)请写出y与t的关系式;(3)当汽车行驶6.5小时后,油箱中还剩余多少升汽油?21.目前,上海疫情防控正处于清零攻坚的关键阶段,为进一步支援上海积极抗疫,某省慈善总会采购一批医用级疫情防控物资捐赠给上海.为了找到合适的配送车辆,相关人员查阅资料,了解某种车的耗油量,其数据记录如下:汽车行驶时间t(小时)0 1 2 3 ……(1)如表反映的两个变量中,自变量是_______,因变量是_______.(2)根据表可知,汽车行驶3小时时,该车油箱的剩余油量为______升,汽车每小时耗油______升.(3)请直接写出两个变量之间的关系式(用t 来表示Q ).22.为表彰在“世界地球日,一起爱地球”主题活动中表现优秀的同学,某班需要购买6个书包和若干个文具盒(不少于6个).某文具超市制定了两种优惠方案:①买一个书包赠送一个文具盒,多于书包数的文具盒按原价收费;②书包和文具盒均按原价的9折收费.已知每个书包定价为30元,每个文具盒定价为5元.(1)设需要购买x 个文具盒,选择第一种方案购买所需费用为1y 元,选择第二种方案购买所需费用为2y 元,请分别写出1y ,2y 与x 之间的关系式; (2)购买多少个文具盒时,两种方案所需费用相同?23.如图在直角梯形ABCD 中,//AD BC ,90B ,5cm AB =,8cm AD =,14cm BC =,点P ,Q 同时从点B 出发,其中点P 以1cm/s 的速度沿着点B A D →→运动;点Q 以2cm/s 的速度沿着点B C →运动,当点Q 到达C 点后,立即原路返回,当点P 到达D 点时,另一个动点Q 也随之停止运动.(1)当运动时间4s t =时,则三角形BPQ 的面积为_____2cm ; (2)当运动时间6s t =时,则三角形BPQ 的面积为_____2cm ;(3)当运动时间为3(s)1t t ≤时,请用含t 的式子表示三角形BPQ 的面积.24.中国联通在某地的某套餐的月租金为59元,超出套餐部分国内拨打0.36元/分钟(不足1分钟按1分钟时间收费).下表是超出套餐部分国内拨打的收费标准:时间/分 1 2 3 4 5 …电话费/元0.36 0.72 1.08 1.44 1.8 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用x表示超出套餐部分的拨打时间,y表示超出套餐部分的电话费,那么y与x的关系式是什么?(3)由于业务多,小明的爸爸上个月拨打电话的时间超出套餐部分25分钟,他需付多少电话费?(4)某用户某月国内拨打电话的费用超出套餐部分的是54元,那么他该月拨打电话的时间超出套餐部分几分钟?25.用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数之和为x.探究一:图中①—④的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数之和的对应关系如表:多边形的序号①②③④…多边形的面积S 2 2.5 3 4 …各边上格点的个数和4 5 6 8 …xS与x之间的关系式为:________.探究二:图中⑤—⑧的格点多边形内部都只有2个格点,请你先完善下表格的空格部分(即分别计算出对应格点多边形的面积S):多边形的序号⑤⑥⑦⑧…多边形的面积S…各边上格点的个数和4 5 6 8 …xS与x之间的关系式为:________.猜想:当格点多边形内部有且只有n个格点时,S与x之间的关系式为:_______.。
七年级数学下册《第三章变量之间的关系》单元测试卷-附答案(北师大版)一、选择题1. 明明从广州给远在上海的爷爷打电话,电话费随着通话时间的变化而变化.在这个过程中,因变量是( )A. 明明B. 电话费C. 通话时间D. 爷爷2. 变量x与y之间的关系是y=−1x2+1,当自变量x=2时,因变量y的值是( )2A. −2B. −1C. 1D. 23. 下列情境图中能近似地刻画“一面冉冉上升的旗子”其高度与时间关系的是( )A. B.C. D.4. 在地球某地,地表以下岩层的温度y(℃)与所处深度x(km)之间的关系可以近似地用表达式y=35x+20来表示,当自变量x每增加1km时,因变量y的变化情况是( )A. 减少35℃B. 增加35℃C. 减少55℃D. 增加55℃5. 一种手持烟花,这种烟花每隔1.4秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度ℎ(米)随飞行时间t(秒)变化的规律如下表所示:t/秒00.51 1.52 2.53 3.54 4.5…ℎ/米1.87.311.815.317.819.319.819.317.815.3…A. 飞行时间t每增加0.5秒,飞行高度ℎ就增加5.5米B. 飞行时间t每增加0.5秒,飞行高度ℎ就减少5.5米C. 估计飞行时间t为5秒时,飞行高度ℎ为11.8米D. 只要飞行时间t超过1.5秒后该花弹爆炸,就视为合格6. 爷爷在离家900米的公园锻炼后回家,离开公园20分钟后,爷爷停下来与朋友聊天10分钟,接着又走了15分钟回到家中.下面图形中表示爷爷离家的距离y(米)与爷爷离开公园的时间x(分)之间的关系是( )A. B.C. D.7. 如图,是由两个大小完全相同的圆柱形容器在中间连通而成的可以盛水的器具,现匀速地向容器A 中注水,则容器A中水面上升的高度ℎ随时间t变化的大致图象是( )A. B. C. D.8. 如图是一组有规律的图案,第 ①个图案由4个基础图形组成,第 ②个图案由7个基础图形组成⋯设第ⓝ(n是正整数)个图案是由y个基础图形组成的,则y与n之间的关系式是( )A. y=4nB. y=3nC. y=6nD. y=3n+19. 如图所示,在长方形ABCD中AB=6,AD=4,P是CD上的动点,且不与点C,D重合,设DP=x梯形ABCP的面积为y,则y与x之间的关系式和自变量的取值范围分别是( )A. y=24−2x,0<x<6B. y=24−2x,0<x<4C. y=24−3x,0<x<6D. y=24−3x,0<x<410. 甲,乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400m,先到终点的人原地休息。
第三章变量之间的关系单元测试题(附答案)一、选择题1.圆的周长公式为C=2πr,下列说法正确的是()A.常量是2.B.变量是C、π、r。
C.变量是C、r。
D.常量是2、r2.函数y=中自变量x的取值范围是()A.x≤2B.x≥2C。
x<2.D。
x>23.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()XXX4.以下图,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时动身,设慢车行驶的工夫为x (h),两车之间的间隔为y(km),图中的折线透露表现y与x之间的函数关系.以下说法中正确的是()A。
B点透露表现此时快车抵达乙地B。
B﹣C﹣D段透露表现慢车先加快后减速最后抵达甲地 C.快车的速度为km/h。
D.慢车的速度为125km/h5.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.XXX.6.一个长方体木箱的长为4㎝,宽为体的体积V与高为宽的2倍,则这个长方体的表面积S与的关系及长方的关系分别是()A.C.B.D.7.“龟兔赛跑”讲述了这样的故事:领先的兔子看着迟钝匍匐的乌龟,自满起来,睡了一觉,当它醒来时。
发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点、用s1s2分别透露表现乌龟和兔子所行的旅程,t为工夫,则以下图象中与故工作节相符合的是()XXX.C.D.8.自行车以10千米/小时的速度行驶,t时)它所行走的路程S(千米)与所用的时间(之间的关系为()A。
S=10+t。
B.C。
S=D。
S=10t9.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:以下说法不正确的是()x/kgy/cm 20 20.5 21 21.5 22 22.5A.弹簧不挂重物时的长度为0cmB。
2020-2021学年七年级数学下册高分数拔尖提优单元密卷(北师大版)参考答案与试题解析考试时间:120分钟;满分:150分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(共40分)1.(本题4分)变量y 与x 之间的关系式为y =2x +5,当自变量x =6时,因变量y 的值为() A .7 B .14 C .17 D .21【答案】C【详解】把x =6代入y =2x +5得,y =2×6+5=17.故选C.2.(本题4分)在圆面积公式2S R π=中,变量是( )A .SB .S 与πC .S 与R 2D .S 与R【答案】D【解析】圆面积公式S=πR 2中,S 和R 是变量;故选D .3.(本题4分)小红到文具商店买彩笔,每打彩笔12支,售价18元,那么买彩笔所需的钱数y(元)与购买彩笔的支数x(支)之间的关系式为( )A.y=1.5x B.y=x C.y=12x D.y=18x【答案】A【解析】根据钱数=单价×数量可得:183122y x x ==.故选A.4.(本题4分)下列各情景分别可以用哪一幅图来近似的刻画?正确的顺序是()①汽车紧急刹车(速度与时间的关系)②人的身高变化(身高与年龄的关系)③跳过运动员跳跃横杆(高度与时间的关系)④一面冉冉上升的红旗(高度与时间的关系)A.abcd B.dabc C.dbca D.cabd【答案】C【解析】解:A、人的身高随着年龄的增加而增大,到一定年龄不变,故与②符合;B、红旗升高随着时间的增加而增大,到一定时间不变,故与④符合;C、运动员跳跃横杆时高度在上升到最大高度然后上升到最大高度之后高度减小,与③符合;D 、汽车紧急刹车时速度随时间的增大而减小,与①符合.故选C .5.(本题4分)下列各曲线中表示y 是x 的函数的是( )A .B .C .D .【答案】D【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确.故选D .6.(本题4分)某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0. 5元,若普通车存车量为x 辆次,存车的总收入为y 元,则y 与x 之间的关系式是( ) A .0.55000y x =+B .0.55000y x =-+C .0.52500y x =+D .0.52500y x =-+【答案】B【详解】根据“变速车存车费+普通车存车费=存车的总收入”,可得:y=0.5x+(5000-x )×1=-0.5x+5000.即:y=-0.5x+5000.故选B.7.(本题4分)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A.y=-2x+24(0<x<12)B.y=-x+12(0<x<24)C.y=2x-24(0<x<12)D.y=x-12(0<x<24)【答案】B【解析】由实际问题抽象出函数关系式关键是找出等量关系,本题等量关系为“用篱笆围成的另外三边总长应恰好为24米”,结合BC边的长为x米,AB边的长为y米,可得BC+2AB=24,即x+2y=24,即y=-x+12.因为菜园的一边是足够长的墙,所以0<x<24.故选B.8.(本题4分)弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm【答案】B【解析】试题解析:A.y随x的增加而增加,x是自变量,y是因变量,故A选项正确;B. 弹簧不挂重物时的长度为10cm,故B选项错误;C. 物体质量每增加1kg,弹簧长度y增加0.5cm,故C选项正确;D. 由C知,y=10+0.5x,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D选项正确;故选B.9.(本题4分)如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.【答案】D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.10.(本题4分)(2015随州)甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t 之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4B.3C.2D.1【答案】B【详解】解:由图象可得:出发1小时,甲、乙在途中相遇,故①正确;甲骑摩托车的速度为:120÷3=40(千米/小时),设乙开汽车的速度为a千米/小时,则1201 40a=+,解得:a=80,∴乙开汽车的速度为80千米/小时,∴甲的速度是乙速度的一半,故④正确;∴出发1.5小时,乙比甲多行驶了:1.5×(80﹣40)=60(千米),故②正确;乙到达终点所用的时间为1.5小时,甲得到终点所用的时间为3小时,故③错误;∴正确的有①②④,共3个,第II卷(非选择题)二、填空题(共20分)11.(本题4分)根据图中的程序,当输入x=3时,输出的结果y=_______.【答案】2.【解析】将x=3代入y=113x ,得:y=1+1=2,故答案为:2.12.(本题4分)某农场租用收割机收割小麦,甲收割机单独收割2天后,又调来乙收割机参与收割,直至完成800亩的收割任务.收割亩数与天数之间的关系如图所示,那么乙参与收割________天.【答案】4【解析】试题分析:由图可知,甲、乙收割机每天共收割350-200=150亩,共同收割600亩,所以,乙参与收割的天数是600÷150=4天.故答案为:4.13.(本题4分)根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣12,则输出的结果为_____【答案】-1.5【详解】∴-2<12-<1,∴x=12-时,y=x-1=13122--=-,故答案为3 2 -.14.(本题4分)如图所示的是某个计算y值的程序,若输入x的值是32,则输出的y值是_________.【答案】12(或0.5)【解析】x=32>1,∴y=-x+2=-32+2=0.5.故答案为12(或0.5).15.(本题4分)如图,是小明从学校到家里行进的路程s(米)与时间t(分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有_____(填序号).【答案】①②④【解析】①由图象的纵坐标可以看出学校离小明家1000米,故①正确;②由图象的横坐标可以看出小明用了20到家,故②正确;③由图象的纵横坐标可以看出,小明前10分钟走的路程较少,故③错误;④由图象的纵横坐标可以看出,小明后10分钟比前10分钟走得快,故④正确;故答案为①,②,④.三、解答题(共90分)16.(本题8分)“十一”期间,小明和父母一起开车到距家200 km的景点旅游,出发前,汽车油箱内储油45 L,当行驶150 km时,发现油箱余油量为30 L(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(km)与剩余油量Q(L)的关系式;(2)当x=280 km时,求剩余油量Q的值.【答案】(1)该车平均每千米的耗油量为0.1(L/km),Q=45-0.1x;(2)当x=280 km时,剩余油量Q的值为17 L.【解析】(1)该车平均每千米的耗油量为(45-30)÷150=0.1(L/km),行驶路程x(km)与剩余油量Q(L)的关系式为Q=45-0.1x.(2)当x=280时,Q=45-0.1×280=17.故当x=280 km时,剩余油量Q的值为17L.17.(本题8分)已知两个变量x,y之间的变化情况如图所示,根据图象回答下列问题:(1)写出y的变化范围;(2)求当x=0,-3时,y的对应值;(3)求当y=0,3时,对应的x的值;(4)当x为何值时,y的值最大?(5)当x在什么范围内时,y的值在不断增加?【答案】(1)y的变化范围为-2~4;(2)当x=0时,y=3;当x=-3时,y=1.(3)当y=0时,x1=-2.5,x2=-1.5,x3=3.5;当y=3时,x1=0,x2=2.(4)当x=1时,图象有最高点,此时y最大.(5)当x在-2~1时,y的值在不断增加.【解析】(1)根据函数图象可得:y的变化范围为-2~4.(2)当x=0时,y=3;当x=-3时,y=1.(3)当y=0时,x1=-2.5,x2=-1.5,x3=3.5;当y=3时,x1=0,x2=2.(4)当x=1时,图象有最高点,此时y最大.(5)当x在-2~1时,函数图象上升,y的值在不断增加.18.(本题8分)小明用的练习本可以到甲超市购买,也可以到乙超市购买.已知两超市的标价都是每本1元,但甲超市的优惠条件是购买10本以上,从第11本开始按标价的70%卖.乙超市的优惠条件是从第1本开始就按标价的85%卖.(1)当小明要买20本时,到哪家超市购买较省钱?(2)写出甲超市中,收款y甲(元)与购买本数x(本)(x>10)的关系式.(3)小明现有24元钱,最多可买多少本练习本?【答案】(1)一样(2)y甲=0.7x+3(x>10)(3)30本【解析】试题解析:(1)、买20本时,在甲超市购买需用10×1+10×1×70%=17(元),在乙超市购买需用20×1×85%=17(元),所以买20本到两家超市买收费一样.(2)、y甲=10×1+(x-10)×1×70%=0.7x+3(x>10).(3)由题知乙超市收款y乙(元)与购买本数x(本)间的关系式为y乙=x×1×85%=x.所以当y甲=24时,24=0.7x甲+3,x甲=30;当y乙=24时,24=x乙,x乙≈28.所以拿24元钱最多可以买30本练习本(在甲超市购买).19.(本题8分)如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为小时;(3)乙从出发起,经过小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?【答案】(1)10;(2)1;(3)3;(4)不一样,理由见解析;【解析】解:(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为10.(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5-0.5=1小时,故答案为1.(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为3(4)乙骑自行车出故障前的速度与修车后的速度不一样.理由如下:乙骑自行车出故障前的速度7.50.5=15千米/小时.与修车后的速度22.57.53 1.5--=10千米/小时.因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.20.(本题10分)如图,长方形ABCD中,AB=4,BC=8.点P在AB上运动,设PB=x,图中阴影部分的面积为y.(1)写出阴影部分的面积y与x之间的函数解析式和自变量x的取值范围;(2)点P在什么位置时,阴影部分的面积等于20?【答案】(1)阴影部分的面积为:y=32-4x(0<x≤4);(2)PB=3【解析】试题分析:(1)根据梯形的面积公式得出y与x的函数关系式即可;(2)利用(1)中所求得出y=20,求出x即可得出答案.试题解析:(1)设PB=x,长方形ABCD中,AB=4,BC=8,则图中阴影部分的面积为:y=12(4-x+4)×8=32-4x(0≤x≤4).(2)当y=20时,20=32-4x,解得x=3,即PB=3.21.(本题10分)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):(1)在这个变化过程中,______是自变量,______是因变量;(2)观察表中数据可知,每月乘客量达到_______人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?【答案】(1)x,y;(2)观察表中数据可知,每月乘客量达到2000;(3)每月乘车人数为3500人时,每月利润为3000元.【解析】解:(1)在这个变化过程中,每月的乘车人数x是自变量,每月的利润y是因变量;故答案为每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为观察表中数据可知,每月乘客量达到2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元.22.(本题12分)如图所示,梯形的上底AD=4,下底BC=6,CD=8,∠C=∠D=90°,点M从点C出发向点D移动,连接AM,BM,假设阴影部分的面积是y,CM的长度为x.(1)写出变量y与x之间的关系式;(2)当x=2时,阴影部分的面积是多少?(3)在点M 的移动过程中,是否存在阴影部分的面积等于梯形面积的14,若存在,求出x 的值;若不存在,简单说明理由.【答案】(1)y=-x+24;(2)22;(3)不存在,【解析】试题分析:(1)根据S 阴影=S 梯形-S 三角形BCM -S 三角形ADM ,代入相关数据即可得;(2)把x=2代入(1)中的关系式即可得;(3)不存在,根据阴影部分的面积等于梯形面积的14列方程进行求解即可得. 试题解析:(1)y=S 梯形-S 三角形BCM -S 三角形ADM =()()111468648222x x ⨯+⨯-⨯-⨯-=-x+24; (2)当x=2时,y=-2+24=22;(3)不存在,理由:假设存在,则-x+24=14×12×(4+6)×8,解方程,得x=14>8,所以不存在. 23.(本题12分)小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?【答案】(1) 自变量是时间,因变量是距离;(2) 10时他距家10千米,13时他距家30千米; (3) 12:00时他到达离家最远的地方,离家30千米;(4)13千米;(5) 12:00~13:00休息并吃午餐;(6) 15千米/时解:(1)图象表示了时间、距离的关系,自变量是时间,因变量是距离.(2)由图象看出10时他距家10千米,13时他距家30千米.(3)由图象看出12:00时他到达离家最远的地方,离家30千米.(4)由图象看出11时距家19千米,12时距家30千米,11时到12时他行驶了30- 17=13(千米).(5)由图象看出12:00~13:00时距离没变且时间较长,得12:00~13:00休息并吃午餐.(6)由图象看出回家时用了2小时,路程是30千米,所以回家的平均速度是30÷2=15(千米/时). 24.(本题14分)如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在那些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.【答案】(1)见解析;(2)见解析;(3)见解析;(4)见解析;【详解】(1)汽车从出发到最后停止共经过了24min,它的最高时速是90km/h(2)汽车大约在2分到6分,18分到22分之间保持匀速行驶,时速分别是30km/h 和90km/h(3)出发后8分到10分速度为0,所以汽车是处于静止的.可能遇到了红灯或者障碍(或者遇到了朋友或者休息).(答案不唯一,只要所说的情况合理即可)(4)该汽车出发2分钟后以30km/h的速度匀速行驶了4分钟,又减速行驶了2分钟,又停止了2分钟,后加速了8分钟到90km/h的速度匀速行驶了4分钟,最后2分钟停止了行驶.。
七年级数学下册第三章《变量之间的关系》单元测试卷满分:150分考试用时:120分钟班级姓名得分一、选择题(本大题共10小题,共30.0分)1.变量x与y之间的关系是y=2x+1,当y=5时,自变量x的值是()A. 13B. 5C. 2D. 3.52.陈灿从家中出发,到离家1.5千米的早餐店吃早餐,用了一刻钟吃完早餐后,按原路返回到离家1千米的学校上课,在下列图象中,能反映这一过程的大致图象是()A. B.C. D.3.某日广东省遭受台风袭击,大部分地区发生强降雨.某条河流因受到暴雨影响,水位急剧上升,下表为这一天的水位记录,观察表中数据,水位上升最快的时间段是时间/时04812162024水位/米2 2.534568时到时时到时时到时20时到24时4.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是()A. 金额B. 数量C. 单价D. 金额和数量5.长方形的周长为24cm,其中一边为x cm(其中x>0),面积为y cm2,则y与x的表达式可以写为().A. y=x2B. y=(12−x)2C. y=(12−x)·xD. y=2(12−x)6.如图所示,在△ABC中,已知BC=16,高线AD=10,动点C′由点C沿CB向点B 移动(不与点B重合).设CC′的长为x,△ABC′的面积为S,则S关于x的关系式为()A. S=80−5xB. S=5xC. S=10xD. S=5x+805.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m36.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(单位m)和放学后的时间t(单位min)之间的关系如图所示,那么下列说法错误的是()A. 小刚边走边聊阶段的行走速度是125m/minB. 小刚家离学校的距离是1000mC. 小刚回到家时已放学10minD. 小刚从学校回到家的平均速度是100m/min7.柿子熟了,从树上落下来.下面可以大致刻画柿子下落过程中(即落地前)的速度变化情况的一幅图为()A.B.C. D.8.某一天早晨小强从家出发,以v1的速度前往学校,途中在饮食店吃早点,之后以v2的速度向学校行进.已知v1>v2,下列图象能表示小强从家到学校的时间t(min)与路程s(km)之间的关系的是().A. B.C. D.二、填空题(本大题共5小题,共20.0分)9.为了解某品牌汽车的耗油量,人们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(ℎ)0123⋯油箱剩余油量Q(L)100948882⋯根据上表的数据,写出Q与t的关系式:.10.长方形的周长为24cm,其中一边为xcm,面积为ycm2,则长方形的面积y与边长x之间的关系式为______.11.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y与x之间的关系式是.12.小聪步行去上学,5分钟走了总路程的1,估计步行不能6准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了分钟.13.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,到目的地后停止运动。
2022-2023学年七年级数学下册第三章《变量之间的关系》测试卷【全卷满分120分考试时间120分钟】一、单选题(每题3分,共30分)1.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s (米)与散步所用时间t (分)之间的函数关系,根据图象,下列信息错误的是()A .小明看报用时8分钟B .公共阅报栏距小明家200米C .小明离家最远的距离为400米D .小明从出发到回家共用时16分钟2.某水果销售商有100千克苹果,当苹果单价为15元/千克时,能全部销售完,市场调查表明苹果单价每提高1元,销售量减少6千克,若苹果单价提高x 元,则苹果销售额y 关于x 的函数表达式为()A .()100y x x =-B .()1006y x x =-C .()()10015y x x =-+D .()()100615y x x =-+3.在关系式37y x =--中,当自变量5x =-时,因变量y 的值为()A .8-B .8C .22-D .224.下列关于圆的周长C 与半径r 之间的关系式2C r π=中,说法正确的是()A .C 、r 是变量,π是常量B .r 、π是变量,2是常量C .C 、r 是变量,2是常量D .C 、r 是变量,2π是常量5.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度()cm y 与所挂的物体的重量()kg x 间有下表的关系:下列说法不正确的是()/kg x 012345/cmy 2020.52121.52222.5A .弹簧不挂重物时的长度为0cmB .x 与y 都是变量,且x 是自变量,y 是因变量C .随着所挂物体的重量增加,弹簧长度逐渐变长D .所挂物体的重量每增加1kg ,弹簧长度增加0.5cm6.若等腰三角形的周长为60cm ,底边长为x cm ,一腰长为y cm ,则y 关于x 的函数解析式及自变量x 的取值范围是()A .y =60-2x(0<x<60)B .y =60-2x(0<x<30)C .y =12(60-x)(0<x<60)D .y =12(60-x)(0<x<30)7.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃20-10-0102030声速/()m/s 318324330336342348下列说法错误的是()A .在这个变化中,自变量是温度,因变量是声速B .温度越高,声速越快C .当空气温度为20℃时,声速为342m/sD .当温度每升高10℃,声速增加8m/s8.甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s (单位:千米),甲行驶的时间为t (单位:小时),s 与t 之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A .4B .3C .2D .19.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是A .B .C .D .10.小明从家骑自行车上学,先以0.4千米/分的速度匀速骑行5分钟,途经超市时,买文具用了5分钟,为按时到校,再以0.5千米/分的速度骑行2分钟到学校.设小明骑自行车的速度为v (千米/分),离家路程为s (千米),上学时间为t (分).下列图象能表达这一过程的是()A .B .C .D .二、填空题(每题3分,共30分)11.某水库的水位在某段时间内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时的函数关系式为_____.12.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:年份201520162017…入学儿童人数252023302140…(1)上表中_____是自变量,_____是因变量;(2)你预计该地区从_____年起入学儿童的人数不超过2000人.13.出租车的收费标准为:5km 以内(含5km )起步价为8元,超过5km 后每1km 收1.5元,如果用()5km s s ≥表示出租车行驶的路程,y 表示的是出租车应收的车费,请你表示y 与s 之间的表达式___________.14.一商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为促销决定:买1支毛笔就赠送1本书法练习本.某校书法兴趣小组打算购买这种毛笔10支,这种练习本x (x ≥10)本,则付款金额y(元)与练习本个数x(本)之间的函数关系式是_____.15.如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,x y,则y关于x的函数关系式是_______.节链条总长度为cm16.弹簧挂上物体后会伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:物体的质量(kg)012345弹簧的长度(cm)1010.51111.51212.5在弹簧能承受的范围内,如果物体的质量为x kg,那么弹簧的长度y cm可以表示为_____.17.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.则体育场离张强家_____千米,张强在体育场锻炼了_____分钟,张强从早餐店回家的平均速度是_____千米/小时.18.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为____方.月用水量不超过12方部分超过12方不超过18方部分超过18方部分收费标准(元/方)2 2.5319.声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)之间的关系如下:从表中可知音速y 随温度x 的升高而_____.在气温为20℃的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点________米.20.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是_____.(把你认为正确说法的序号都填上)三、解答题(共60分)21.探索计算:弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量/kg 01234567弹簧的长度/cm1212.51313.51414.51515.5(1)当所挂物体的质量为3kg 时,弹簧的长度是;(2)在弹性限度内如果所挂物体的质量为x kg ,弹簧的长度为y cm ,根据上表写出y 与x 的关系式;(3)当所挂物体的质量为5.5kg 时,请求出弹簧的长度;(4)如果弹簧的最大长度为20cm ,那么该弹簧最多能挂质量为多少的物体?22.下表是某河流在汛期一天中涨水的情况,警戒水位为25米.时间/时04812162024超警戒水位/米0.2+0.25+0.35+0.5+0.7+0.9+ 1.0+(1)上表反映了________与时间之间的关系,其中____是自变量,______是因变量;(2)估计上午10时的水位是_______;(3)从0时到24时,水位从_______上升到_____;(4)从__时到__时,水位上升最快;(5)假设第二天持续下雨(基本与当天降水量一样),则第二天12时超警戒水位__米.23.据统计,某公交车每月的支出费用为3000元,每月利润(利润=票款收入-支出费用)(元)与每月的乘车人数(人)的变化关系如下表所示(公交车票价固定不变).每月的乘车人数/人600900120015001800…每月利润/元-1800-1200-6000600…(1)在这个变化过程中,自变量是,因变量是;(2)观察表中数据可知,每月乘车人数达到人以上时,该公交车才不会亏损;(3)由表中数据可推断出该公交车的票价为元;(4)求每月乘车人数为5000人时的每月利润.24.宝兰客专是首条贯通丝绸之路经济带的高铁线,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作,人文交流具有十分重要的意义.试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y (千米),图中的折线表示y与x之间的关系,根据图象,解答下列问题:(1)西宁与西安相距千米,两车出发后小时相遇;(2)普通列车到达终点共需小时,它的速度是千米/小时;(3)求动车的速度;(4)动车行驶多长时间与普通列车相距140千米?25.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:min )之间有如下关系(其中220x ):提出概念所用的时间x 257101213141720学生对概念的接受能力y47.853.556.359.059.859.959.858.355.0(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用的时间是5min 时,学生的接受能力是多少?(3)根据表格中的数据回答:当提出概念所用的时间是几分钟时,学生的接受能力最强?(4)根据表格中的数据回答:当x 在什么范围内时,学生的接受能力在增强?当x 在什么范围内时,学生的接受能力在减弱?26.甲、乙两车早上从A 城车站出发匀速前往B 城车站,在整个行程中,两车离开A 城的距离s 与时间t 的对应关系如图所示:(1)A ,B 两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B 城车站这一时间段,在何时间点两车相距40km ?27.如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)下图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么?(3)爷爷每天散步多长时间?(4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度.28.小华在暑假社会实践过程中,以每千克0.5元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示,请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的关系式?(2)小华从批发市场共购进多少千克西瓜?(3)小华这次卖瓜赚了多少钱?参考答案:1.A .2.D3.B4.D5.A6.D7.D8.B9.C10.D 11.60.3y x =+12.年份,入学儿童人数2018.13.y =1.5s +0.514.5200y x =+##=200+5y x 15. 1.81y x =+16.y =10+0.5x 17. 2.515318.2019.增大;68.6.20.①③④21.(1)解:由表可知当所挂物体的质量为3kg 时,弹簧的长度是13.5,故答案为:13.5;(2)由表可知:弹簧原长为12cm ,所挂物体每增加1kg 弹簧伸长0.5cm ,∴弹簧总长y (cm )与所挂重物x (kg )之间的函数关系式为0.512y x =+;(3)当 5.5x =kg 时,代入0.512y x =+,解得14.75y =cm ,即弹簧总长为14.75cm .(4)当20y =cm 时,代入0.512y x =+,解得16x =,即所挂物体的质量为16kg .22.(1)解:上表反映了超警戒水位随着时间的变化而变化,其中时间是自变量,超警戒水位是因变量;(2)解:估计上午10时超警戒水位0.4米,则估计上午10时的水位是:250.425.4+=(米),故答案为:25.4米;(3)解:0时水位:250.225.2+=(米)24时水位:25126+=(米),即从0时到24时,水位从25.2米上升到26米,故答案为:25.2米,26米;(4)解:观察表格得,在0至4时,警戒水位上升:()0.250.20.05+-+=(米),在4至8时,警戒水位上升:()0.350.250.1+-+=(米),在8至12时,警戒水位上升:()0.50.350.15+-+=(米),在12至16时,警戒水位上升:0.7(0.5)0.2+-+=(米),在16至20时,警戒水位上升:0.9(0.7)0.2+-+=(米),在20至24时,警戒水位上升: 1.0(0.9)0.1+-+=(米),即从12时到20时,水位上升的最快,故答案为:12,20;(5)解:观察表格得,第一天12时超警戒水位0.5+米,24时警戒水位 1.0+米,假若第二天持续下雨(基本与第一天降水情况一样),则估计第二天12时超警戒水位10.5 1.5++=(米),故答案为: 1.5+.23(1)解:在这个变化过程中,每月乘车人数是自变量,每月的利润是因变量,故答案为:每月乘车人数,每月的利润;(2)解:观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到1500人以上时,该公交车才不会亏损,故答案为:1500;(3)解:由表中数据可知,当每月乘车人数为1500人时,每月利润为0元,则题中票款收入=支出费用,而每月固定支出费用为3000元,从而得到票价为300021500=元,故答案为:2;(4)解:由表中数据可知,每月的乘车人数每增加300人,每月的利润可增加600元,当每月的乘车人数为1500人时,每月利润为0元,则当每月乘车人数为5000人时,每月利润为()500015006007000300-⨯=元,故答案为:7000元.24.(1)由0x =时,1260y =,知西宁到西安两地相距1260千米,由3x =时,0y =,知两车出发后3小时相遇,(2)由图象知14x =时,普通列车到达西安,即普通列车到达终点共需14小时,普通列车的速度是12609014=(千米/小时),(3)设动车的速度为x 千米/小时,根据题意,得:33901260x +⨯=,答:动车的速度为330千米/小时;(4)①相遇前动车行驶与普通列车相距140千米,()()81260140330903-÷+=(小时),∴动车行驶83小时与普通列车相距140千米;②相遇后动车行驶与普通列车相距140千米,42126033011÷=(小时),10(1260140)(33090)3+÷+=(小时)∴动车行驶103小时与普通列车相距140千米;综上,动车行驶83小时或103小时与普通列车相距140千米.25.(1)解:提出概念所用的时间x 和对概念的接受能力y 两个变量;提出概念所用时间x 是自变量,对概念的接受能力y 是因变量.(2)解:当5x =时,53.5y =,答:当提出概念所用时间是5min 时,学生的接受能力是53.5.(3)解:当13x =时,y 的值最大是59.9,答:提出概念所用时间为13分钟时,学生的接受能力最强.(4)解:由表中数据可知:当213x ≤<时,y 值逐渐增大,学生的接受能力逐步增强;当1320x <≤时,y 值逐渐减小,学生的接受能力逐步减弱.26(1)解:由图象可知A 、B 两城之间距离是300km ;(2)解:由图象可知,甲的速度=3005=60(km/h ),乙的速度=3003=100(km/h ),∴甲、乙两车的速度分别是60km/h 和100km/h ;(3)解:设乙车出发x h 追上甲车,由题意:60(x +1)=100x ,解得:x =1.5,∴乙车出发1.5h 追上甲车;(4)解:设乙车出发后到甲车到达B 城车站这一段时间内,甲车与乙车相距40km 时甲车行驶了m h ,①当甲车在乙车前时,得:60m -100(m -1)=40,解得:m =1.5,此时是上午6:30;②当甲车在乙车后面时,100(m-1)-60m=40,解得:m=3.5,此时是上午8:30;③当乙车到达B城后,300-60m=40,解得:m=13 3,此时是上午9:20.∴分别在上午6:30,8:30,9:20这三个时间点两车相距40km.27.解:(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息.(3)爷爷每天散步45分钟(4)爷爷散步时最远离家为900米(5)爷爷离开家后:①20分钟内平均速度:900÷20=45(米/分);②30分钟内平均速度:900÷30=30(米/分);③45分钟内平均速度:9002⨯÷45=40(米/分).28.(1)设函数的解析式是y=kx,把x=40,y=64代入得:40k=64,解得k=1.6.则函数的解析式是y=1.6x.(2)∵价前西瓜售价每千克1.6元.降价0.4元后西瓜售价每千克1.2元.降价后销售的西瓜为(76-64)÷1.2=10(千克)∴小华从批发市场共购进50千克西瓜.(3)76-50×0.8=76-40=36(元).即小华这次卖瓜赚了36元钱.。
第三章变量之间的关系章节测试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.变量x与y之间的关系是y=2x+1,当y=5时,自变量x的值是( )A. 13B. 5C. 2D. 3.52.在关系式y=2x+5中,当自变量x=6时,因变量y的值为( )A. 7B. 14C. 17D. 213.弹簧挂重物会伸长,测得弹簧长度y(cm)最长为20cm,与所挂物体重量x(kg)间有下面的关系.x01234…y88.599.510…下列说法不正确的是( )A. x与y都是变量,x是自变量,y是因变量B. 所挂物体为6kg,弹簧长度为11cmC. 物体每增加1kg,弹簧长度就增加0.5cmD. 挂30kg物体时一定比原长增加15cm4.某油箱容量为60L的汽车,加满汽油行驶了100km时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为xkm,油箱中剩油量为yL,则y与x之间的关系式和自变量的取值范围分别是( )A. y=0.12x(x>0)B. y=60−0.12x(x>0)C. y=0.12x(0≤x≤500)D. y=60−0.12x(0≤x≤500)5.小明从家出发步行至学校,停留一段时间后乘车返回,则下列图象最能体现他离家的距离(s)与出发时间(t)之间的对应关系的是( )A. B.C. D.6.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系.下列说法错误的是( )A. 第3min时,汽车的速度是40km/ℎB. 第12min时,汽车的速度是0km/ℎC. 从第3min到第6min,汽车行驶了120kmD. 从第9min到第12min,汽车的速度从60km/ℎ减少到0km/ℎ7.某科研小组在网上获取了声音在空气中传播的速度与空气温度之间的关系的一些数据(如下表):温度(℃)−20−100102030声速(m/s)318324330336342348下列说法中错误的是( )A. 在这个变化过程中,自变量是温度,因变量是声速B. 温度越高,声速越快C. 当空气温度为20℃时,5s内声音可以传播1740mD. 温度每升高10℃,声速增加6m/s8.某校七年级数学兴趣小组利用同一块木板测量小车从不同高度斜放的木板上从顶部滑到底部所用的时间,支撑物的高度ℎ(cm)与小车下滑时间t(s)之间的关系如下表所示:支撑物的高度ℎ/cm10203040506070小车下滑时间t/s4.23 3.00 2.45 2.13 1.89 1.71 1.59根据表格提供的信息,下列说法错误的是( )A. 支撑物的高度为40cm时,小车下滑时间为2.13sB. 支撑物的高度ℎ越大,小车下滑时间t越少C. 若小车下滑时间为2s,则支撑物的高度在40cm至50cm之间D. 若支撑物的高度为80cm,则小车下滑时间可以是小于1.59s的任意值9.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A. 1个B. 2个C. 3个D. 4个10.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.( )A. 12B. 16C. 76D. 78二、填空题(本大题共5小题,共15.0分)11.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表:数量(千克)0.51 1.52 2.53 3.5…售价(元) 1.53 4.567.5910.5…如果卖出的香蕉数量用x(千克)表示,售价用y(元)表示,则y与x的关系式为______.12.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间x(时)的关系式为,该汽车最多可行驶小时.13.某公司生产一种产品,前期投资成本为100万元,在此基础上,每生产一吨又要投入5万元成本,那么生产的总成本y万元与产量x吨之间的数量关系是______.14.某日小明步行,小颖骑车,他们同时从小颖家出发,以各自的速度匀速到公园去,小颖先到并停留了8分钟,发现相机忘在了家里,于是沿原路以同样的速度回家去取,已知小明的步行速度为180米/分钟,他们各自距离出发点的路程y与出发时间x之间的关系图象如图所示,则当小明到达公园的时候小颖离家______米.15.甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步1800米(甲的速度大于乙的速度),当甲第一次超出乙300米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则当甲到达终点时,乙跑了________米.三、解答题(本大题共7小题,共55.0分。
2022-2023学年北师大版数学七年级下册易错题真题汇编(提高版)第3章《变量之间的关系》考试时间:120分钟试卷满分:100分姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022春•金牛区期末)如图1,在长方形ABCD中,动点P从点B出发,沿B→C→D→A的路径匀速运动到点A处停止,设点P运动的路程为x,△PAB的面积为y,表示y与x的关系的图象如图2所示,则a,b的值分别为()A.a=4,b=5 B.a=4,b=20 C.a=4,b=10 D.a=5,b=102.(2分)(2021•扬州模拟)成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,休息了一段时间,又原路返回b千米(b<a),再前进c千米,则他离起点的距离s与时间t的关系的示意图是()A.B.C.D.3.(2分)(2020春•雁塔区期末)已知一段导线的电阻R(Ω)与温度T(℃)的关系如下表,若导线的电阻R为4Ω,则导线的温度T为()温度T(℃)0 1 2 3电阻R(Ω) 2 2.08 2.16 2.24 A.25℃B.30℃C.40℃D.50℃4.(2分)(2018•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min5.(2分)(2022春•龙文区校级期中)某村办工厂,产品每月的生产总量c(件)关于时间t(月)的函数图象如图所示,则该厂对这种产品来说()A.1月至3月每月生产总量逐月增加,4,5两月每月生产总量逐月减少B.1月至3月每月生产总量逐月增加,4,5两月每月生产总量与3月持平C.1月至3月每月生产总量逐月增加,4,5两月均停止生产D.1月至3月每月生产总量不变,4,5两月停止生产6.(2分)(2022春•天桥区期末)已知动点H以每秒x厘米的速度沿图1的边框(边框拐角处都互相垂直)按从A﹣B﹣C﹣D﹣E﹣F的路径匀速运动,相应的△HAF的面积S(cm2)关于时间t(s)的关系图象如图2,已知AF=8cm,下列说法错误的是()A.动点H的速度为2cm/sB.b的值为14C.BC的长度为6cmD.在运动过程中,当△HAF的面积为30cm2时,点H的运动时间是3.75s或9.25s7.(2分)(2022•咸宁模拟)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.8.(2分)(2022春•上杭县期末)已知动点H以每秒x厘米的速度沿图1的边框(边框拐角处都互相垂直)按从A﹣B﹣C﹣D﹣E﹣F的路径匀速运动,相应的△HAF的面积S(cm2)关于时间t(s)的关系图象如图2,已知AF=8cm,则下列说法正确的有几个()①动点H的速度是2cm/s;②BC的长度为3cm;③当点H到达D点时△HAF的面积是8cm2;④b的值为14;⑤在运动过程中,当△HAF的面积是30cm2时,点H的运动时间是3.75s和10.25s.A.2个B.3个C.4个D.5个9.(2分)(2022•浉河区校级模拟)如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离为x,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为()A.3 B.C.2D.310.(2分)(2021春•任城区期末)小华和小明是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校,如图是他们从家到学校已走的路程S(米)和所用时间t(分钟)的关系图,则下列说法中错误的是()A.小明家和学校距离1200米B.小华乘公共汽车的速度是240米/分C.小华乘坐公共汽车后7:50与小明相遇D.小明从家到学校的平均速度为80米/分评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2021春•栾城区期中)一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止.如图所示的图象分别表示货车、轿车离甲地的距离(千米)与轿车所用时间(小时)的关系.当轿车从乙地返回甲地的途中与货车相遇时,相遇处离甲地的距离为千米.12.(2分)(2021•常州模拟)某市出租车白天的收费起步价为7元,即路程不超过3千米时收费7元,超过部分每千米收费1.2元,如果乘客白天乘坐出租车的路程为x(x>3)千米,乘车费为y元,那么y与x之间的关系为.13.(2分)(2019秋•东台市期末)如图表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象.下面几个结论:①比赛开始24分钟时,两人第一次相遇.②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇.正确的结论为.14.(2分)(2019春•开州区期末)甲、乙两车都从A地出发,沿相同的道路,以各自的速度匀速驶向B地.甲车先出发,乙车出发一段时间后追上甲并反超,乙车到达B地后,立即按原路返回,在途中再次与甲车相遇.若两车之间的路程为s(千米),与甲车行驶的时间t(小时)之间的图象如图所示乙车从A地出发到返回A地需小时.15.(2分)(2022春•天府新区期末)一个底面是正方形的长方体,高为4cm,底面正方形边长为3cm.如果它的高不变,把底面正方形边长增加了xcm,则所得长方体增加的体积V(cm3)与x(cm)之间的关系式是.16.(2分)(2022春•夏县期中)如图1,在长方形ABCD中,动点P从点B出发,沿B→C→D→A方向匀速运动至点A停止,已知点P的运动速度为2cm/s,设点P的运动时间为x(s),△PAB的面积为y(cm2),若y关于x的图象如图2所示,则长方形ABCD的面积为.17.(2分)(2022春•长安区期中)如图,已知正方形ABCD、正方形CEFG的边长分别为10和5,且点B、C、E在同一条直线上点P是边EF上一动点,连接PB.若PE=x,则阴影部分的面积y与x之间的关系式为.18.(2分)(2022春•青岛期中)已知动点P以每秒2cm的速度沿图1的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S(cm2)与时间t(秒)之间的关系如图2中的图象所示.其中AB=6cm,当t=时,△ABP的面积是18cm2.19.(2分)(2022•黄冈模拟)如图,在长方形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PCD的面积为y,如果y与x之间的关系如图所示,那么长方形ABCD的面积为.20.(2分)(2022秋•郓城县期中)如图1,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽,水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图2所示.如果将正方体铁块取出,又经过秒恰好将水槽注满.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2022春•贵阳期末)科技小组通过查找资料了解到:距离地面越远,温度越低.该小组获得了某地距离地面的高度与温度之间的一组数据.距离地面的高度h(km)0 1 2 3 4 5 6 7 …温度t(℃)30 24 18 12 6 0 ﹣6 ﹣12 …(1)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)直接写出t与h之间的关系式是;(3)求距离地面的高度为6.5km时的温度.22.(6分)(2022春•芗城区校级期中)如图1,AH=BC=10cm,GF=DE,点P从点A出发保持匀速运动,沿长方形凹槽A→B→C→D→E→F→G→H的路线运动,到点H停止;如图2是△APH的面积S(cm2)和运动时间x(s)的图象.(1)求图1中的AB的长度;(2)设点P运动的路程为y(cm),请写出y(cm)与运动时间x(s)之间的关系式,写出x的取值范围.23.(8分)(2022春•三元区期中)周末,小艾同学从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是小艾同学离家的距离与时间的关系图象,根据图象回答下列问题:(1)图象表示了和两个变量的关系,其中是自变量,是因变量.(2)体育场离文具店多少千米?小艾在文具店逗留了多长时间?(3)小艾从文具店到家的速度是多少?24.(8分)(2022春•文山州期末)某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示.根据图象解答下列问题:(1)在这个变化过程中,自变量和因变量分别是什么?(2)洗衣机的进水时间是多少分钟?清洗时洗衣机中水量为多少升?(3)已知洗衣机的排水速度为每分钟18升,求排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系式.25.(8分)(2022春•禅城区期末)周末,小明坐公交车到文华公园游玩,他从家出发0.8小时后到达书城,停留一段时间后继续坐公交车到文华公园,在小明离家一段时间后,爸爸驾车沿相同的路线前往文华公园,如图是他们离家的路程s(km)与小明离家时间t(h)的关系图,请根据图回答下列问题:(1)图中自变量是,因变量是;小明家到文华公园的路程为km;(2)小明书城停留的时间为h,小明从家出发到达文化公园的平均速度为km/h;(3)图中的B点表示;(4)爸爸驾车经过多久追上小明?此时距离文华公园多远?26.(8分)(2019春•和平区期末)快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程为km;快车的速度为km/h;慢车的速度为km/h;(2)出发h,快慢两车距各自出发地的路程相等;(3)快慢两车出发h相距150km.27.(8分)(2022春•武侯区校级期中)如图,长方形ABCD中,宽AB=4,点P沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动,在运动过程中,△ABP的面积S与运动时间t的关系如图所示.(1)求长方形的长;(2)直接写出m=,a=,b=;(3)当P点运动到BC中点时,有一动点Q从点C出发,以每秒1个单位的速度沿C→D→A运动,当一个点到达终点,另一个点也停止运动,设点Q运动的时间为x秒,△BPQ的面积为y,求当0≤x≤4时,y与x之间的关系式.28.(8分)(2022•肇东市校级三模)某车间甲、乙两名工人分别生产同种零件,他们生产的零件数量y(个)与生产时间t(小时)之间的关系如图所示(其中实线表示甲,虚线表示乙,且甲因机器故障停产了一段时间).(1)甲、乙中,先完成40个零件的生产任务.(2)甲在因机器故障停产之前,每小时生产个零件.(3)甲故障排除之后以原来速度的两倍重新开始生产,则甲停产了小时.(4)在第一次甲乙生产零件总数在同一时刻相同到甲完工这段时间,什么时候甲乙生产的零件总数相差3个?。
第3章《变量之间的关系》
一、选择题(每题3分,共30分)
1.已知△ABC 的底边BC 上的高为8cm ,当它的底边BC 从16cm 变化到5cm 时,△ABC 的面积( ) (A )从20cm 2
变化到64cm 2
(B )从64c m 2
变化到20cm 2
(C )从128cm 2
变化到40cm 2
(D )从40cm 2
变化到128cm 2
2.小王利用计算机设计了一个程序,输入和输出的数据如下表: … 那么,当输入数据8时,输出的数据是( ) (A )
861(B
)863(C )865
(D )867
3.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。
当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……。
用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是 ( )
4.下面的表格列出了一个实验的统计数据,
表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系, 下面能表示这种关系的式子是( )
(A )2
b d =(B )2b d =(C )2
b =
(D )25b d =+
5.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )
6.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶
A
B C D
第7题图
时间t (小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:( ) (1) 他们都行驶了18千米; (2) 甲在途中停留了0.5小时; (3) 乙比甲晚出发了0.5小时; (4) 相遇后,甲的速度小于乙的速度; (5) 甲、乙两人同时到达目的地。
其中,符合图象描述的说法有
A.2个
B.4个
C.3个
D.5个
7、水池中原有3升水,现每分钟向池内注1升,则水池内水量Q (升)与注水时间t (分)之间关系的图
象大致为( )
8、小强将一个球竖直向上抛起,球升到最高点,垂直下落,直到地面.在此过程中,球的高度与时间的关
系可以用下图中的哪一幅来近似地刻画( )
9、弹簧挂重物后会伸长,测得弹簧长度y (cm )最长为20cm ,与所挂物体重量x (kg )间有下面的关系:
下列说法不正确的是( )
A .x 是自变量,y 是因变量
B .所挂物体为6kg ,弹簧长度为11cm
C .物体每增加1kg ,长度就增加0.5cm
D .挂30kg 物体时比原长增加15cm 10、对关系式
x y 2
1
2-
=的描述不正确的是( ) A .当x 看作自变量时,y 就是因变量 B .随着x 值的增大,y 值变小 C .在非负数范围内,y 可以最大值为3 D .当y=0时,x 的值为2
3
二、填空题(每题3分,共24分) 11
若输入的x 12、已知变量s
13、“日落西山”是我们每天都要面对的自然变换,就你的理解,_________是自变量,________是因变量. 14、如图所示,圆柱的高是4厘米,当圆柱底面半径r (厘米)变化时,圆柱的体积V (厘米)也随之变
化 . (1)在这个变化过程中,自变量是______,因变量是____. (2)圆柱的体积V 与底面半径r 的关系式是____.
(3)当圆柱的底面半径由2变化到8时,圆柱的体积由____变化到____.
15、某下岗职工购进一批水果,到集贸市场零售,已知卖出的苹果数量x 与售价y 的关系如下表所示:
则用x 表示的关系式是_____.
16.拖拉机工作时,油箱中的余油量Q (升)与工作时间t (时)的关系式为406Q t =-.当4t =时,
Q =_______,从关系式可知道这台拖拉机最多可工作_________小时.
17.下面是用棋子摆成的“上”字型图案:
按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用 枚棋子;(2)第
n 个“上”字需用 枚棋子.
18.等腰三角形的周长为12
厘米,底边长为y 厘米,腰长为x 厘米. 则y 与x 的之间的关系式是 .
三、解答题(共60分)
19.(本题6分)为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:
(1) 计算这家庭的平均月用水量;
(2) 如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?
20.(本题10分)某公司有2位股东,20名工人. 从2000年至2002年,公司每年股东的总利润和每年工人的工资总额如下图所示.
第一个“上”字 第二个“上”字 第三个“上”字
第17题图
(Ⅰ)填写下表:
(Ⅱ)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的8倍?
21.(本题10分)某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:
⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间? ⑵第三天12时这头骆驼的体温是多少?
22.(本小题满分10分)如图是甲、乙两人同一地点出发后,路程随时间变化的图象.
(1)此变化过程中,__________是自变量,_________是因变量. (2)甲的速度________乙的速度. (大于、等于、小于) (3)6时表示________
(4)路程为150km ,甲行驶了____小时, 乙行驶了_____小时.
(5)9时甲在乙的________(前面、后面、相同位置) (6)乙比甲先走了3小时,对吗?__________
23、(本小题满分10分)如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系
的一幅图.
(1)下图反映了哪两个变量之间的关系?
(2)爷爷从家里出发后20分钟到30分钟可能在做什么? (3)爷爷每天散步多长时间? (4)爷爷散步时最远离家多少米?
(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度.
第21题。