2019-2020年中考数学专题一整体思想复习题及答案
- 格式:pdf
- 大小:55.58 KB
- 文档页数:4
2019-2020 年中考数学试卷及解析一、选择题(本题有8 小题,每小题 3 分,共 24 分)1.- 3 的是【】1A . 3B .- 3C.- 3D. 32.下列形中,既是称形,又是中心称形的是【】A .平行四形B .等三角形C.等腰梯形3.今年我市参加中考的人数大有41300 人,将 41300 用科学数法表示【D .正方形】A . 413× 102B. 41.3× 103C. 4.13× 1044.已知⊙ O1、⊙ O2的半径分3cm、 5cm,且它的心距系是【】8cm,⊙D. 0.413× 103O1与⊙ O2的位置关A .外切B.相交C.内切 D .内含5.如是由几个相同的小立方搭成的几何体的三,几个几何体的小立方的个数是【】A . 4 个B. 5 个C. 6 个D. 7 个6.将抛物 y= x2+ 1 先向左平移 2 个位,再向下平移 3 个位,那么所得抛物的函数关系式是【】A . y= ( x+ 2) 2+ 2B. y= ( x+ 2) 2- 2C. y= ( x-2) 2+ 2D. y= ( x- 2) 2- 27.某校在开展“ 心捐助”的活中,初三一班六名同学捐款的数分:8, 10,10, 4, 8,10( 位:元 ) ,数据的众数是【】A . 10B .9C. 8D. 43= 3+ 5, 33= 7+ 9+ 11,8.大于 1 的正整数 m 的三次可“分裂”成若干个奇数的和,如243= 13+ 15+ 17+ 19,⋯若 m3分裂后,其中有一个奇数是2013 , m 的是【】A . 43B .44C. 45 D .46二、填空题(本大题共10 小题,每小题 3 分,共 30 分)9.州市某天的最高气温是6℃,最低气温是- 2℃,那么当天的日温差是.10.一个角是 38 度,它的余角是度.11.已知 2a- 3b2= 5, 10- 2a+ 3b2的是.12.已知梯形的中位是4cm,下底是 5cm,它的上底是cm.13.在平面直角坐系中,点P( m, m- 2) 在第一象限内, m 的取范是.14.如, PA、 PB 是⊙ O 的切,切点分A、 B 两点,点 C 在⊙ O 上,如果∠ ACB= 70°,那么∠ P 的度数是.AB= 2,则 tan ∠DCF 的15.如图,将矩形 ABCD 沿 CE 折叠,点 B 恰好落在边 AD 的 F 处.若 BC3 值是 .16.如图,线段 AB 的长为等腰直角三角形△ ACD2,C 为 AB 上一个动点,分别以和△ BCE ,那么 DE 长的最小值是AC 、BC为斜边在.AB 的同侧作两个17 .已知一个圆锥的母线长为 10cm ,将侧面展开后所得扇形的圆心角是144 °,则这个圆锥的底面圆的半径是 cm .18k经过 Rt △ OMN 斜边上的点 A ,与直角边 MN 相交于点 B ,已知 OA = 2AN ,.如图, 双曲线 y = x△OAB 的面积为 5,则 k 的值是 .三、解答题(本大题共有10 小题,共 96 分)19 . ( 1) 计算:- ( - 1)2 + ( - 2012) 0;3( 2) 因式分 解: m n - 9mn .920 a - 1 ÷ a 2- 1a 值代入计算..先化简: 1-2 ,再选取一个合适的aa + 2a21.扬州市中小学全面开展“体艺 2+ 1”活动,某校根据学校实际,决定开设 A :篮球, B :乒乓球, C :声乐, D :健美操等四中活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:( 1)这次被调查的学生共有人.( 2)请你将统计图 1 补充完整.( 3)统计图 2 中 D 项目对应的扇形的圆心角是度.( 4)已知该校学生2400 人,请根据调查结果估计该校最喜欢乒乓球的学生人数.22.一个不透明的布袋里装有4 个大小,质地都相同的乒乓球,球面上分别标有数字1,- 2, 3,-4,小明先从布袋中随机摸出一个球 ( 不放回去 ) ,再从剩下的 3 个球中随机摸出第二个乒乓球.( 1)共有种可能的结果.( 2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.23.如图,在四边形ABCD 中, AB=BC ,∠ ABC=∠ CDA = 90°,BE ⊥AD ,垂足为 E.求证: BE= DE.24.为了改善生态环境,防止水土流失,某村计划在荒坡上种480 棵树,由于青年志愿者的支援,每日比原计划多种1,结果提前 4 天完成任务,原计划每天种多少棵树?325.如图,一艘巡逻艇航行至海面 B 处时,得知正北方向上距 B 处 20 海里的 C 处有一渔船发生故障,就立即指挥港口 A 处的救援艇前往 C 处营救.已知 C 处位于 A 处的北偏东45°的方向上,港口 A 位于 B 的北偏西30°的方向上.求A、 C 之间的距离 ( 结果精确到0.1 海里,参考数据:2≈ 1.41,3≈ 1.73) .26.如图, AB 是⊙ O 的直径, C 是⊙ O 上一点, AD 垂直于过点 C 的切线,垂足为 D .( 1) 求证: AC 平分 BAD ;( 2) 若 AC= 2 5, CD=2,求⊙ O 的直径.27.已知抛物线y= ax2+ bx+ c 经过 A( -1, 0) 、B( 3,0) 、C( 0,3) 三点,直线l 是抛物线的对称轴.( 1)求抛物线的函数关系式;( 2)设点 P 是直线 l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;( 3)在直线 l 上是否存在点 M,使△ MAC 为等腰三角形?若存在,直接写出所有符合条件的点 M 的坐标;若不存在,请说明理由.28.如图 1,在平面直角坐标系中,矩形OABC 的顶点 O 在坐标原点,顶点A、 C 分别在 x 轴、 y 轴的正半轴上,且OA =2, OC= 1,矩形对角线AC、 OB 相交于 E,过点 E 的直线与边OA、BC 分别相交于点G、 H.( 1) ①直接写出点 E 的坐标:;②求证:AG=CH.( 2)如图 2,以 O 为圆心, OC 为半径的圆弧交OA 与 D,若直线 GH 与弧 CD 所在的圆相切于矩形内一点 F,求直线 GH 的函数关系式.( 3)在 ( 2 ) 的结论下,梯形 ABHG 的内部有一点P,当⊙ P 与 HG、 GA、 AB 都相切时,求⊙ P 的半径.一、选择题( 本题有8 小题,每小题参考答案3 分,共 24 分 )1. ( 2012?扬州 ) - 3 的绝对值是 ( A. 3B.- 3)C.-3D.考点:绝对值。
江苏省扬州市2020年中考:数学考试真题与答案解析一、 选择题本大题共有8小题,每小题3分,共24分. 在每小题给出的四个选项中,只有一顶是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上。
1. 实数3的相反数是( )A. ﹣3B.C. 3D. 133±2. 下列各式中,计算结果为的是( )6m A.B. C.D. 23m m ⋅33+m m 122m m ÷()32m3. 在平面直角坐标系中,点所在的象限是()()22,3P x +-A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限4. “致中和,天地位焉,万物育焉”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光. 在下列与扬州有关的标识或简图中,不是轴对称图形的是()A B. C. D.5. 某班级组织活动,为了了解同学们喜爱的体育运动项目,设计了如下尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是( )A. ①②③B.①③⑤C. ②③④D. ②④⑤6. 如图,小明从点A 出发沿着直线前进10米到达点B ,向左转45°后又沿直线前进10米到达点C ,再向左转45°后沿直线前进10米到达点D.........照这样走下去,小明第一次回到出发点A 时所走的路程为( )A. 100米B. 80米C. 60米D. 40米(第6题)(第7题)(第8题)7. 如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都各点上,以AB 为直径的圆经过点C 、D ,则sin ∠ACD 的值为( )A.B.C.D.23328. 小明同学利用计算机软件绘制函数(a ,b 为常数)的图像如图所示,由学习()2axy x b =+函数的经验,可以推断常数a 、b 的值满足( )A. a >0,b >0B. a >0,b<0C. a<0,b >0D. a<0,b<0二、 填空题本大题共有10小题,每小题3分,共30分. 不需写出解答过程,请把答案直接填写在答题卡相应位置上。
2019-2020年中考数学二轮复习-化归思想(附答案)Ⅰ、专题精讲:数学思想是数学内容的进一步提炼和概括,是对数学内容的种本质认识,数学方法是实施有关数学思想的一种方式、途径、手段,数学思想方法是数学发现、发明的关键和动力.抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.初中数学的主要数学思想是化归思想、分类讨论思想、数形结合思想等.本专题专门复习化归思想.所谓化归思想就是化未知为已知、化繁为简、化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等. Ⅱ、典型例题剖析【例1】(嘉峪关,8 分)如图3-1-1,反比例函数y=-8x 与一次函数y=-x+2的图象交于A 、B 两点. (1)求 A 、B 两点的坐标; (2)求△AOB 的面积.解:⑴解方程组82y x y x ⎧=-⎪⎨⎪=-+⎩ 得121242;24x x y y ==-⎧⎧⎨⎨=-=⎩⎩ 所以A 、B 两点的坐标分别为A (-2,4)B(4,-2(2)因为直线y=-x+2与y 轴交点D 坐标是(0, 2), 所以11222,24422AOD BOD S S ∆∆=⨯⨯==⨯⨯= 所以246AOB S ∆=+=点拨:两个函数的图象相交,说明交点处的横坐标和纵坐标,既适合于第一个函数,又适合于第二个函数,所以根据题意可以将函数问题转化为方程组的问题,从而求出交点坐标.【例2】(自贡,5分)解方程:22(1)5(1)20x x ---+=解:令y= x —1,则2 y 2—5 y +2=0. 所以y 1=2或y 2=12 ,即x —1=2或x —1=12 .所以x =3或x=32 故原方程的解为x =3或x=32点拨:很显然,此为解关于x -1的一元二次方程.如果把方程展开化简后再求解会非常麻烦,所以可根据方程的特点,含未·知项的都是含有(x —1)所以可将设为y ,这样原方程就可以利用换元法转化为含有y 的一元二次方程,问题就简单化了.【例3】(达川模拟,6分)如图 3-1-2,梯形 ABCD 中,AD ∥BC ,AB=CD ,对角线AC 、BD 相交于O 点,且AC ⊥BD ,AD=3,BC=5,求AC 的长.解:过 D 作DE ⊥AC 交BC 的延长线于E ,则得AD=CE 、AC=DE .所以BE=BC+CE=8. 因为 AC ⊥BD ,所以BD ⊥DE .因为 AB=CD , 所以AC =BD .所以GD=DE . 在Rt △BDE 中,BD 2+DE 2=BE 2所以BD BE=4 2 ,即AC=4 2 . 点拨:此题是根据梯形对角线互相垂直的特点通过平移对角线将等腰梯形转化为直角三角形和平行四边形,使问题得以解决.【例4】(新泰模拟,5分)已知△ABC 的三边为a ,b ,c ,且222a b c ab ac bc ++=++,试判断△ABC 的形状.解:因为222a b c ab ac bc ++=++, 所以222222222a b c ab ac bc ++=++, 即:222()()()0a b b c a c -+-+-= 所以a=b ,a=c , b=c 所以△ABC 为等边三角形.点拨:此题将几何问题转化为代数问题,利用凑完全平方式解决问题.【例5】(临沂,10分)△ABC 中,BC =a ,AC =b ,AB =c .若90C ∠=︒,如图l ,根据勾股定理,则222a b c +=。
方法技巧专题三整体思想解析在数学思想中整体思想是最基本、最常用的数学思想。
它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。
运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。
它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。
整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用.一、数与式中的整体思想【例题】(2017广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1 .【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.【同步训练】(2017湖北江汉)已知2a﹣3b=7,则8+6b﹣4a= ﹣6 .【考点】33:代数式求值.【分析】先变形,再整体代入求出即可.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.二、方程(组)与不等式(组)中的整体思想【例题】先阅读,然后解方程组.解方程组时,可由①得x-y=1, ③然后再将③代入②得4×1-y=5,求得y=-1,从而进一步求得这种方法被称为“整体代入法”, 请用这样的方法解下列方程组解:由①得2x-3y=2, ③把③代入②得,+2y=9,解得y=4,把y=4代入③得,2x-3×4=2,解得x=7,∴原方程组的解为【同步训练】仔细观察下图,认真阅读对话根据对话的内容,试求出饼干和牛奶的标价各是多少元?【考点】一元一次不等式组的应用.【分析】设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,用整体代入的思想求出x的取值,注意为整数且小于10,代入②可求牛奶的价格.【解答】解:设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,由②得y=9.2﹣0.9x③③代入①得x+9.2﹣0.9x>10∴x>8∵x是整数且小于10∴x=9∴把x=9代入③得y=9.2﹣0.9×9=1.1(元)答:饼干的标价是9元/盒,牛奶的标价是1.1元/袋.三、函数与图像中的整体思想【例题】某学校艺术馆的地板由三种正多边形的小木板铺成,设这三种多边形的边数分别为x、y、z,求+的值.【考点】平面镶嵌(密铺).【分析】根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.【解答】解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x、y、z,那么这三个多边形的内角和可表示为: ++=360,两边都除以180得:1﹣+1﹣+1﹣=2,两边都除以2得: +=.【点评】本题考查了平面镶嵌(密铺).解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.【同步训练】(2017浙江衢州)“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【考点】FH:一次函数的应用;FA:待定系数法求一次函数解析式.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80>30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80>30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.四、几何与图形中的整体思想:【例题】小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180 B.210 C.360 D.270【分析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点评】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.【同步训练】如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13 .【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.【达标检测】1.(2017.江苏宿迁)若a﹣b=2,则代数式5+2a﹣2b的值是9 .【考点】33:代数式求值.【分析】原式后两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=2,∴原式=5+2(a﹣b)=5+4=9,故答案为:92.已知是方程组的解,则a2﹣b2= 1 .【考点】97:二元一次方程组的解.【分析】根据是方程组的解,可以求得a+b和a﹣b的值,从而可以解答本题.【解答】解:∵是方程组的解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.3.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角B.都是锐角C.是一个锐角、一个钝角D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.4.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.已知:在四边形ABCD中, O是对角线BD上任意一点.(如图①)求证:S△OBC •S△OAD=S△OAB•S△OCD;(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.【解析】证明:(1)分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F,则有:S△AOB=BO•AE,S△COD=DO•CF,S△AOD=DO•AE,S△BOC=BO•CF,∴S△AOB •S△COD=BO•DO•AE•CF,S△AOD •S△BOC=BO•DO•CF•AE,∴S△AOB •S△COD=S△AOD•S△BOC.;(2)能.从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.或S△AOD •S△BOC=S△AOB•S△DOC,已知:在△ABC中,D为AC上一点,O为BD上一点,求证:S△AOD •S△BOC=S△AOB•S△DOC.证明:分别过点A、C,作AE⊥BD,交BD的延长线于E,作CF⊥BD于F,则有:S△AOD =DO•AE,S△BOC=BO•CF,S△OAB =OB•AE,S△DOC=OD•CF,∴S△AOD •S△BOC=OB•OD•AE•CF,S△OAB •S△DOC=BO•OD•AE•CF,∴S△AOD •S△BOC=S△OAB•S△DOC.四个.如图所示:。
2019-2020中考数学试题(含答案)一、选择题1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×1072.已知反比例函数 y=的图象如图所示,则二次函数 y =a x 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.3.二次函数y=x2﹣6x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,则m的值为()A.27B.9C.﹣7D.﹣164.如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有()个.A.1B.2C.3D.45.下列命题中,其中正确命题的个数为()个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A.1B.2C.3D.46.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米7.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A.14cm B.4cm C.15cm D.3cm9.若点P1(x1,y1),P2(x2,y2)在反比例函数kyx(k>0)的图象上,且x1=﹣x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y210.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5B.6C.7D.811.估6的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间12.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h (m )之间的函数关系式为()0S V h h=≠,这个函数的图象大致是( ) A . B .C .D .二、填空题13.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.14.如图,矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为____________.15.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,AC 与OB 交于点D (8,4),反比例函数y=的图象经过点D .若将菱形OABC 向左平移n 个单位,使点C落在该反比例函数图象上,则n 的值为___.16.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.17.分解因式:x 3﹣4xy 2=_____.18.已知(a -4)(a -2)=3,则(a -4)2+(a -2)2的值为__________.19.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .20.已知M 、N 两点关于y 轴对称,且点M 在双曲线12y x=上,点N 在直线y=﹣x+3上,设点M 坐标为(a ,b ),则y=﹣abx 2+(a+b )x 的顶点坐标为 . 三、解答题21.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.22.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F 'V V ≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.23.解方程:3x x +﹣1x=1. 24.某公司销售两种椅子,普通椅子价格是每把180元,实木椅子的价格是每把400元.(1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272000元,求两种椅了各销售了多少把?(2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a %(a >0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上一月全月普通椅子的销售量多了103a %:实木椅子的销售量比第一月全月实木椅子的销售量多了a %,这一周两种椅子的总销售金额达到了251000元,求a 的值.25.某校在宣传“民族团结”活动中,采用四种宣传形式:A .器乐,B .舞蹈,C .朗诵,D .唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有 人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】230000000=2.3×108 ,故选C.2.C解析:C【解析】【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.3.D解析:D【解析】【分析】先确定抛物线的对称轴为直线x=3,根据抛物线的对称性得到x=−2和x=8时,函数值相等,然后根据题意判断抛物线与x轴的交点坐标为(−2,0),(8,0),最后把(−2,0)代入y=x2−6x+m可求得m的值.【详解】解:∵抛物线的对称轴为直线x =,∴x =−2和x =8时,函数值相等, ∵当−2<x <−1时,它的图象位于x 轴的下方;当8<x <9时,它的图象位于x 轴的上方,∴抛物线与x 轴的交点坐标为(−2,0),(8,0),把(−2,0)代入y =x 2−6x +m 得4+12+m =0,解得m =−16.故选:D .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.4.B解析:B【解析】【分析】由图像可知a >0,对称轴x=-2b a=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.【详解】 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∵x =﹣1时,y =0,∴a ﹣b +c =0,所以②错误;∵b =﹣2a ,∴2a +b =0,所以③错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以④正确.故选B .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义. 5.C解析:C【解析】【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.【详解】①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题;③折线统计图反映一组数据的变化趋势,正确,是真命题;④水中捞月是随机事件,故错误,是假命题,真命题有3个,故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.6.A解析:A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +, ∴AB=21.7(米),故选A .【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.B解析:B【解析】【分析】若y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,可对A 、D 进行判断;若y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,则可对B 、C 进行判断.【详解】A 、y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,所以A 选项错误;B 、y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,所以B 选项正确;C 、y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,所以C 选项错误;D 、y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,所以D 选项错误. 故选B .【点睛】本题考查了一次函数的图象:一次函数y=kx+b (k≠0)的图象为一条直线,当k >0,图象过第一、三象限;当k <0,图象过第二、四象限;直线与y 轴的交点坐标为(0,b ).8.A解析:A【解析】运用直角三角形的勾股定理,设正方形D 的边长为x ,则22222(65)(5)10x +++=,x =(负值已舍),故选A9.D解析:D【解析】 由题意得:1212k k y y x x ==-=- ,故选D. 10.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12 AB=7 在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2+(7 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键11.C解析:C【解析】【分析】 先化简后利用的范围进行估计解答即可.【详解】=6-3=3, ∵1.7<<2, ∴5<3<6,即5<<6, 故选C .【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.C解析:C【解析】【分析】【详解】解:由题意可知:00v h >>, ,∴ (0)v s h h=≠中,当v 的值一定时,s 是h 的反比例函数, ∴函数 (0)v s h h=≠的图象当00v h >>,时是:“双曲线”在第一象限的分支. 故选C. 二、填空题13.3【解析】【分析】分别延长AEBF交于点H易证四边形EPFH为平行四边形得出G为PH中点则G的运行轨迹为三角形HCD的中位线MN再求出CD的长运用中位线的性质求出MN的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G 的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=3,即G的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.14.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE 垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角解析:33【解析】试题解析:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD=2222-=-=.BD AB6333【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA解析:【解析】试题分析根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D (8,4),反比例函数的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为2.16.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC 的面积=4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=2x的图象上,∴△AOD的面积=12×2=1,∴菱形OABC的面积=4×△AOD的面积=4故答案为:417.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式解析:x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a ﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.19.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.20.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-ab )分别代入相应的函数中得b=①a+3=b②∴ab=(a+b )2=(a-b )2+4ab=11a+b=∴y=-x2x ∴顶点坐标为解析:( ,112). 【解析】【详解】∵M 、N 两点关于y 轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a ①,a+3=b ②,∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=∴y=-12x 2,∴顶点坐标为(2b a -=244ac b a -=112),即(112). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.三、解答题21.(1)详见解析;(2)存在,;(3)当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC 是等边三角形可得∠DCB=60°,CD=CE ,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE 是等边三角形,由此可得DE=CD ,因此当CD ⊥AB 时,CD 最短,则DE 最短,结合△ABC 是等边三角形,AC=4即可求得此时DE=CD= (3)由题意需分0≤t <6,6<t <10和t >10三种情况讨论,①当0≤t <6时,由旋转可知,∠ABE=60°,∠BDE <60°,由此可知:此时若△DBE 是直角三角形,则∠BED=90°;②当6<t <10s 时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE 不可能是直角三角形;③当t >10s 时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t 的值了. 试题解析:(1)∵将△ACD 绕点C 逆时针方向旋转60°得到△BCE ,∴∠DCE=60°,DC=EC ,∴△CDE 是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s 或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D 在运动过程中,△DBE 是等边三角形这一点得到DE=CD ,从而可知当CD ⊥AB 时,CD 最短,则DE 最短,由此即可由已知条件解得DE 的最小值;(2)解第3小题的关键是:根据点D 的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE 中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t 的值了.22.(1)证明见解析;(2)四边形AECF 是菱形.证明见解析.【解析】【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.又∵AF=AE,∴平行四边形AECF是菱形.考点:1.全等三角形的判定;2.菱形的判定.23.分式方程的解为x=﹣34.【解析】【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2,求出方程的解,再代入x(x+3)进行检验即可.【详解】两边都乘以x(x+3),得:x2﹣(x+3)=x(x+3),解得:x=﹣34,检验:当x=﹣34时,x(x+3)=﹣2716≠0,所以分式方程的解为x=﹣34.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键. 24.(1)普通椅子销售了400把,实木椅子销售了500把;(2)a的值为15.【解析】【分析】(1)设普通椅子销售了x把,实木椅子销售了y把,根据总价=单价×数量结合900把椅子的总销售金额为272000元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据销售总价=销售单价×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【详解】(1)设普通椅子销售了x把,实木椅子销售了y把,依题意,得:900 180400272000 x yx y+=⎧⎨+=⎩,解得:400500 xy=⎧⎨=⎩.答:普通椅子销售了400把,实木椅子销售了500把.(2)依题意,得:(180﹣30)×400(1+103a%)+400(1﹣2a%)×500(1+a%)=251000,整理,得:a2﹣225=0,解得:a1=15,a2=﹣15(不合题意,舍去).答:a的值为15.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,找准等量关系,正确列出二元一次方程组和一元二次方程是解题关键.25.(1)本次调查的学生共有100人;(2)补图见解析;(3)选择“唱歌”的学生有480人;(4)被选取的两人恰好是甲和乙的概率是16.【解析】【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;(2)用总人数减去A、C、D项目的人数,求出B项目的人数,从而补全统计图;(3)用该校的总人数乘以选择“唱歌”的学生所占的百分比即可;(4)根据题意先画出树状图,得出所有等情况数和选取的两人恰好是甲和乙的情况数,然后根据概率公式即可得出答案.【详解】(1)本次调查的学生共有:30÷30%=100(人);(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×40100=480(人);(4)根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。
考向1.7 实数(整体思想)例 1、(2021·四川内江·中考真题)若实数x 满足210x x --=,则3222021x x -+=__. 【答案】2020解:210--=x x ,21x x ∴=+,21x x -=,3222021x x -+ 2(1)22021x x x =+-+2222021x x x =+-+ 22021x x =-+12021=-+2020=.故答案为:2020.例 2、(2021·江苏苏州·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b a a b+等于( ) A .2- B .1- C .1 D .2【答案】A解:∵22=b a b a a b ab++,∴()2222==a b ab b a b a a b ab ab+-++, ∵两个不等于0的实数a 、b 满足0a b +=,∴()22-2===-2a b ab b a ab a b ab ab +-+, 故选:A .例 3、(2021·广东广州·中考真题)已知3m n mnA n m ⎛⎫=- ⎪⎝⎭(1)化简A ;(2)若230m n +-=,求A 的值. 【答案】(1)3m n +;(2)6.解:(1)()())22333m n m n m n mn mnA m n mn nm mn +-⎛⎫=-==+ ⎪⎝⎭;(2)∵230m n +-=,∴23m n +=,∴()3=323=6A m n =+⨯.整体思想的运用形式: (1) 整体降次; (2) 整体求值。
【知识识记与拓展】1、代数式求值中整体思想体现;2、降次中整体思想体现;3、一元次次方程根与系数关系中整体思想体现;一、单选题 1.(2018·山东潍坊·中考真题)|12|=( ) A .12B 21C .12D .12-2.(2021·四川泸州·中考真题)已知1020a =,10050b =,则1322a b ++的值是( )A .2B .52C .3D .923.(2021·四川泸州·中考真题)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或404.(2020·江苏无锡·中考真题)若2x y +=,3z y -=-,则x z +的值等于( ) A .5B .1C .-1D .-55.(2016·四川雅安·中考真题)已知231a a +=,则代数式2261a a +-的值为( ) A .0B .1C .2D .36.(2011·辽宁沈阳·中考真题)已知230a a +-=,那么2(4)a a +的值是( ) A .9B .12-C .18-D .15-7.(2021·浙江台州·中考真题)已知(a +b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D .8.(2021·四川自贡·中考真题)已知23120x x --=,则代数式2395x x -++的值是( ) A .31B .31-C .41D .41-9.(2020·江苏泰州·中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( ) A .5B .3C .3-D .1-10.(2020·重庆·中考真题)已知a +b =4,则代数式122a b++的值为( ) A .3B .1C .0D .-111.(2020·贵州遵义·中考真题)已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( ) A .5B .10C .11D .1312.(2019·江苏泰州·中考真题)若231a b -=-,则代数式2463a ab b -+的值为( ) A .-1B .1C .2D .3二、填空题 13.(2019·江苏常州·中考真题)如果20a b --=,那么代数式122a b +-的值是_____. 14.(2019·湖南湘潭·中考真题)若5a b +=,3a b -=,则22a b -=_____. 15.(2017·湖北·中考真题)已知2a ﹣3b=7,则8+6b ﹣4a=_____.16.(2015·江苏扬州·中考真题)若235a b -=,则2622015b a -+=______. 17.(2014·贵州贵阳·中考真题)若0m n +=,则221m n ++=____________.18.(2021·四川绵阳·中考真题)若x y -=34xy =-,则22x y -=_____.19.(2021·四川广安·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______.20.(2021·湖南岳阳·中考真题)已知1x x +1x x+=______. 21.(2020·宁夏·中考真题)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a ,较长直角边为b .如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为____.22.(2020·湖北·中考真题)已知23x y +=,则124x y ++=______.23.(2020·广东·中考真题)已知5x y =-,2xy =,计算334x y xy +-的值为_________. 24.(2020·四川泸州·中考真题)已知12,x x 是一元二次方程2470x x --=的两个实数根,则2211224x x x x ++的值是_________.25.(2020·山东临沂·中考真题)若1a b +=,则2222a b b -+-=________.26.(2020·四川成都·中考真题)已知73a b =-,则代数式2269a ab b ++的值为_________. 27.(2020·江苏宿迁·中考真题)已知3a b +=,代数式225a b +=,则ab 的值是_____________.三、解答题 28.(2020·北京·中考真题)已知2510x x --=,求代数式(32)(32)(2)x x x x +-+-的值.一、单选题 1.(2021·广东金平·一模)如果代数式4m 2﹣2m +5的值为7,那么代数式2m 2﹣m ﹣3的值为( ) A .﹣3B .3C .2D .﹣22.(2021·安徽·三模)已知实数a≠b≠c≠0,且满足c a =a +4,c b =b +4,则2a c +2b c-16c 的值为( ) A .2B .-2C .-1D .13.(2020·江苏泰兴·模拟预测)已知24m n a =+,24n m a =+,m n ≠,则222m mn n ++的值为( ) A .16B .12C .10D .无法确定二、填空题 4.(2018·河北·模拟预测)当代数式x 2+3x +5的值为7时,代数式3x 2+9x ﹣2的值是 ___. 5.(2021·广东·珠海市文园中学三模)已知2430x x -+=,则254x x -+=________________. 6.(2021·广东·佛山市华英学校一模)当x =3时,px 3+qx +1=2020,则当x =﹣3时,px 3+qx +1的值为_____.7.(2021·浙江·杭州市采荷中学二模)设M x y =+,N x y =-,P xy =.若99M =,98N =,则P =______.8.(2021·安徽·安庆市第四中学二模)实数a ,b 满足a 2+b 2﹣2a =0,则4a +b 2的最大值________.9.(2021·山东乳山·模拟预测)若方程2250x x +-=的两个根是1x ,2x 12()x x >,则1211x x -的值为________.10.(2021·福建·模拟预测)已知4x y =-,2xy =,计算22x y +的值为______.11.(2021·贵州黔东南·一模)若实数m 、n 满足21010m m -+=,21010n n -+=,则代数式33m n mn +的值为______.12.(2021·四川邛崃·二模)已知代数式23a a -的值为6,则代数式2926a a -+的值为______. 13.(2021·江苏邗江·二模)若23a b -=22934a ab b -+的值等于________.14.(2021·湖南茶陵·模拟预测)如若21x x +=,则431x x x +++的值为__________.15.(2020·广东斗门·二模)已知实数m ,n 满足20191m n m n +=⎧⎨-=-⎩,则代数式m 2﹣n 2的值为_____.三、解答题 16.(2021·浙江海曙·一模)(1)已知250x x -,求代数式2210x x - (2)化简:226993x x x x x ++---.17.(2020·陕西·西安市第三十一中学模拟预测)阅读材料:“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把()a b +看成一个整体,4()2()((421)()3())a b a b a b a b a b =+-+++-++=+. 尝试应用:(1)把2()a b -看成一个整体,合并2223()5()7()---+-a b a b a b 的结果是_________. (2)已知221x y -=,求2362021--x y 的值. 拓广探索:(3)已知22,25,9-=-=--=a b b c c d ,求()(2)(2)a c b d b c -+---的值.18.(2021·江苏镇江·一模)阅读材料:《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法. 例如:已知1xy =,求1111x y+++的值. 解:原式11111111xy y y xy x y y y y +=+=+==+++++. 问题解决: (1)已知1xy =. ①代数式221111x y +++的值为_______; ②求证:2021202111111x y +=++.(2)若x 满足22(2021)(2020)4043x x -+-=,求(2021)(2020)x x --的值.19.(2020·四川·正兴中学二模)已知2a b +=,2ab =,求32231122a b a b ab ++和22223a ab b a b ab +++的值.20.(2020·湖北·黄石八中一模)已知25,25,x y =+=-求22x y -的值.一、单选题1.已知221224a b a b +=--,则132a b -的值为( )A .4B .2C .2-D .4-2.已知a ﹣b=2,则代数式2a ﹣2b ﹣3的值是( ) A .1B .2C .5D .7二、填空题3.已知2,33xy x y =-=,则322321218x y x y xy -+=_________. 4.若2a b =+,则代数式222a ab b -+的值为__. 5.若21x x +=,则433331x x x +++的值为_____.6.若实数x 满足2210x x --=,则322742017x x x -+-=_____________.7.已知实数a ,b 满足:211a a +=,211b b+=,则2015a b -|=_____.三、解答题8.先化简,再求值:221121m m m m m m---÷++,其中m 满足:210m m --=.1.B【解析】分析:根据绝对值的性质解答即可. 解:221. 故选B .【点拨】:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 2.C【分析】根据同底数幂的乘法31010010a b ⋅=,可求23a b +=再整体代入即可. 解: ∵1020a =,10050b =,∴2310100102050100010a b a b +⋅==⨯==, ∴23a b +=,∴()()1311233332222a b a b ++=++=+=. 故选:C .【点拨】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.【分析】根据一元二次方程根与系数的关系,即韦达定理,先解得2m =或1m =-,再分别代入一元二次方程中,利用完全平方公式变形解题即可. 解:一元二次方程2220x mx m m ++-= 21,2,a b m c m m ===-2122cm x am x ==-= 220m m --= (2)(1)0m m ∴-+=2m ∴=或1m =- 当2m =时,原一元二次方程为2420x x ++=12=24bm ax x +-=-=-, 22221212122)+2((2)(2)()+4=x x x x x x +∴++,221212122=()2x x x x x x ++- 221212212212)+(2)(2)=)(2(4+4x x x x x x x x -∴+++22=2+2(4)424⨯--⨯+32=当1m =-时,原一元二次方程为2220x x +=- 2(2)41240∆=--⨯⨯=-<原方程无解,不符合题意,舍去, 故选:C .【点拨】本题考查一元二次方程根与系数的关系,韦达定理等知识,涉及解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键. 4.C【分析】将两整式相加即可得出答案. 解:∵2x y +=,3z y -=-, ∴()()1x y z y x z ++-=+=-, ∴x z +的值等于1-, 故选:C .【点拨】本题考查了整式的加减,熟练掌握运算法则是解本题的关键. 5.B解:试题分析:∵231a a +=,∴2261a a +-=22(3)1a a +-=2×1﹣1=1.故选B . 考点:代数式求值;条件求值;整体代入.【分析】由a 2+a -3=0,变形得到a 2=-(a -3),a 2+a =3,先把a 2=-(a -3)代入整式得到a 2(a +4)=-(a -3)(a +4),利用乘法得到原式=-(a 2+a -12),再把a 2+a =3代入计算即可. 解:∵a 2+a -3=0, ∴a 2=-(a -3),a 2+a =3, a 2(a +4)=-(a -3)(a +4) =-(a 2+a -12) =-(3-12) =9. 故选:A .【点拨】本题考查了整式的混和运算及其化简求值:先把已知条件变形,用底次代数式表示高次式,然后整体代入整式进行降次,进行整式运算求值. 7.C【分析】利用完全平方公式计算即可.解:∵()222249a b a b ab +=++=,2225a b +=, ∴4925122ab -==, 故选:C .【点拨】本题考查整体法求代数式的值,掌握完全平方公式是解题的关键. 8.B【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可. 解:∵23120x x --=, ∴23=12x x -,∴()223395=3+5=312+5=31x x x x -++---⨯-.故选:B .【点拨】此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,得出23=12x x -,是解题的关键. 9.C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;解:把(),P a b 代入函数解析式32y x =+得:32=+b a , 化简得到:32-=-a b ,∴()()621=231=221=-3-+-+⨯-+a b a b . 故选:C .【点拨】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键. 10.A【分析】通过将所求代数式进行变形,然后将已知代数式代入即可得解. 解:由题意,得 411132222a b a b +++=+=+= 故选:A.【点拨】此题主要考查已知代数式求代数式的值,熟练掌握,即可解题. 11.D【分析】利用根与系数的关系得到12123,2,x x x x +==-再利用完全平方公式得到222121212()2,x x x x x x +=+-然后利用整体代入的方法计算.解:根据题意得12123,2,x x x x +==-所以2222121212()232(2)13.x x x x x x +=+-=-⨯-=故选:D .【点拨】本题考查的是一元二次方程的根与系数的关系,以及完全平方公式的变形,掌握以上知识是解题的关键. 12.B【分析】先将代数式2463a ab b -+变形后,再整体代入即可得结论. 解:2463a ab b -+()2233a a b b =-+ 23a b =-+()23a b =-- 1=故选B .【点拨】此题考查代数式的求值,根据代数式的特点将原式变形,再整体代入已知条件是解题的关键. 13.5【分析】将所求式子化简后再将已知条件中2a b -=整体代入即可求值; 解:20a b --=,∴2a b -=,∴()12212145a b a b +-=+-=+=;故答案为5.【点拨】本题考查代数式求值;熟练掌握整体代入法求代数式的值是解题的关键. 14.15【分析】先根据平方差公式分解因式,再代入求出即可.解:∵5a b +=,3a b -=,∴22a b -()()a b a b =+-53=⨯15=故答案为15【点拨】本题考查了平方差公式,能够正确分解因式是解此题的关键.15.-6解:试题分析:∵2a ﹣3b=7,∴8+6b ﹣4a=8﹣2(2a ﹣3b )=8﹣2×7=﹣6,故答案为﹣6. 考点:代数式求值;整体代入.16.2005解:试题分析:2622015b a -+=()223201510+20152005a b --+=-=故答案为2005考点:代数式的求值17.1解:试题分析:把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解: ∵m+n=0,∴()22121201011m n m n ++=++=⨯+=+=.考点:1.代数式求值,2.整体思想的应用.18.0【分析】先求出22x y +,再求22x y -的平方,然后再开方即可求出22x y -.解:∴x y -=2()3x y ∴-=,2223x xy y ∴-+=, ∵34xy =-, ∴22332x y ++=,∴2232x y +=, 22222222()()4x y x y x y ∴-=+-9940416=-⨯=, 220x y ∴-=,故答案为:0.【点拨】本题考查了完全平方公式的应用,等式的灵活变形是本题的关键.19.-6【分析】根据方程组中x +2y 和x -2y 的值,将代数式利用平方差公式分解,再代入计算即可.解:∵x -2y =-2,x +2y =3,∴x 2-4y 2=(x +2y )(x -2y )=3×(-2)=-6,故答案为:-6.【点拨】本题主要考查方程组的解及代数式的求值,观察待求代数式的特点与方程组中两方程的联系是解题关键.20.0【分析】把1x x+=解:10x x+== 故答案为:0.【点拨】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.21.27【分析】根据题意得出a 2+b 2=15,(b-a )2=3,图2中大正方形的面积为:(a+b )2,然后利用完全平方公式的变形求出(a+b )2即可.解:由题意可得在图1中:a 2+b 2=15,(b-a )2=3,图2中大正方形的面积为:(a+b )2,∵(b-a )2=3a 2-2ab+b 2=3,∴15-2ab=32ab=12,∴(a+b )2=a 2+2ab+b 2=15+12=27,故答案为:27.【点拨】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.22.7【分析】由23x y +=可得到246x y +=,然后整体代入124x y ++计算即可.解:∵23x y +=,∴()2224236x y x y +=+=⨯=,∴124167x y ++=+=,故答案为:7.【点拨】本题考查了代数式的求值问题,注意整体代入的思想是解题的关键.23.7【分析】将代数式化简,然后直接将5x y +=,2xy =代入即可.解:由题意得5x y +=,2xy =,∴3343()41587x y xy x y xy +-=+-=-=,故答案为:7.【点拨】本题考查了提取公因式法,化简求值,化简334x y xy +-是解题关键.24.2【分析】由已知结合根与系数的关系可得:12x x +=4,12x x ⋅= -7,2211224x x x x ++=()212122x x x x ++,代入可得答案. 解:∵12,x x 是一元二次方程2470x x --=的两个实数根,∴12x x +=4,12x x ⋅= -7,∴2211224x x x x ++=()212122x x x x ++=()2427+⨯- =2,故答案为:2.【点拨】本题考查的知识点是一元二次方程根与系数的关系,难度不大,属于基础题 25.-1【分析】将原式变形为()()22a b a b b +-+-,再将1a b +=代入求值即可.解:2222a b b -+-=()()22a b a b b +-+-将1a b +=代入,原式=22a b b -+-=2a b +-=1-2=-1故答案为:-1.【点拨】本题考查了代数式求值,其中解题的关键是利用平方差公式将原式变形为()()22a b a b b +-+-.26.49【分析】先将条件的式子转换成a +3b =7,再平方即可求出代数式的值.解:∵73a b =-,∴37a b +=,∴()2222693749a ab b a b ++=+==,故答案为:49.【点拨】本题考查完全平方公式的简单应用,关键在于通过已知条件进行转换. 27.2【分析】根据完全平方公式()2222a b a ab b +=++,代入计算即可得出结果.解:由()2222a b a ab b +=++可得:2352ab =+ 解得:2ab =故答案为2.【点拨】本题考查了完全平方公式,熟练掌握完全平方公式的结构特点是解题的关键. 28.21024x x --,-2【分析】先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把2510x x --=变形后,整体代入求值即可.解:原式=22942x x x -+-2102 4.x x =--∵2510x x --=,∴251x x -=,∴21022x x -=,∴原式=242-=-.【点拨】本题考查的是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键.1.D【分析】由代数式4m 2﹣2m +5的值为7,可得到4m 2﹣2m =2,两边除以2得到2m 2﹣m =1,然后把2m 2﹣m =1代入2m 2﹣m ﹣3即可得到答案.解:∵4m2﹣2m+5=7,∴4m2﹣2m=2,∴2m2﹣m=1把2m2﹣m=1代入2m2﹣m﹣3得,2m2﹣m﹣3=1-3=-2.故选D.【点拨】本题考查了代数式求值:先把代数式变形,然后利用整体代入的方法求代数式的值.2.A【分析】由ca=a+4,cb=b+4,可求出c=a2+4a,c=b2+4b,进而可得a+b=-4,a2=c-4a,b2=c-4b,代入所给代数式求解即可.解:∵ca=a+4,cb=b+4,∴c=a2+4a,c=b2+4b,∴a2+4a =b2+4b,∴a2-b2=4b-4a,∴(a+b)(a-b)=-4(a-b),∵a≠b≠c≠0,∴a+b=-4,∵c=a2+4a,c=b2+4b,∴a2=c-4a,b2=c-4b,∴4c ac-+4c bc--16c=2+() 416a bc-+-=2+() 4416c-⨯--=2.故选:A【点拨】本题考查了分式的化简求值,因式分解的应用等知识,求出a+b=-4,a2=c-4a,b2=c-4b 是解答本题的关键.3.A【分析】先由已知条件得出m+n的值,再把m2+2mn+n2化成完全平方的形式,再进行计算即可.解:∵24m n a=+,24n m a=+,∴224(4)444()m n n a m a n m n m -=+-+=-=-,即()()4()m n m n m n +-=--,即(4)()0m n m n ++-=,又∵m≠n ,∴m+n+4=0,即m+n =﹣4,∴22222()(4)16m mn n m n ++=+=-=.故选:A .【点拨】本题考查了因式分解的应用.能通过对已知条件的变形得出m+n 的值是解题的关键.4.4【分析】根据题意确定出x 2+3x 的值,原式变形后代入计算即可求出值.解:由题意得:x 2+3x +5=7,即x 2+3x =2,则3x 2+9x ﹣2=3(x 2+3x )-2=6-2=4,故答案为:4.【点拨】本题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.5.8【分析】由题意,先得到243x x -=-,然后整体代入计算,即可得到答案.解:∵2430x x -+=,∴243x x -=-,∴2254(4)5(3)58x x x x -+=--+=--+=;故答案为:8.【点拨】本题考查了求代数式的值,解题的关键是掌握所学的知识,正确得到243x x -=-,运用整体代入的运算法则进行解题.6.-2018【分析】把x =3代入代数式得27p +3q =2019,再把x =﹣3代入,可得到含有27p +3q 的式子,直接解答即可.解:当x =3时, px 3+qx +1=27p +3q +1=2020,即27p +3q =2019,所以当x =﹣3时, px 3+qx +1=﹣27p ﹣3q +1=﹣(27p +3q )+1=﹣2019+1=﹣2018. 故答案为:﹣2018.【点拨】此题考查了代数式求值;代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式27p +3q 的值,然后利用“整体代入法”求代数式的值. 7.49.25【分析】先分别求出(x +y )2和(x -y )2的值,根据完全平方公式展开,再相减,即可求出xy 的值,再得出答案即可.解:∵M =x +y =99,∴两边平方,得(x +y )2=992,即x 2+y 2+2xy =992①,∵N =x -y =98,∴两边平方,得(x -y )2=982,即x 2+y 2-2xy =982②,∴①-②,得4xy =992-982=(99+98)×(99-98)=197,∴xy =1974=49.25, 即P =xy =49.25,故答案为:49.25.【点拨】本题考查了完全平方公式和平方差公式,能灵活运用完全平方公式进行计算是解此题的关键,注意:(x +y )2=x 2+y 2+2xy ,(x -y )2=x 2+y 2-2xy .8.8【分析】根据条件变形为222=-b a a ,确定出a 的取值范围,将4a +b 2转化为()239a --+即可.解:∵a 2+b 2﹣2a =0,∴()2211a b -+=,2a =a 2+b 2,222=-b a a∴()2211b a =--,∵b 2≥0,∴()2110a --≥,∴0≤a ≤2,∴4a +b 2=()()22242639a a a a a a +-=--=--+, ∵-1<0,∴当a <3时,式子的值随a 的增大而增大,∴当2a =时,4a +b 2的最大值为8.故答案为8.【点拨】本题考查代数式的最值问题,将代数式变形,利用完全平方公式配方,利用非负数的性质是解题关键.9【分析】利用一元二次方程根与系数的关系可得1212x x +=- ,1252x x ⋅=- ,然后利用完全平方公式的变形可求出12x x -= 解:∵方程2250x x +-=的两个根是1x ,2x , ∴1212x x +=- ,1252x x ⋅=- , ∵()2221212122x x x x x x +=++, ∴2221215212224x x ⎛⎫⎛⎫+=--⨯-= ⎪ ⎪⎝⎭⎝⎭ , ∴()2221212122154122424x x x x x x ⎛⎫-=+-=-⨯-= ⎪⎝⎭ ,∴12x x -=±, ∵12x x >,∴12x x -=∴122121()11252-==-=--x x x x x x. 【点拨】本题主要考查了一元二次方程根与系数的关系和 完全平方公式的变形,熟练掌握一元二次方程根与系数的关系是解题的关键.10.12【分析】根据22x y +=(x +y )2-2xy ,再根据已知条件代入计算即可得出答案.解:∵4x y =-,∴4x y +=,∴()222224412x y x y xy +=+-=-=.故答案为:12.【点拨】本题主要考查了完全平方公式的变式应用,熟练掌握完全平方公式的变式进行计算是解决本题的关键.11.98【分析】由题意得:m 、n 是方程21010x x -=+的两个根,利用跟与系数的关系,得出10m n +=,1⋅=m n ,进而即可求解.解:∵实数m 、n 满足21010m m -+=,21010n n -+=,∴m 、n 是方程21010x x -=+的两个根,∴10m n +=,1⋅=m n ,∴33m n mn +=222()()2mn m n mn m n mn ⎡⎤+=+-⎣⎦=21102198⎡⎤⨯-⨯=⎣⎦,故答案是:98.【点拨】本题主要考查一元二次方程根与系数的关系,完全平方公式,把实数m 、n 看作是方程21010x x -=+的两个根,是解题的关键.12.-3【分析】构造等式23a a -=6,同乘以-2后,整体代入计算即可.解:∵23a a -=6,∴22612a a -+=-,∴2926a a -+=9+(-12)=-3,故答案为:-3.【点拨】本题考查了条件等式型的代数式求值,准确构造条件等式,并灵活进行变形,后整体代入是解题的关键.13.2【分析】由23a b -=32a b -=32a b -解:∵23a b -=∴32a b -= ∴22934a ab b -+=23()2a b -=2, 故答案为:2【点拨】本题考查利用完全平方公式求代数式的值,熟练掌握完全平方公式,运用整体代入的思想是解题关键.14.2【分析】利用提公因式分将原式变形为22()1x x x x +++,然后利用整体代入思想代入求解.解:∵21x x +=,∴431x x x +++=22()1x x x x +++=21x x ++=1+1=2.故答案为:2【点拨】本题考查了因式分解的应用,掌握提公因式的技巧把所求多项式进行灵活变形,并利用整体代入思想求解是解题关键.15.-2019【分析】直接利用平方差公式将原式变形得出答案.解:∵实数m ,n 满足20191m n m n +=⎧⎨-=-⎩, ∴m 2﹣n 2=(m +n )(m ﹣n )=﹣2019.故答案为:﹣2019.【点拨】此题主要考查了平方差公式,根据题目要求正确将原式变形是解题关键.16.(1(2)33x - 【分析】(1)将条件变形后,两边同时乘以2,然后整体代入求值即可;(2)因式分解,约分后转化为同分母分式的减法计算即可.解:.解:(1)由已知得:25x x -=∴原式()225x x =-==(2)原式2(3)(3)(3)3+=-+--x x x x x 333+=---x x x x 33x =-. 【点拨】本题考查了条件型代数式的值,分式的减法,熟练掌握整体变形代入求值,因式分解后约分等技能是解题的关键.17.(1)25()a b -;(2)-2018;(3)6【分析】(1)把2()a b -看做一个整体,合并即可得到结果;(2)原式前两项提取3变形后,将已知等式代入计算即可求出值;(3)原式去括号整理后,将已知等式代入计算即可求出值.解:(1)25()a b -.(2)∵221x y -=,∴2362021--x y()2322021x y =--32021=-2018=-(3)∵22,25,9-=-=--=a b b c c d ,∴()(2)(2)a c b d b c -+---=a-c+2b-d-2b+c=a-d=a-2b+2b-c+c-d=(a-2b )+(2b-c )+(c-d )=2-5+9=6.【点拨】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.(1)①1;②证明见解析;(2)2021.【分析】(1)①把xy =1代入221111x y +++,分母提取公因式,约分,再根据分式加法法则计算即可得答案;②由xy =1可得20212021x y =1,同①的方法计算即可得结论;(2)设2021x a -=,2020x b -=,可得1a b -=,利用完全平方公式求出ab 的值即可得答案.解:(1)①∵xy =1, ∴221111x y +++ =22xy xy xy x xy y +++ =()()xy xy x y x y x y +++ =x y x y++ =1.故答案为:1②∵xy =1,∴20212021x y =1, ∴202120211111x y +++ =20212021202120212021202111x y x y x y +++=202120212021202120211(1)1x y x y y +++ =202120212021111y y y +++ =2021202111y y ++ =1.(2)设2021x a -=,2020x b -=,∴1a b -=,∵22(2021)(2020)4043x x -+-=,∴224043a b +=,∴222()2a b a b ab -=+-=4043-2ab =1,解得:ab=2021,∴(2021)(2020)x x --=2021.【点拨】本题考查利用提取公因式法和完全平方公式因式分解及分式的加法,熟练掌握完全平方公式及分式的加法法则是解题关键.19.4; 32【分析】(1)先提取公因式12ab 后,再因式分解即可求解; (2)对分子和分母分别进行因式分解后代入数据即可求解. 解:232232211=(12)122()22++++=+ab a ab a b a b ab a b b ab 再代入数据:2a b +=,2ab =∴原式12442=⨯⨯= 故答案为:4.222222233()()()++++++==+++a ab b a ab b a b ab a b ab ab a b ab a b 再代入数据:2a b +=,2ab =∴原式=22263==2242+=⨯. 故答案为:32. 【点拨】本题考查分式的加减乘除混合运算,运算前先因式分解,熟练掌握运算法则是解决此类题的关键.20.【分析】先把22x y -分解因式,然后把x ,y 的值代入化简即可.解:()()2242585x y x y x y -=+-=⨯=【点拨】本题考查了代数式的运算,运用平方差公式对原式进行因式分解是解题的关键.1.A 【分析】根据221224a b a b +=--,变形可得:()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭,因此可求出1a =,2b =-,把a 和b 代入132a b -即可求解. 解:∵221224a b a b +=-- ∴()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭ 即2(1)0a -=,21(1)02b += ∴求得:1a =,2b =-∴把a 和b 代入132a b -得:131(2)42⨯-⨯-= 故选:A【点拨】本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.2.A解:试题分析:∵a ﹣b=2,∴2a ﹣2b ﹣3=2(a ﹣b )﹣3=2×2﹣3=1.故选A . 考点:代数式求值.3.36【分析】先把多项式因式分解,再代入求值,即可.解:∵2,33xy x y =-=,∴原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点拨】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键.4.4. 【分析】由2a b =+,可得2a b -=,所求代数式变形后,整体代入即可.解:2a b =+,2a b ∴-=,22222()24a ab b a b ∴-+=-==,故答案为4【点拨】本题考查了代数式求值,利用完全平方公式因式分解,熟记完全平方公式的结构特征是解答本题的关键.5.4【分析】把所求多项式进行变形,代入已知条件,即可得出答案.解:∵21x x +=,∴()43222233313313313()1314x x x x x x x x x x x +++=+++=++=++=+=;故答案为4.【点拨】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键. 6.﹣2020.解:∵2210x x --=,∴221x x =+,322742017=2(21)-7(21)42017x x x x x x x -+-+++-=242147+42017x x x x +--- =2482024=4(21)82024x x x x --+--=4﹣2024=﹣2020,故答案为﹣2020.7.1.解:试题分析:∵2110a a +=>,2110b b+=>,∴0a >,0b >,∴()10ab a b ++>,∵211a a +=,211b b+=,两式相减可得2211a b a b -=-,()()b a a b a b ab -+-=,[()1]()0ab a b a b ++-=,∴0a b -=,即a b =,∴2015a b -=02015=1.故答案为1. 考点:1.因式分解的应用;2.零指数幂.8.2m m+1,1. 【分析】将分式运用完全平方公式及平方差公式进行化简,并根据m 所满足的条件得出2m =m+1,将其代入化简后的公式,即可求得答案. 解:原式为22m -1m-1m-m +2m+1m÷ =2(m+1)(m-1)m m-(m+1)m-1⨯ =m m-m+1=2m m m-m+1m+1=2mm+1,又∵m满足2m-m-1=0,即2m=m+1,将2m代入上式化简的结果,∴原式=2m m+1==1 m+1m+1.【点拨】本题主要考察了分式的化简求值、分式的混合运算、完全平方公式及平方差公式的应用,该题属于基础题,计算上的错误应避免.。
2019-2020中考数学试题附答案一、选择题1.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )A.平均数B.中位数C.众数D.方差2.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A.2 B.3 C.5 D.73.已知二次函数y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四个命题,则一定正确命题的序号是()①x=1是二次方程ax2+bx+c=0的一个实数根;②二次函数y=ax2+bx+c的开口向下;③二次函数y=ax2+bx+c的对称轴在y轴的左侧;④不等式4a+2b+c>0一定成立.A.①②B.①③C.①④D.③④4.菱形不具备的性质是()A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形5.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁6.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是()A.94B.95分C.95.5分D.96分7.不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.8.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:3x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P 在线段OA上运动时,使得⊙P成为整圆的点P个数是()A .6B .8C .10D .129.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A .5B .25C .5D .2310.如果,则a 的取值范围是( ) A . B . C . D .11.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=o ,则GAF ∠的度数为( )A .110oB .115oC .125oD .130o12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折二、填空题13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x =>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.15.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.16.不等式组125x ax x->⎧⎨->-⎩有3个整数解,则a的取值范围是_____.17.不等式组324111 2x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是x=.18.已知扇形AOB的半径为4cm,圆心角∠AOB的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm19.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2BC3=,那么tan∠DCF的值是____.20.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)三、解答题21.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE ,请你求出 sinα的值.22.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?23.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?24.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长;(3)若BE=8,sinB=513,求DG的长,25.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【详解】11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.2.C解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C.考点:众数;中位数.解析:C【解析】试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确; 根据二次函数的对称轴为x =-2b a,可知无法判断对称轴的位置,故③不正确; 根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确.故选:C.4.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B .【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.5.D解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断. 【详解】∵22211x x x x x-÷-- =2221·1x x x x x--- =()2212·1x x x x x---- =()()221·1x x x x x ---- =()2x x-- =2x x-, ∴出现错误是在乙和丁,故选D . 【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.8.A解析:A【解析】试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,∴B(0,43),∴OB=43,在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12PA , 设P (x ,0),∴PA=12-x ,∴⊙P 的半径PM=12PA=6-12x , ∵x 为整数,PM 为整数,∴x 可以取0,2,4,6,8,10,6个数,∴使得⊙P 成为整圆的点P 个数是6.故选A .考点:1.切线的性质;2.一次函数图象上点的坐标特征.9.A解析:A【解析】【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B .【详解】在直角△ABC 中,根据勾股定理可得:AB 222252AC BC =+=+=()3. ∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B 5AC AB ==. 故选A .【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.10.B解析:B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B.. 考点:二次根式的性质.11.A解析:A【解析】【分析】依据AB//CD ,EFC 40∠=o ,即可得到BAF 40∠=o ,BAE 140∠=o ,再根据AG 平分BAF ∠,可得BAG 70∠=o ,进而得出GAF 7040110∠=+=o o o .【详解】解:AB//CD Q ,EFC 40∠=o ,BAF 40∠∴=o ,BAE 140∠∴=o ,又AG Q 平分BAF ∠,BAG 70∠∴=o ,GAF 7040110∠∴=+=o o o ,故选:A .【点睛】本题考查的是平行线的性质和角平分线的定义,理解两直线平行,内错角相等是解题的关键.12.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.14.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案【解析】【分析】过A 作AC x ⊥轴,过B 作BD x ⊥轴于D ,于是得到90BDO ACO ∠=∠=︒,根据反比例函数的性质得到52BDO S ∆=,12AOC S ∆=,根据相似三角形的性质得到25BOD OAC S OB S OA ∆∆⎛⎫== ⎪⎝⎭,求得OB OA = 【详解】过A 作AC x ⊥轴,过B 作BD x ⊥轴于,则90BDO ACO ∠=∠=︒,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x -=<的图象上, ∴52BDO S ∆=,12AOC S ∆=, ∵90AOB ∠=︒,∴90BOD DBO BOD AOC ∠+∠=∠+∠=︒,∴DBO AOC ∠=∠,∴BDO OCA ∆∆:, ∴252512BODOAC S OB S OA ∆∆⎛⎫=== ⎪⎝⎭,∴OB OA=∴tan OB BAO OA∠==,【点睛】本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.15.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.16.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得解析:﹣2≤a<﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.18.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.19.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AB=CD∠D=90°∵将矩形ABCD沿CE折叠点B恰好落在边AD的F处∴CF=BC∵∴∴设CD =2xCF=3x∴∴tan∠DCF=故答案为:【点【分析】【详解】解:∵四边形ABCD是矩形,∴AB=CD,∠D=90°,∵将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,∴CF=BC,∵AB2BC3=,∴CD2CF3=.∴设CD=2x,CF=3x,∴.∴tan∠DCF=DFCD=.故答案为:2.【点睛】本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.20.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.三、解答题21.(1)过点C作CG⊥AB于G在Rt△ACG中∵∠A=60°∴sin60°=∴……………1分在Rt△ABC中∠ACB=90°∠ABC=30°∴AB=2 …………………………………………2分∴………3分(2)菱形………………………………………4分∵D是AB的中点∴AD=DB=CF=1在Rt△ABC中,CD是斜边中线∴CD=1……5分同理 BF=1 ∴CD=DB=BF=CF∴四边形CDBF是菱形…………………………6分(3)在Rt△ABE中∴……………………………7分过点D作DH⊥AE 垂足为H则△ADH∽△AEB ∴即∴ DH=……8分在Rt△DHE中sinα==…=…………………9分【解析】(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF 的面积,所以要求的梯形的面积等于三角形ABC 的面积.根据60度的直角三角形ABC 中AC=1,即可求得BC 的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;(3)过D 点作DH ⊥AE 于H ,可以把要求的角构造到直角三角形中,根据三角形ADE 的面积的不同计算方法,可以求得DH 的长,进而求解.22.甲每小时做24个零件,乙每小时做20个零件.【解析】【分析】设甲每小时做x 个零件,则乙每小时做(x-4)个零件,根据工作时间=工作总量÷工作效率结合甲做120个所用的时间与乙做100个所用的时间相等,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设甲每小时做x 个零件,则乙每小时做(x ﹣4)个零件, 根据题意得:1201004x x =-, 解得:x=24, 经检验,x=24是分式方程的解,∴x ﹣4=20.答:甲每小时做24个零件,乙每小时做20个零件.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.24.(1)证明见解析;(3)DG=23. 【解析】【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证; (2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可.【详解】(1)如图,连接OD ,∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD ,∵OA=OD ,∴∠ODA=∠OAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =,设圆的半径为r,可得5813 rr=+,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=513 AFAE=,∴AF=AE•sin∠AEF=10×513=50 13,∵AF∥OD,∴501013513AG AFDG OD===,即DG=1323AD,∴AD=503013·1813AB AF=⨯=,则DG=133033013 231323⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.25.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.。
2019-2020年初三中考数学总复习 代数综合题复习(文字稿 答案)一、2014年考试说明中与代数综合题有关的C 级要求:数与代数式:运用恰当的知识和方法对代数式进行变形,解决有关问题;方程与不等式:运用方程与不等式的有关内容解决有关问题;一次函数:运用一次函数、方程、不等式的有关内容解决有关问题;二次函数:运用二次函数的有关内容解决有关问题。
及与几何图形有关的很多C 级要求。
这些考试说明的C 级要求意味着代数综合题有很多的题型可以选择!面对今年难度很可能会降低的背景下,我们备课组对综合题的复习策略大致是:先是针对近几年的北京中考的代数综合题有针对性的重点复习,再分析2013、2014年的一模、二模的代数综合题涉及到的各种问题进行复习,最后借鉴外地中考中出现的与代数综合题有关的问题。
因为难度的降低,我们认为:复习中让学生多了解一些处理问题的方式方法,重在常见方法的落实和计算的准确!因为代数综合题中涉及到的基本问题的求解在各章节复习中已经涉及到了,所以我对综合题的分类是以每题的核心问题为主的,但在学生练习时还是要带着前面的基本问题。
二、复习中需要注意的细节:1、审题:前“二”后“两”、关于“y 轴”翻折、将x 轴“下方”的部分如何如何、A点在B 点的左侧、正.整数解、不与C 、D 两端点重合、不包括边界、点A 停止时点B 亦停止、给定区间……(13分高媛老师)2、注意隐含条件或前提:一次函数、反比例函数、二次函数(抛物线)的定义中隐含不为0的式子,用△的前提,简单综合条件得到的范围等等;3、积累基本问题的解法:如:(1)求线段长——纵坐标“上减下”或横坐标“右减左”,不用带绝对值(2)动点坐标化,根据象限,字母隐含取值范围(3)几何元素(面积、线段长)转到坐标时,带绝对值可弥补因作图不全而丢失的解(4)求某点坐标,除了动点坐标化,寻找几何条件列方程外,还有“由点及线”,两函数联立求交点的方法(5)三定一动定平四;两定两动定平四——定边、定距离(6)草图尽量准确,平移(转动)尺子,动态模拟运动变化的过程(13分高媛老师)另外,整数根问题、根的分布问题、距离最短问题、恒成立问题、单调性问题等等4、点题:做完每一问或每一题后,要养成点题的习惯,回头看一下自己所求的是否是题目所求,特别是求字母的值或范围时,要重点注意题目所给的范围或隐含范围及前提范围,千万别忘了综合。
中考数学复习常用数学思想专题练习类型一整体思想1.小慧去花店购买鲜花,若买5枝玫瑰和3枝百合,则她所带的钱还剩下10元;若买3枝玫瑰和5枝百合,则她所带的钱还缺4元.若只买8枝玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元2.若x,y,z为实数,且{x+2y-z=4,x-y+2z=1,则代数式x2-3y2+z2的最大值是.3. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长的直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为.4. 5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是.类型二转化思想1.运用图形变化的方法研究下列问题:如图,AB是☉O的直径,CD,EF是☉O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8,则图中阴影部分的面积是()A. πB.10πC.24+4πD.24+5π2.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.3.如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为.4. 如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE=.5.如图,已知圆柱的底面周长为6,高AB=3,小虫在圆柱表面爬行,从C点爬到对面的A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为.类型三数形结合思想1.实数m,n在数轴上的对应点如图所示,则下列各式子正确的是()A.m>nB.-n>|m|C.-m>|n|D.|m|<|n|2.如图,点P是以AB为直径的半圆上的动点,CA⊥AB,PD⊥AC于点D,连接AP,设AP=x,PA-PD=y,则下列函数图象能反映y与x之间关系的是()3.图中四边形均为长方形,根据图形,写出一个正确的等式:.4.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连接AC,EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出根式√x2+4+√(12-x)2+9的最小值.类型四分类讨论思想1.如图,平面直角坐标系中,已知点B的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹)(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.2.类型五方程与函数思想1.一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为.2.如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE= a.连接AE,将△ABE沿AE折叠,若点B的对应点B'落在矩形ABCD的边上,则a的值为.3.如图,已知线段AB=4,点O是AB的中点,直线l经过点O,∠1=60°,P点是直线l 上一点,当△APB为直角三角形时,则BP=.4.如图,已知动点A在函数y= (x>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA交以点A为圆心,AB长为半径的圆弧于点E,延长BA交以A为圆心AC长为半径的圆弧于点F,直线EF分别交x轴、y轴于点M,N,当NF=4EM时,图中阴影部分的面积等于.5.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1 960元,求a的值.。
2019-2020年中考数学试题及答案解析(WORD 版)一、选择题1.2A.2 B.2C.12D.12【答案】A.【解析】由绝对值的意义可得,答案为A 。
2. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为A.61.357310 B.71.357310C.81.357310D.91.357310【答案】B.【解析】科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.13 573 000=71.357310;3.一组数据2,6,5,2,4,则这组数据的中位数是A.2B.4C.5D.6【答案】B.【解析】由小到大排列,得:2,2,4,5,6,所以,中位数为4,选B 。
4.如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是A.75°B.55°C.40°D.35°【答案】C.【解析】两直线平行,同位角相等,三角形的一个外角等于与它不相邻的两个内角之和,所以,75°=∠2+∠3,所以,∠3=40°,选C 。
5.下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形 B.平行四边形 C.正五边形 D.正三角形【答案】A.【解析】平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
6.2(4)x A.28xB.28xC.216xD.216x【答案】D.【解析】原式=22-4x ()=216x 7.在0,2,0(3),5这四个数中,最大的数是A.0B.2C.0(3)D.5【答案】B.【解析】(-3)0=1,所以,最大的数为2,选B 。
8.若关于x 的方程2904xx a有两个不相等的实数根,则实数a 的取值范围是A.2a ≥B.2a ≤ C.2a > D.2a <【答案】C.【解析】△=1-4(94a)>0,即1+4a -9>0,所以,2a >9.如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB 的面积为A.6B.7C.8D.9【答案】D. 【解析】显然弧长为BC +CD 的长,即为6,半径为3,则16392S 扇形.10. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE=BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【答案】D.【解析】根据题意,有AE=BF=CG ,且正三角形ABC 的边长为2,故BE=CF=AG=2-x ;故△AEG 、△BEF 、△CFG 三个三角形全等.在△AEG 中,AE=x ,AG=2-x ,则S△AEG=12AE ×AG ×sinA=34x (2-x );故y=S△ABC-3S△AEG=3-334x (2-x )=34(3x 2 -6x+4).故可得其图象为二次函数,且开口向上,选D 。
第四部分中考专题突破
专题一整体思想
1.(2011年江苏盐城)已知a-b=1,则代数式2a-2b-3的值是()
A.-1 B.1 C.-5 D.5
2.(2012年江苏无锡)分解因式(x-1)2-2(x-1)+1的结果是()
A.(x-1)(x-2) B.x2C.(x+1)2D.(x-2)2
3.(2012年山东济南)化简5(2x-3)+4(3-2x)结果为()
A.2x-3 B.2x+9 C.8x-3 D.18x-3
4.(2011年浙江杭州)当x=-7时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为________.5.(2012年江苏苏州)若a=2,a+b=3,则a2+ab=______.
6.已知x+2y=4k+1,
2x+y=k+2,
且0<x+y<3,则k的取值范围是______________.
7.若买铅笔4支,日记本3本,圆珠笔2支,共需10元;若买铅笔9支,日记本7本,圆珠笔5支,共需25元,则购买铅笔、日记本、圆珠笔各一样共需______元.8.如图Z1-2,半圆A和半圆B均与y轴相切于点O,其直径CD,EF均和x轴垂直,以点O为顶点的两条抛物线分别经过点C,E和点D,F,则图中阴影部分的面积是________.
2019-2020年中考数学专题一整体思想复习题及答案
9.如图Z1-3, ∠1+∠2+∠3+∠4+∠5+∠6=________________.
图Z1-3
10.(2012年浙江丽水)已知A=2x+y,B=2x-y,计算A2-B2的值.
11.(2010年福建南安)已知y+2x=1,求代数式(y+1)2-(y2-4x)的值.
12.已知1
x
-
1
y
=3,求代数式
2x-14xy-2y
x-2xy-y
的值.
13.(2011年四川南充)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.
(1)求k的取值范围;
(2)如果x1+x2-x1x2<-1,且k为整数,求k的值.
14.阅读下列材料,解答问题.
为了解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,
则原方程可化为
y 2-5y +4=0①.解得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,x =±2;当y =4时,x 2-1=4,x 2=5,x =±5.故x 1=2,x 2=-
2,x 3=5,x 4=- 5. 解答问题:
(1)填空:在由原方程得到方程①的过程中,利用
________法达到了降次的目的,体现了
________的数学思想;
(2)用上述方法解方程:x 4-x 2-6=0. ww w.
第四部分中考专题突破
专题一整体思想
【专题演练】
1.A 2.D 3.A 4.-6 5.6
6.-35<k<65
解析:将方程组的两式相加,得3(x +y)=5k +3,所以x +y =53k +1.从而0<53k +1<3,解得-35<k<65
. 7.5
解析:设铅笔每支x 元,日记本每本y 元,圆珠笔每支z 元,有:
4x +3y +2z =10,①9x +7y +5z =25.②
②-①,得5x +4y +3z =15,③
③-①,得x +y +z =5.
8.π2
9.360°解析:因为∠1+∠2=∠DAB ,∠3+∠4=∠IBA ,∠5+∠6=∠GCB ,根据三角形外角和定理,得∠DAB +∠IBA +∠GCB =360°,所以∠1+∠2+∠3+∠4+∠5+∠6=360°.
10.解:原式=(2x +y)
2-(2x -y)2=[]2x +y -2x -y ·[]2x +y +2x -y =8xy. 11.解:原式=y
2+2y +1-y 2+4x =2y +4x +1
=2(y +2x)+1
=2×1+1=3.
12.解:原式=2y -14-2x 1y -2-1x =-21x -1y -14-1x -1y
-2=-6-14-3-2
=4. 13.解:(1)∵方程有实数根,∴Δ=22-4(k +1)≥0,解得k ≤0.
∴k 的取值范围是k ≤0.
(2)根据一元二次方程根与系数的关系,得
x 1+x 2=-2,x 1x 2=k +1,
x 1+x 2-x 1x 2=-2-(k +1),
由已知,得-2-(k +1)<-1,解得k >-2,
又由(1),可知:k ≤0,
∴-2<k ≤0.
又∵k 为整数,∴k 的值为-1或0.
14.解:(1)换元整体思想
(2)设x2=y,
则原方程化为y2-y-6=0.
解得y1=3,y2=-2.
当y=3时,x2=3,解得x=±3;当y=-2时,x2=-2,无解.
∴x1=3,x2=- 3.。