2011年中考专题复习同步检测《统计与概率》-中大网校
- 格式:doc
- 大小:380.50 KB
- 文档页数:9
中考数学复习《统计与概率》专项提升训练题-附答案学校:班级:姓名:考号:说明:共三大题,23小题,满分120分,作答时间120分钟.中考对接点统计常考频数分布图(表)、条形统计图、扇形统计图、折线统计图,利用各种统计量分析数据,样本估计总体;概率常考利用画树状图或列表的方法计算随机事件的概率,用频率估计概率一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)题号12345678910答案1.下列事件中适合采用抽样调查的是A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对神舟十四号太空飞船各零部件质量情况的检查D.对市面上某品牌奶粉质量情况的调查2.下列事件是必然事件的是A.小明中考模拟考时,数学成绩都是110分以上,则中考时,他的数学成绩必定在110分以上B.明天不会出太阳C.367人中至少有2人生日相同D.随意抛掷两枚质地均匀的骰子,两次朝上的数字之和等于13.某市教委高度重视安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全图标的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片的正面图案中有一张是轴对称图形的概率是A.12B.13C.14D.164.数学老师在江西智慧作业中布置了8道题目,根据“作业归集”中学生的答题情况制作了如下统计表:答对题目数量/道5678人数419189根据表中数据,全班同学答对题目数量(单位:道)的中位数和众数分别是A.6, 6B.6, 7C.7, 7D.7, 65.关于事件与概率,下面表述不正确的是A.若P(A)=0,则A为不可能事件B.若A为不可能事件,则P(A)=0C.若A为必然事件,则P(A)=1D.若A为随件事件,则0≤P(A)≤16.小明在调查全班同学喜爱的电视节目时,若喜爱体育节目的同学占全班同学的30%,那么在制作扇形统计图时,“体育”节目对应扇形的圆心角的度数为A.30°B.108°C.54°D.120°7.如图,在6×6正方形网格中,任选一个白色的小正方形并涂黑,恰好能使图中黑色部分为轴对称图形的概率是A.533B.433C.111D.2338.已知在一个样本中,50个数据分别落在5个小组内,第一,二,三,五组数据分别为2,6,7,15,则第四小组的频数和频率分别为A.25,50%B.20,50%C.20,40%D.25,40%9.教育部规定,初中生每天的睡眠时间应为9个小时.小红同学记录了她一周的睡眠时间.并将统计结果绘制成如图所示的折线统计图,则小红这一周每天睡眠时间在9个小时以上(含9个小时)的有A.4天B.3天C.2天D.1天10.国庆期间,数学研究小组对游客前往山西凤凰山生态植物园的出行方式进行了随机抽样调查,将结果整理后绘制了如下两幅统计图(尚不完整).根据图中的信息,下列结论中错误的是A.本次抽样调查的样本容量是2000B.扇形统计图中的m为5C.若国庆期间去该地观光的游客有1万人,则选择自驾方式出行的大约有4500人D.样本中选择自驾方式出行的有1000人二、填空题(本大题共5个小题,每小题3分,共15分)11.如图,一个游戏盘中,红、黄、蓝三个扇形的圆心角度数分别为45°,120°,195°,让转盘自由转动,指针停止后(指针指向分界线时重新转)在黄色区域的概率是.12.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差这几个统计量中,该鞋厂最关注的是.13.小明、小华两人进行飞镖比赛,已知他们每人十次投得的成绩如图所示,那么两人中成绩更稳定的是.14.垃圾分类利国利民.某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访100名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率;①绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比;①整理采访记录并绘制空矿泉水瓶投放频数分布表.正确统计步骤的顺序应该是.15.如图,这是某旅游景区某周当日最高气温的折线统计图,则这7天的日最高气温的平均数为℃.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2小题,每小题5分,共10分)(1)已知数据3, 4, 5, 8, x的平均数为5,求这组数据的众数.(2)将2023,-22与π, 3.14159和√4, sin 60°六个数字分别写在六张卡片上,这些卡片除了数字外其他都相同,洗匀7后背面朝上放在桌面上,任取一张卡片,求卡片上面写的数字恰是无理数的概率.17.(本题8分)小明和小亮用如图所示的两个转盘(每个转盘被平均分成面积相等的扇形)做游戏:同时转动两个转盘(指针指向分界线时重新转),停止转动后,若指针所指两个区域的数字之差的绝对值为奇数,则小明胜;若指针所指两个区域的数字之差的绝对值为偶数,则小亮胜.这个游戏对双方公平吗?请你用列表法或树状图说明理由.18.(本题7分)甲、乙两位同学参加数学综合素质测试,各项成绩(单位:分)如下表:数与代数空间与图形统计与概率综合与实践学生甲93938990学生乙94929486(1)甲成绩的众数是;乙成绩的中位数是.(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按4①3①1①2计算,那么甲、乙的数学综合素质成绩分别为多少分?19.(本题8分)某校九年级两个班各选派6名学生参加“垃圾分类知识竞赛”,各参赛选手的成绩如下(满分150分):九(1)班: 86, 91, 92, 92, 94, 96.九(2)班: 83, 89, 90, 90, 91, 97.(1)九(1)班参赛选手成绩的中位数是分,众数是分.(2)求九(2)班参赛选手成绩的方差.20.(本题8分)某商场国庆期间为促销特举办抽奖活动,规则如下:在不透明的袋子中有2个红球和3个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小颖只有一次摸球机会,那么小颖获得奖品的概率为.(2)如果小颖有两次摸球机会(摸出后不放回),求小颖获得2份奖品的概率.(请用“画树状图”或“列表”的方法写出分析过程)21.(本题8分)某校在七年级新生中举行了全员“防溺水”安全知识竞赛,竞赛题目共10题,每题10分.现从三个班中各随机抽取10名同学的成绩(单位:分).收集数据:1班: 90, 70, 80, 80, 80, 90, 80, 90, 80, 1002班: 60, 80, 80, 90, 90, 90, 60, 90, 100, 1003班: 80, 90, 60, 80, 80, 90, 80, 100, 100, 80整理、分析数据:班级平均数中位数众数1班m80802班84n903班848080根据以上信息回答下列问题:(1)填空:表格中m=,n=.(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩最好?请说明理由.(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,已知该校七年级新生共630人,试估计需要准备多少张奖状.22.(本题13分)为了加强对食堂的监控,有效保证饮食质量,某学校随机抽取部分学生开展满意度问卷调查,学生根据实际情况给食堂评分,并将本次调查结果制成如下统计表:评分/分45678910人数6183646a284比率3%9%18%23%31%b2%(1)本次问卷调查,学生所评分数的众数是分.(2)根据本次调查结果,若从本校随机抽选一名学生给食堂评分,估计他的评分不低于8分的概率是多少?(3)学校决定:本次调查综合得分8~10分为“满意”,给予食堂通报表扬; 6~8分为“比较满意”,提醒食堂进行改善; 0~6分为“不满意”,责令食堂限时整改.根据本次调查结果,判断学校可能对食堂采取何种措施,说明理由.(这里的0~6表示大于等于0同时小于6)23.(本题13分)某校文学社为了解学生课外阅读情况,对本校七年级的学生进行了课外阅读知识水平检测.为了解情况,从七年级学生中随机抽取部分女生和男生的测试成绩,这些学生的成绩记为x(0≤x≤100),将所得数据分为5组:A组: x<60.B组: 60≤x<70.C组: 70≤x<80.D组: 80≤x<90.E组: 90≤x≤100.学校对数据进行分析后,提供了如下信息:女生成绩在70≤x<80这一组的数据:70,72,72,72.男生成绩在60≤x<80这一组的数据:72,68,62,68,70.抽取的男生和女生测试成绩的平均数、中位数、众数如表所示:平均数中位数众数男生76a68女生7672b请根据以上信息解答下列问题:(1)a=, b=.(2)通过以上的数据分析,你认为(填“男”或“女”)学生的课外阅读整体水平较高,请说明理由:.(写出一条理由即可)(3)现在打算从得分为D组的学生中随机选出2名学生调查他们课外阅读的时间,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.参考答案1.D2.C3.A4.D5.D6.B7.B8.C9.C 10.D 提示:样本容量是700÷35%=2000,故A 正确; m %=1-45%-35%-15%=5% ①m=5,故B 正确;10000×45%=4500(人),故C 正确; 2000×45%=900(人),故D 错误.11.1312.众数 13.小明 14.①①① 15.20 16.解:(1)由题意,得3+4+5+8+x=5×5,解得x=5.所以数据3, 4, 5, 8, 5的众数是5. ......................................................................................................................... 5分 (2)①六个数字2023,-227,π, 3.14159,√4, sin 60°中,无理数只有π和sin 60°两个①P (卡片上面写的数字恰是无理数)=26=13. ........................................................................................................... 5分 17.解:这个游戏对双方公平. .................................................................................................................................. 2分 理由:画树状图如下:共有12种等可能的结果,其中指针所指两个区域的数字之差的绝对值为奇数的结果有6种,指针所指两个区域的数字之差的绝对值为偶数的结果有6种,①小明胜的概率=612=12,小亮胜的概率=612=12 ①小明胜的概率=小亮胜的概率①这个游戏对双方公平. ......................................................................................................................................... 8分 18.解:(1)93;93. ........................................................................................................................................................ 1分 (2)甲的数学综合素质成绩为93×4+93×3+89×1+90×24+3+1+2=92(分), (4)分 乙的数学综合素质成绩为94×4+92×3+94×1+86×24+3+1+2=91.8(分). ................................................................................ 7分19.解:(1)92; 92. ....................................................................................................................................................... 3分 (2)平均数为83+89+90×2+91+976=90(分),方差s 2=16[(83-90)2+(89-90)2+2×(90-90)2+(91-90)2+(97-90)2]=503. (8)分20.解:(1)25. ................................................................................................................................................................ 2分(2)列表如下:红1红2 黑1 黑2 黑3 红1(红1,红2)(红1,黑1) (红1,黑2) (红1,黑3) 红2 (红2,红1)(红2,黑1)(红2,黑2) (红2,黑3) 黑1 (黑1,红1) (黑1,红2)(黑1,黑2)(黑1,黑3) 黑2 (黑2,红1) (黑2,红2) (黑2,黑1)(黑2,黑3)黑3(黑3,红1)(黑3,红2)(黑3,黑1)(黑3,黑2)................................................................................................................................................................................. 6分 由上表可知,共有20种等可能的结果,其中两次摸到红球的结果数为2①P (两次获得奖品)=220=110. .................................................................................................................................... 8分 21.解:(1)84;90. ........................................................................................................................................................ 2分 (2)2班成绩最好.理由如下: 从平均数上看,三个班都一样;从中位数上看, 1班和3班都是80分, 2班是90分; 从众数上看, 1班和3班都是80分, 2班是90分.综上所述, 2班的成绩最好. ................................................................................................................................... 5分 (3)630×530=105(张).答:估计需要准备105张奖状. ............................................................................................................................... 8分 22.解:(1)8. ............................................................................................................................................................... 3分 (2)6÷3%=200a=200-6-18-36-46-28-4=62. ①由表格知评分不低于8分的频率是62+28+4200×100%=47% (或1-3%-9%-18%-23%=47%) ............................................................................................................................... 7分 ①评分不低于8分的概率是47%. ......................................................................................................................... 8分 (3)方法一:x =4×6+5×18+6×36+7×46+8×62+9×28+10×4200=7.2(分). ........................................................................... 11分①6<7.2<8①学校对食堂采取提醒改善的措施. ................................................................................................................... 13分方法二: b=28200×100%=14%.x =4×3%+5×9%+6×18%+7×23%+8×31%+9×14%+10×2%=7.2(分). ........................................................... 11分 ①6<7.2<8①学校对食堂采取提醒改善的措施. ................................................................................................................... 13分 23.解:(1)71;72. ........................................................................................................................................................ 4分 提示:本次调查人数为(2+4)÷30%=20(名)B 组的人数为20×25%=5(人), B 组中的女生有5-3=2(名) 调查人数中,女生有1+2+4+1+2=10(人),男生有20-10=10(人)抽查人数中,10名男生成绩处在中间位置的两个数的平均数为71分,因此中位数是71,即a=71 在10名女生成绩中,出现次数最多的是72,因此众数是72,即b=72.(2)女; ....................................................................................................................................................................... 6分 女生成绩的中位数、众数均比男生的高. ............................................................................................................ 8分 (3)根据题意列表如下:男1男2 男3 女 男1男1男2男1男3 男1女 男2 男2男1男2男3男2女 男3 男3男1 男3男2男3女女女男1女男2女男3共有12种等可能的结果,其中1男1女的结果有6种所以恰好是1男1女的概率是612=12. ................................................................................................................... 13分。
某某2011年中考数学试题分类解析汇编专题7:统计与概率一、选择题1. (某某某某3分)下面调查中,适合采用全面调查的事件是A、对全国中学生心理健康现状的调查B、对我市食品合格情况的调查C、对某某电视台《某某板路》收视率的调查D、对你所在的班级同学的身高情况的调查【答案】D。
【考点】全面调查与抽样调查。
【分析】根据全面调查和抽样调查适合的条件对每一项进行分析即可得出正结论: A、∵对全国中学生心理健康现状的调查适合采用抽样调查,故本选项错误;B、∵对我市食品合格情况的调查适合采用抽样调查,故本选项错误;C、∵对某某电视台《某某板路》收视率的调查适合采用抽样调查,故本选项错误;D、∵对你所在的班级同学的身高情况的调查适合采用全面调查,故本选项正确。
故选D。
2.(某某某某3分)甲,乙,丙,丁四位同学在四次数学测验中,他们成绩的平均数相同,方差分别为2S甲=5,5,2S=7.3,2S丙=8.6,2S丁=4.5,则成绩最稳定的是乙A .甲同学 B. 乙同学 C. 丙同学 D. 丁同学S【答案】D。
【考点】方差。
【分析】方差是各个数据与平均数之差的平方的平均数,就是和中心偏离的程度,用来衡量一组数据的波动大小,在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
由于丁同学的方差最小,所以丁同学成绩最稳定。
故选D。
3.(某某某某3分)我们知道:一个正整数p(P>1)的正因数有两个:1和p,除此之外没有别的正因数,这样的数p称为素数,也称质数。
如图是某年某月的日历表,日期31个数中所有的素数的中位数是A.11B.12 C【答案】C。
【考点】素数的概念,中位数。
【分析】中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数)。
由此日期31个数中所有素数的排序为2,3,5,7,11,13,17,19,23,29,31,∴中位数为13。
故选C。
4.(某某贺州3分)在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件A.必然事件B.不可能事件C.随机事件D.确定事件【答案】C。
山东17市2011年中考数学试题分类解析汇编专题7:统计与概率一、选择题1. (日照3分)两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为A 、14B 、316 C 、34D 、382.(滨州3分)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为A 、14B 、12 C 、34D 、13.(德州3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是A 、甲运动员得分的极差大于乙运动员得分的极差B 、甲运动员得分的的中位数大于乙运动员得分的的中位数C 、甲运动员的得分平均数大于乙运动员的得分平均数D 、甲运动员的成绩比乙运动员的成绩稳定4.(烟台4分)体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6,,则这组数据的中位数和极差分别是A.2.1,0.6B. 1.6,1.2C.1.8,1.2D.1.7,1.25.(东营3分)某中学为迎接建党九十周年.举行了“童心向党.从我做起”为主题的演讲比赛。
经预赛.七、八年级各有一名同学进入决赛.九年级有两名同学进入决赛.那么九年级同学获得前两名的概率是A .12B .13 C .14 D .166.(济南3分)某校九年级一班体育委员在一次体育课上记录了六位同学托排球的个数分别为:37、25、30、35、28、25.这组数据的中位数是A .25B .28C .29D .32.57.(济南3分)某校为举办“庆祝建党90周年”的活动,从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出.据此估计该校希望举办文艺演出的学生人数为 A .1120 B .400 C .280 D .808.(潍坊3分)某市2011年5月1日—10日对空气污染指数的检测数据如下(主要污染物为可吸入颗 粒物):61,75,70,56,81,91,92,91,75,81.那么该组数据的极差和中位数分别是.A .36,78B .36,86C .20,78D .20,77.39.(济宁3分)在x 2□2xy□y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是A. 1B.43 C. 21 D. 4110.(泰安3分)某校篮球班21名同学的身高如下表则该校蓝球班21名同学身高的众数和中位数分别是(单位:cm )A 、186,186B 、186,187C 、186,188D 、208,18811.(泰安3分)袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的的编号相同的概率为A 、19B 、16 C 、13D 、1212.(莱芜3分)某校全唱团共有40名学生,他们的年龄如下表所示:则全唱团成员年龄的众数和中位数分别是A 、13,12.5B 、13,12C 、12,13D 、12,12.513.(莱芜3分)如图是两个可以自由转动的均匀圆盘A 和B ,A 、B分别被均匀的分成三等份和四等份,同时自由转动圆盘A 和B ,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是A 、34B 、23C 、12D 、1314.(聊城3分)下列事件属于必然事件的是A .在1个标准大气压下,水加热到100ºC 沸腾B .明天我市最高气温为56ºCC .中秋节晚上能看到月亮D .下雨后有彩虹 15.(聊城3分)某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4 5 6 7 8 10 户数136541这20户家庭日用电量的众数、中位数分别是A .6,6.5B .6,7C .6,7.5D .7,7.516.(临沂3分)在一次九年级学生视力检查中.随机检查了8个人的右眼视力,结果如下:4.0,4.2,4.5,4.0,4.4,4.5,4.0,4.8.则下列说法中正确的是 A 、这组数据的中位数是4.4 B 、这组数据的众数是4.5C 、这组数据的平均数是4.3D 、这组数据的极差是0.517.(临沂3分)如图,A 、B 是数轴上两点.在线段AB 上任取一点C ,则点C 到表示﹣1的点的距离不大于2的概率是A 、12B 、23 C 、34D 、4518.(威海3分)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学 的测试成绩(单位:个/分钟)。
统计与概率考点回放1、普查与抽样调查的区别用选择合适的方式进行数据统计2、总体、个体、样本的描述3、扇形统计图、条形统计图、折线统计图特点及应用4、从各种统计图中获取正确的信息5、根据各统计图的特点和题目的要求正确地选择统计图,解决相应问题6、制作扇形统计图表示数据7、计算一组数据的平均数或加权平均数8、众数和中位数的意义与应用9、根据具体问题,选择合适的统计量表示数据的集中程度10、极差、方差及标准差的意义,方差、标准差的计算以11、根据方差、标准差表示数据的离散程度12、用样本估计总体的思想,利用样本的平均数、方差来估计总体的平均数和方差13、频数、频率的概念与计算14、频数分布的意义和作用,列频数分布表,画频数分布直方图和频数折线图,解决简单的实际问题15、根据统计结果作出合理的判断和预测,清晰地表达自己的观点16、必然事件、不可能事件、不确定事件的判断17、概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
18、通过大量重复实验得到的频率估计事件发生概率的值19、利用概率的知识解决一些实际问题,如利用概率判断游戏的公平性典型题例1(娄底)去年娄底市有7.6万学生参加初中毕业会考,为了解这7.6万名学生的数学成绩,从中抽取1 000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1 000名考生是总体的一个样本B.7.6万名考生是总体C.每位考生的数学成绩是个体D.1 000名学生是样本容量例2 (南充)某校为了举办“庆祝建国60周年”的活动,调查了本校所有学生,调查的结果如图所示,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有人.例3 某中学为了解某年级1200名学生每学期参加社会实践活动的时间,随机对该年级50名学生进行了调查,结果如下表:请你估计这所学校该年级的学生中,每学期参加社会实践活动时间不少于9天的大约有多少人?例4(威海)甲、乙两支仪仗队队员的身高(单位:厘米)如下:甲队:178,177,179,178,177,178,177,179,178,179;乙队:178,179,176,178,180,178,176,178,177,180;(1)将下表填完整:(2)甲队队员身高的平均数为厘米,乙队队员身高的平均数为厘米;(3)你认为哪支仪仗队更为整齐?简要说明理由.例5(宁夏)在“首届中国西部(银川)房·车生活文化节”期间,某汽车经销商推出A B C D、、、四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况活动形式160A:文化演出B:运动会C:演讲比赛CAB40%35%(例绘制在图(1)和图(2)两幅尚不完整的统计图中.(1)参加展销的D 型号轿车有多少辆? (2)请你将图(2)的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A B C D 、、、四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A 型号轿车发票的概率.例6(北京)某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是( )A.0B.141C.241D.1 例6 一个不透明的袋子中装有三个完全相同的小球,分别标有数字3,4,5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.中考真题一、选择题: 1、(宁波)下列调查适合作普查的是( ) A .了解在校大学生的主要娱乐方式 B .了解宁波市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查 2、(杭州) 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( ) A .调查全体女生 B .调查全体男生 C .调查九年级全体学生D .调查七、八、九年级各100名学生 3、(湘西)要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是( )A .个体B .总体C .样本容量D .总体的一个样本 4、(泸州)在一次青年歌手大奖赛上,七位评委为某位歌手打出的分数如下:9.5, 9.4, 9.6, 9.9, 9.3, 9.7,9.0,去掉一个最高分和一个最低分后,所剩数据的平均数是( )A .9.2B .9.3C .9.4D .9.5 5、(齐齐哈尔)一组数据4,5,6,7,7,8的中位数和众数分别是( ) A .7,7 B .7,6.5 C .5.5,7 D .6.5,7 6、(烟台)某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩D .这六个平均成绩的众数不可能是全年级学生的平均成绩8、(鄂州)有一组数据如下:3、a 、4、6、7,它们的平均数是5,那么这组数据的方差是( ) A 、10 B 、10 C 、2 D 、2型号DC20%B20%A 35%各型号参展轿车数的百分比(2) (1) (例5)10、(嘉兴)已知数据:2,1-,3,5,6,5,则这组数据的众数和极差分别是( )A .5和7B .6和7C .5和3D .6和3 11、(宜宾)已知数据:23231-,,,,π.其中无理数出现的频率为( )A. 20%B. 40%C. 60%D. 80% 12、(包头)某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是( )A .0.1B .0.17C .0.33D .0.4 16、(长沙)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁17、(龙岩)为了从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们的五次数学测验成绩进行统计,得出他们的平均分均为85分,且1002=甲s 、1102=乙s 、1202=丙s 、902=丁s . 根据统计结果,派去参加竞赛的两位同学是( ) A .甲、乙 B .甲、丙 C .甲、丁 D .乙、丙 18、(泰州)有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0℃时冰融化;④如果a 、b 为实数,那么a +b =b +a .其中是必然事件的有A .1个B .2个C .3个D .4个 20、(佛山)在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是12”,小明做了下列三个模拟实验来验证.①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如右图),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值上面的实验中,不.科学的有( ) A .0个 B .1个 C .2个 D .3个 21、(呼和浩特)有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( ) A .13B .16C .12 D .1422、(黄石)为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科5位骨干医师中(含有甲)抽调3人组成,则甲一定抽调到防控小组的概率是( ) A .35B .25 C .45 D .15二、填空题: 1、(宜宾)妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于 .(填普查或抽样调查) 2、(钦州)附加题:一组数据1,2,3,它的平均数是_ _. 4、(河池)已知一组数据1,a ,3,6,7,它的平均数是4,这组数据的众数是 . 5、(牡丹江)已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为 . 6、(杭州)给出一组数据:23,22,25,23,27,25,23,则这组数据的中位数是___________;方差(精确到0.1)是_____________.7、(2009 年佛山)已知一组数据:11,15,13,12,15,15,16,15.令这组数据的众数为a ,中位数为b ,则a b (填“>”、“<”或“=”). 8、(凉山州)有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是 .10、(武汉)在科学课外活动中,小明同学在相同的(第12题) (第20题)条件下做了某种作物种子发芽的实验,结果如下表种子数(个)100200 300 400 发芽种子数(个)94187282376由此估计这种作物种子发芽率约为 (精确到0.01). 12、(齐齐哈尔)在英语句子“Wish you success!”(祝你成功!)中任选一个字母,这个字母为“s ”的概率是____________. 三、解答题: 1、(齐齐哈尔)为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3∶5∶2,随机抽取一定数量的观众进行调查,得到如下统计图.(1)上面所用的调查方法是_________(填“全面调查”或“抽样调查”);(2)写出折线统计图中A 、B 所代表的值; A :_____________;B :_____________;(3)求该地区喜爱娱乐类节目的成年人的人数. 2、(仙桃)“戒烟一小时,健康亿人行”.今年国际无烟日,小华就公众对在餐厅吸烟的态度进行了随机抽样调查,主要有四种态度:A .顾客出面制止;B .劝说进吸烟室;C .餐厅老板出面制止;D .无所谓.他将调查结果绘制了两幅不完整的统计图.请你根据图中的信息回答下列问题: (1)这次抽样的公众有__________人; (2)请将条形统计图补充完整; (3)在扇形统计图中,“无所谓”部分所对应的圆心角是_________度;(4)若城区人口有20万人,估计赞成“餐厅老板出面制止”的有__________万人.并根据统计信息,谈谈自己的感想.(不超过30个字)3、(包头)某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候测试项目 测试成绩 甲 乙 丙 教学能力 85 73 73 科研能力 70 71 65 组织能力647284(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由. 4、(聊城)某百货商场经理对新进某一品牌几种号码的男式跑步鞋的销售情况进行了一周的统计,得青少年 老年人节目 人数/人 新闻 娱乐 动画 02040 6080100 32 4668 94 AB 图二:成年人喜爱的节目统计图新闻娱乐 动画 108° (第38题) (第39题)到一组数据后,绘制了频数(双)频率统计表与频数分布直方图如下:请你根据图表中提供的信息,解答以下问题:(1)写出表中a b c,,的值;(2)补全频数分布直方图;(3)根据市场实际情况,该商场计划再进1000双这种跑步鞋,请你帮助商场经理估计一下需要进多少双41号的跑步鞋?5、(铁岭)小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.(第45题)39 40 41 42 43 44 号码参考答案 一、选择题:1、D2、D3、C4、D5、D6、A7、B8、C9、A 10、A 11、C 12、A 13、B 14、B 15、C 16、D 17、C 18.C 19、C 20、A 21、C 22、A 二、填空题:1、抽样调查2、23、9.34、35、1,3,5或2,3,46、23;2.67、=8、小林9、1600 10、0.94 11、13 12、2713、814、12 15、45三、解答题:1、(1)抽样调查;(2)2040A B ==,;(3)5300000150000352⨯=++10830%360= 15000030%45000⨯=2、(1)200;(2)200-20-110-10=60,补全统计图如下:(3)18;(4)感想略. 3、A 的频率=61305= 4、(1)甲的平均成绩为:(857064)373++÷=, 乙的平均成绩为:(737172)372++÷=, 丙的平均成绩为:(736584)374++÷=,∴候选人丙将被录用. (2)甲的测试成绩为:(855703642)(532)76.3⨯+⨯+⨯÷++=,乙的测试成绩为:(735713722)(532)72.2⨯+⨯+⨯÷++=,丙的测试成绩为:(735653842)(532)72.8⨯+⨯+⨯÷++=,∴候选人甲将被录用. 5、1(11.6211.5111.9411.1711.01)11.455x =++++=甲,18.50x =乙215S =甲[22(11.6211.45)(11.5111.45)-+-222(11.9411.45)(11.1711.45)(11.0111.45)+-+-+-]222221(0.170.060.490.280.44)5=++++10.54465=⨯0.10892=0.11≈,20S =乙,甲的极差0.93=,乙的极差0=. 6、(1)30250.25a b c ===,,;(2)补画的直方图如图:(3)41号跑步鞋的销售频率为30%,所以商场计划再进1000双跑步鞋时,41号鞋应进300双左右. 7、(1)9种;(2)948、(1)根据题意可列表如下:35 30 25 20 15 10 539 40 41 42 43 44 号码 频数(双)跑步鞋 (第2题)(第6题)从表中可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P(和为奇数)23=;(2)不公平.∵小明先挑选的概率是P(和为奇数)23=,小亮先挑选的概率是P(和为偶数)13=,∵2133≠,∴不公平.。
高考试题解析数学(文科)分项版18 选修系列:坐标系与参数方程一、填空题:1.(2011年高考广东卷文科14)(坐标系与参数方程选做题)已知两曲线参数方程分别为⎩⎨⎧==θθsin cos 5y x (0≤ )π<和⎪⎩⎪⎨⎧==ty t x 245 (t ∈R ),它们的交点坐标为 .3.(2011年高考陕西卷文科15) C. (坐标系与参数方程选做题)直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为________.【答案】1【解析】:由3cos sin x y θθ=+⎧⎨=⎩得圆心为1C 1(3,0),1r =,由1ρ=得圆心为2C 1(0,0),1r =,由平几知识知当A B 、为12C C 连线与两圆的交点时AB 的最小值,则AB 的最小值为12||2C C -|30|=-2-321=-=二、解答题:4.(2011年高考江苏卷21)选修4-4:坐标系与参数方程(本小题满分10分)在平面直角坐标系xOy 中,求过椭圆5cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)的右焦点且与直线423x t y t=-⎧⎨=-⎩(t 为参数)平行的直线的普通方程。
解:(Ⅰ)设动点),(y x P ,则依题意:)2,2(yx M ,因为点M 在曲线1C 上,所以⎩⎨⎧+==⎪⎪⎩⎪⎪⎨⎧+==ααααsin 44cos 4sin 222cos 22y x y x 即所以,曲线2C 的参数方程为⎩⎨⎧+==ααsin 44cos 4y x (α为参数) (Ⅱ)曲线1C 的极坐标方程为θρsin 4=曲线2C 的极坐标方程为θρsin 8=,它们与射线3πθ=交于A 、B 两点的极径分别是343sin 8,323sin 421====πρπρ,因此,3221=-=ρρAB点评:本题考查坐标系与参数方程的有关内容,求解时既可以化成直角坐标方程求解,也可以直接求解(关键要掌握两种坐标系下的曲线与方程的关系与其他知识的联系)6.(2011年高考辽宁卷文科23)(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,曲线C 1的参数方程为cos ,sin ,x y ϕϕ=⎧⎨=⎩(ϕ为参数)曲线C 2的参数方程为cos ,sin ,x a y b ϕϕ=⎧⎨=⎩(0a b >>,ϕ为参数)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=2π时,这两个交点重合。
某某14市州2011年中考数学试题分类解析汇编专题7:统计与概率一、选择题1.(某某某某3分)谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A等级的人数占总人数的A.6% B.10% C.20% D.25%【答案】C。
【考点】条形统计图,频数、频率和总量的关系。
【分析】由图,根据频数、频率和总量的关系得,10÷(10+15+12+10+3)=20%。
故选C。
2.(某某永州3分)某同学参加射击训练,共射击了六发子弹,击中的环数分别为3,4,5,7,7,10.则下列说法错误的是()A.其平均数为6 B.其众数为7 C.其中位数为7 D.其中位数为6【答案】C。
【考点】平均数,众数,中位数。
【分析】平均数是指在一组数据中所有数据之和再除以数据的个数,这组数据的平均数为345771066+++++=,所以选项A正确;众数是在一组数据中出现次数最多的数据,这组数据出现次数最多的是7,所以选项B正确;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),这组数据的中位数为5762+=,所以选项D正确,选项C错误。
故选C。
3.(某某某某3分)在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超.有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是A.李东夺冠的可能性较小 B.李东和他的对手比赛l0局时,他一定赢8局C.李东夺冠的可能性较大D.李东肯定会赢【答案】C。
【考点】概率的意义。
【分析】根据概率的意义,概率反映的只是这一事件发生的可能性的大小,可能发生也不一定不发生,依次分析可得答案:A、李东夺冠的可能性较大,故本选项错误;B、李东和他的对手比赛10局时,他可能赢8局,故本选项错误;C、李东夺冠的可能性较大,故本选项正确;D、李东可能会赢,故本选项错误。
故选C。
4.(某某某某3分)数据:1,3,5的平均数与极差分别是A、3,3B、3,4C、2,3D、2,4【答案】B。
中考数学专题复习《统计与概率》经典例题及测试题(含答案)【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次甲 87 95 85 93乙 80 80 90 90S甲=17,S乙=25,下列说法正确的是( )A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定答案: B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩(百分制)面试86929083 笔试90838392别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A.①②③ B.①② C.①③ D.②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是 35. 三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲,S 乙 哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。
第七章 统计与概率一、选择题【第1题】 (2011年5月上海市初中教学质量抽样分析试卷第2题)如果从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,那么取出的数是3的倍数的概率是( ) (A )21; (B )31; (C )51; (D )103. 【答案】D【第2题】 (2011年4月奉贤区调研测试数学试卷第5题) 某种彩票的中奖机会是1%,下列说法正确的是( )A .买1张这种彩票一定不会中奖;B .买100张这种彩票一定会中奖;C .买1张这种彩票可能会中奖;D .买100张这种彩票一定有99张彩票不会中奖. 【答案】C【第3题】 (2011年4月虹口区初三年级数学学科中考练习卷第3题)袋中有3个红球,4个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机从袋中摸出1个球,则摸出白球的概率是( ) A .14 B .17 C .4 D .47【答案】D【第4题】 (2011年4月金山区初三中考模拟数学卷第4题) 从2,3,4,5,6中任取一个数,是素数的概率是 ( ) A 、51 B 、52 C 、53D 、54【答案】C【第5题】 (2011年4月静安区学习质量调研数学卷第4题) 一支篮球队准备购买10双运动鞋,各种尺码统计如下表:则这10双运动鞋尺码的众数和中位数分别为( )(A )26厘米,26厘米 (B )26.5厘米,26.5厘米 (C )26.5厘米,26厘米 (D )26厘米,26.5厘米 【答案】B【第6题】 (2011年4月卢湾区初中毕业统一学业模拟考试数学卷第4题)某班7名同学的一次体育测试成绩(满分30分)依次为:22,23,24,23, 22,23,25,这组数据的众数是( )A .22 ;B . 23;C .24 ;D .25 . 【答案】B【第7题】 (2011年5月闵行区九年级综合练习数学卷第4题)如图,反映的是某中学九(1)班学生外出乘车、步行、骑车人数的扇形分布图,其中乘车的学生有20人,骑车的学生有12人,那么下列说法正确的是( ) (A )九(1)班外出的学生共有42人; (B )九(1)班外出步行的学生有8人;(C )在扇形图中,步行学生人数所占的圆心角的度数为82°; (D )如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人.【答案】B【第8题】 (2011年4月普陀区初三质量调研数学卷第3题)某一段时间,小芳测得连续五天的日最高气温后,整理得出下表(有两个数据被遮盖).被遮盖的两个数据依次是( )(A ) 3℃,2; (B ) 3℃,4; (C ) 4℃,2; (D ) 4℃,4. 【答案】D【第9题】 (2011年4月徐汇区学习能力诊断卷数学卷第5题)一次体育课上,15名男生跳高成绩如下表,他们跳高成绩的中位数和众数分别是( )A .3, 5;B .1.65, 1.65;C .1.70, 1.65;D .1.65, 1.70.【答案】B【第10题】 (2011年5月杨浦区二模数学卷第3题)乘车50% 步行 x %骑车 y %(第4题图)本学期的五次数学测试中,甲、乙两同学的平均成绩一样,方差分别为 1.2、0.5,则下列说法正确的是()(A)乙同学的成绩更稳定;(B)甲同学的成绩更稳定;(C)甲、乙两位同学的成绩一样稳定;(D)不能确定.【答案】A【第11题】(2011年4月闸北区九年级数学学科期中练习卷第2题)某班50名学生的一次英语听力测试成绩分布如下表所示(满分10分):这次听力测试成绩的众数是()(A)5分; (B)6分;(C)9分;(D)10分.【答案】D二、填空题第13题【第12题】 (2011年4月宝山嘉定两区学业考试数学模拟卷第14题)已知关于x 的方程042=+-m x x ,如果从1、2、3、4、5、6六个数中任取一个数作为方程的常数项m ,那么所得方程有实数根的概率是 . 【答案】23【第13题】 (2011年4月长宁区初三数学教学质量检测试卷第13题)如图所示,一块正八边形的游戏板,用纸板沿着正八边形的边做一围栏, 随意投掷一个骰子.规定:如果骰子落在分界线上,则算落在其逆时针方向 的区域.骰子落在黑色区域的概率是 . 【答案】38【第14题】 (2011年4月虹口区初三年级数学学科中考练习卷第14题)甲、乙两支排球队的人数相等,且平均身高都是1.86米,方差分别为20.35S 甲=,20.27S 乙=,则身高较整齐的球队是 队. 【答案】乙【第15题】 (2011年4月黄浦区初三学业考试模拟考数学卷第14题)小明左边口袋中放有三张卡片,上面分别写着1、2、3,他右边口袋中也放有三张卡片,上面分别写着4、5、6,他任意地从两个口袋中各取出一张卡片,则所得两张卡片上写的数之和为偶数的概率是_______. 【答案】49【第16题】 (2011年4月静安区学习质量调研数学卷第13题)在一个袋中,装有四个除数字外其它完全相同的小球,球面上分别标有1、2、3、4这四个数字,从中随机摸出两个球,球面数字的和为奇数的概率是 .【答案】23【第17题】 (2011年4月静安区学习质量调研数学卷第14题) 为了了解某校九年级学生的身体素质情况,在该校九年 级随机抽取50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出频数分布直方图(如图,每组数 据可含最小值,不含最大值),如果在一分钟内跳绳次数少于120次的为不合格,那么可以估计该校九年级300名学生中跳绳不合格的人数为 . 【答案】72【第18题】 (2011年4月卢湾区初中毕业统一学业模拟考试数学卷第10题)(第14题图)从1至9这9个自然数中任取一个数,这个数能被2整除的概率是.【答案】4 9【第19题】(2011年4月闵行区九年级质量调研数学卷第14题)掷一枚质地均匀的骰子,掷得的点数是合数的概率为 .【答案】1 3【第20题】(2011年5月闵行区九年级综合练习数学卷第13题)一布袋里装有4个红球、5个黄球、6个黑球,这些球除颜色外其余都相同,那么从这个布袋里摸出一个黄球的概率为.【答案】1 3【第21题】(2011年5月闵行区九年级综合练习数学卷第14题)如果一组数a,2,4,0,5的中位数是4,那么a可以是(只需写出一个满足要求的数).【答案】6【第22题】(2011年4月浦东新区中考数学预测卷第14题)如果从数字1、2、3、4中,任意取出两个数字组成一个两位数,那么这个两位数是奇数的概率是.【答案】1 2【第23题】(2011年4月普陀区初三质量调研数学卷第14题)在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正六边形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是 .【答案】3 5【第24题】(2011年4月青浦区初中学业模拟考试数学卷第13题)为了解居民节约用水的情况,小丽对某个单元的住户用水量进行调查,右表是某个单元的住户3月份用水量的调查结果。
福建9市2011年中考数学试题分类解析汇编专题7:统计与概率一、选择题1.(福建福州4分)从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是A、0B、1C、2D、13【答案】B。
【考点】列表法或树状图法,概率。
【分析】画树状图:。
故选B。
图中可知,共有6种等可能情况,积是正数的有2种情况,故概率为21632.(福建泉州3分)下列事件为必然事件的是A、打开电视机,它正在播广告B、抛掷一枚硬币,一定正面朝上C、投掷一枚普通的正方体骰子,掷得的点数小于7D、某彩票的中奖机会是1%,买1张一定不会中奖【答案】C。
【考点】随机事件。
【分析】根据事件的分类的定义及分类对四个选项进行逐一分析即可:A、打开电视机,它正在播广告是随机事件,故本选项错误;B、抛掷一枚硬币,正面朝上是随机事件,故本选项错误;C、因为一枚普通的正方体骰子只有1~6个点数,所以掷得的点数小于7是必然事件,故本选项正确;D、某彩票的中奖机会是1%,买1张中奖或不中奖是随机事件,故本选项错误。
故选C。
3.(福建漳州3分)下列事件中,属于必然事件的是A.打开电视机,它正在播广告B.打开数学书,恰好翻到第50页C.抛掷一枚均匀的硬币,恰好正面朝上D.一天有24小时【答案】D。
【考点】必然事件。
【分析】根据必然事件的定义:一定发生的事件,即可判断:A 、是随机事件,故选项错误;B 、是随机事件,故选项错误;C 、是随机事件,故选项错误;D 、是必然事件,故选项正确。
故选D 。
4.(福建漳州3分)九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位: 分),这次测试成绩的众数和中位数分别是A .79,85B .80,79C .85,80D .85,85【答案】C 。
【考点】众数,中位数。
【分析】众数是一组数据中出现次数最多的数据,数据85出现了两次最多为众数;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。
某某2011年中考数学试题分类解析汇编专题7:统计与概率一、选择题1. (某某某某、某某3分)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是(A)极差是47 (B)众数是42(C)中位数是58(D)每月阅读数量超过40的有4个月【答案】C。
【考点】极差,折线统计图,中位数,众数。
【分析】A、根据统计图可得出最大值83和最小值28,即可求得极差:83﹣28=55,故本选项错误;B、出现次数最多的数据是众数:58出现2次,多于其它数,故本选项错误;C、中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),故将这8个数据重新排列28,36,42,58,58,70,75,83,得中位数为:(58+58)÷2=58,故本选项正确;D、根据统计图可知,每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误。
故选C。
2.(某某某某4分)某校开展形式多样的“阳光体育”活动,七(3)班同学积极响应,全班参与.晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示),由图可知参加人数最多的体育项目是A、排球B、乒乓球C、篮球D、跳绳【答案】C。
【考点】扇形统计图。
【分析】因为总人数是一样的,所占的百分比越大,参加人数就越多,从图上可看出篮球的百分比最大,故参加篮球的人数最多。
故选C。
3.(某某某某4分)为了支援地震灾区同学,某校开展捐书活动,九(A、0.1B、0.2 C【答案】B 。
【考点】频数分布直方图,频数、频率和总量的关。
【分析】从直方图可知在5.5~6.5组别的频数是8,总量是40,由频数、频率和总量的关系(频率=量频数总)可直接求出频率为8÷40=0.2。
故选B 。
4.(某某某某4分)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为 A 、2 B 、4 C 、12 D 、16 【答案】B 。
2011年中考专题复习同步检测《统计与概率》
总分:120分及格:72分考试时间:120分
每小题3分,满分24分。
(1)某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9;则这五次射击的平均成绩是__________.中位数是__________.方差是__________.
(2)某校九年级1班有50名学生,在综合素质评价中,“运动与健康”方面的等级情况如面扇形统计图所示,则该班“运动与健康”评价等级为A的人数是____________.<A
href="javascript:;"></A>
(3)掷一枚质地均匀的小六面体.它的六个面上分别标有1、2、3、4、5、6,则朝上一面的数字是奇数的概率是__________
(4)在列频数分布表时,得到一组数据中某一个数据的频数是12,频率是0.2,那么这个数据组中共有__________个数据.
(5)长沙市某天的最高气温是17℃,最低气温是5℃,那么当天的最大温差是__________℃.
(6)一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是__________
(7)在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为__________
(8)今年“五•一”节,某超市开展“有奖促销”活动,凡购物不少于;o元的顾客均有一次转动转盘的机会(如图,转盘被分为8个全等的小扇形),当指针最终指向数字8时,该顾客获一等奖;当指针最终指向2或5时,该顾客获二等奖(若指针指向分界线则重转).经统计,当天发放一、二等奖奖品共600份,那么据此估计参与此次活动的顾客为__________<A
href="javascript:;"></A>
共8个小题,每小题3分,满分24分。
(1)对于样本数据1,2,3,2,2,以下判断:①平均数为5;②中位数为2;③众数为2;
④极差为2.正确的有()
(2)其市气象局预报称:明天本市的降水概率为70%,这句话指的是()
(3)下列不是必然事件的是()
(4)样本数据3,6,a,4,2的平均数是5.则这个样本的方差是()
(5)班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生。
了解到他们在家的学习时问如下表所示.那么这六位学牛学习时间的众数与中位数分别是()<A
href="javascript:;"></ A>
(6)从分别写有数字-4、-3、-2、-1、0、1、2、3、4的九张一样的卡片中.任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是()
(7)在做“抛掷两枚硬币实验”时.有部分同学没有硬币.因而需要选用别的实物来替代进行实验,在以下所选用的替代物中,你认为较合适的是()
(8)一个不透明的口袋中装有除颜色外其余都相同的球若干个,摸出红球的概率是0.2,已知袋中有红球3个,那么,袋中一共有球()
每小题6分,满分36分。
(1)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如下图所示.<A
href="javascript:;"></A>
(2)将正面分别标有数字4,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.
(3)<A href="javascript:;"></A>为了提高返乡农民工再就业能力,劳动和社会保障部门对400名返乡农民I:进行了某项专业技能培训,为了解培训的效果,培训结束后随机抽取了部分参调人员进行技能测试。
测试结果分成“不合格”、“合格”、“良好”、“优秀”四个等级,并绘制了如图所示的统计图,请根据统计图提供的信息,回答下列问题:
(4)在暑期社会实践活动小,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具.该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同.根据以上信息,完成下列填空:<A href="javascript:;">
</A>
(5)小亮看到路边上有人设摊玩“有奖掷币”游戏,规则是:交2元钱可以玩一次掷硬币游戏,每次同时掷两枚硬币.如果出现两枚硬币正面朝上,奖金5元;如果是其它情况,则没有奖金(每枚硬币落地只有正面朝上和反面朝上两种情况).小亮拿不定主意究竟是玩还是不玩,请同学们帮帮忙!
(6)小颖为九年级1班毕业联欢会设计了一个“配紫色“的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,两个转盘停止转动时,若有一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则”配紫色“成功,游戏者获胜,求游戏者获胜的概率。
<A
href="javascript:;"></A>
每小题8分,满分16分。
(1)<A href="javascript:;"></A><A href="javascript:;"></A>“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:<A href="javascript:;">
</A>
(2)如图所示,三张卡片上分别写有一个整式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡中随机抽取另一张,第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,用列表法或树形图法求能组成分式的概率是多少?<A
href="javascript:;"></A>
每小题10分,满分20分。
(1)一枚质量均匀的正方体骰子,六个面分别标有1、2、3、4、5、6,连续投掷两次.(1)用列表法或树状图表示出朝上的面上的数字所有可能出现的结果;(2)记两次朝上的面上的数字分别为P、q,若把P、q分别作为点A的横坐标和纵坐标.
(2)小华与小丽设计了A、B两种游戏:游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上旋转在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌,若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.
答案和解析
每小题3分,满分24分。
(1) :
8,8,2(2) :
20(3) :
1/2(4) :
60(5) :
12(6) :
3/8(7) :
1/2(8) :
1600共8个小题,每小题3分,满分24分。
(1) :C
(2) :D
(3) :D
(4) :A
(5) :A
(6) :B
(7) :C
(8) :B
每小题6分,满分36分。
(1) :
(1).略.
(2)解:甲、乙两人射靶成绩的平均数都是6,但甲比乙的方差要小,说明甲的成绩较为稳定,所以甲的成绩比乙的成绩要好些.(2) :
<A ></A>(3) :
(1)40;
(2)0.25;
(3)400×0.25=100(人).(4) :
(1)132,48,60
(2)4,6(5) :
(1)解:掷两枚硬币出现的情况是(正,正)、(正,反)、(反,正)、(反,反),故出现两枚硬币都朝上的概率是0.25;
(2)25,125,75;(3)略(只要有理就行).
(6) :
<A ></
A>每小题8分,满分16分。
(1) :
<A ></A>(2) :
<A ></A>
每小题10分,满分20分。
(1) :
<A ></A>(2) : <A ></A>。