戴维南定理和诺顿定理
- 格式:doc
- 大小:441.50 KB
- 文档页数:13
戴维南定理和诺顿定理的区别戴维南定理和诺顿定理是电路分析中非常重要的两个定理。
它们的主要区别在于等效电路的构成方式和电路分析的目的。
戴维南定理指出,对于一个含有独立电源线性二端网络 N,可以按照等效电路的方式将其简化为一个电源和一个电阻的并联组合。
这个等效电路可以通过将网络 N 中的所有独立电源和动态元件上的初始条件置零后得到。
这个等效电路被称为戴维南等效电路。
在戴维南等效电路中,电源的内阻称为戴维南电阻,它是一个无限大的电阻。
诺顿定理与戴维南定理互为对偶的定理。
它指出,对于一个含有独立电源线性二端网络 N,可以按照等效电路的方式将其简化为一个电流源和一个松弛二端网络的并联组合。
这个等效电路可以通过将网络 N 中的全部独立电源和所有动态元件上的初始条件置零后得到。
这个等效电路被称为诺顿等效电路。
在诺顿等效电路中,电流源的内阻称为诺顿电阻,它是一个无限小的电阻。
戴维南定理和诺顿定理的主要目的是简化复杂的电路,使其更加容易分析。
它们的等效电路中都包含电源和电阻,这是因为在电路分析中,电源和电阻是最为简单的元件。
通过使用戴维南定理和诺顿定理,可以将复杂的电路转化为更容易分析的等效电路。
在使用戴维南定理和诺顿定理进行电路分析时,需要注意以下几点:1. 网络 N 中的所有独立电源和动态元件上的初始条件必须置零,否则会导致错误的分析结果。
2. 戴维南定理和诺顿定理中的电阻必须是无限大的电阻或无限小的电阻,否则会导致错误的分析结果。
3. 戴维南定理和诺顿定理中的电源必须是无限大的电源或无限小的电源,否则也会导致错误的分析结果。
戴维南定理和诺顿定理是电路分析中非常重要的两个定理。
它们的区别在等效电路的构成方式和电路分析的目的方面非常明显。
在实际应用中,我们需要根据具体情况选择适当的定理进行电路分析。
戴维南定理、诺顿定理戴维南定理和诺顿定理是电路分析中常用的两个重要定理。
它们分别用于简化复杂电路的计算和分析,为工程师提供了便利。
本文将依次介绍戴维南定理和诺顿定理的原理和应用。
一、戴维南定理戴维南定理是一种将电路中的电源和负载分离计算的方法。
它通过将电源和负载分别替换为等效电源和等效电阻,简化了电路的计算过程。
根据戴维南定理,我们可以将电源替换为一个等效电压源,其电压等于原电源的电压,内阻等于原电源的内阻。
同样地,我们可以将负载替换为一个等效电阻,其阻值等于原负载的阻值。
通过这样的替换,原本复杂的电路被简化为一个等效电压源和一个等效电阻的串联电路。
这样的简化使得电路的计算更加便捷,尤其适用于大规模复杂电路的分析。
二、诺顿定理诺顿定理是一种将电路中的电源和负载分离计算的方法。
它通过将电源和负载分别替换为等效电流源和等效电阻,简化了电路的计算过程。
根据诺顿定理,我们可以将电源替换为一个等效电流源,其电流等于原电源的电流,内阻等于原电源的内阻。
同样地,我们可以将负载替换为一个等效电阻,其阻值等于原负载的阻值。
通过这样的替换,原本复杂的电路被简化为一个等效电流源和一个等效电阻的并联电路。
这样的简化使得电路的计算更加便捷,尤其适用于大规模复杂电路的分析。
三、戴维南定理和诺顿定理的应用戴维南定理和诺顿定理在电路分析中有着广泛的应用。
它们可以用于计算电路中的电流、电压、功率等参数,帮助工程师进行电路设计和故障排查。
通过戴维南定理,我们可以将复杂的电路转化为等效电路,从而简化计算。
例如,在求解电路中某个分支的电流时,我们可以将其他分支看作一个等效电阻,这样就可以利用欧姆定律直接计算电流。
而诺顿定理则更适用于电流的计算。
通过将电路中的电源和负载分离,我们可以更方便地计算负载电流。
例如,在计算电路中某个负载的电流时,我们可以将电源看作一个等效电流源,利用欧姆定律计算电流。
戴维南定理和诺顿定理为电路分析提供了重要的工具和方法。
电路定理——戴维南,诺顿,等效
1.戴维南定理
戴维南定理是一种简化线性电路分析的方法,它的出发点是利用电压和电流之间的关系,把原来的电路转化为一个等效的电压源和电阻的串联电路,从而简化了电路的分析。
戴维南定理的基本思想是:在一个电路中,任何两个端点之间都可以看成是一个电压源和一个内部电阻的串联,其等效电路的电压源等于这两个端点之间的电压,内部电阻等于这两个端点看到的电阻。
式子表示为:
Vth=Voc
Rth = Voc/Isc
其中,Vth为等效电路的电压源,Rth为等效电路的内部电阻,Voc为开路电压,Isc 为短路电流。
2.诺顿定理
In = Isc
3.等效电路
等效电路是指具有相同电学特性的两个电路,它们在电性能上是等价的,可以相互替代。
在分析和设计电路时,我们可以将一个复杂的电路转化为一个简单的等效电路来替代原电路,从而使分析和设计电路变得更容易。
等效电路的基本特点是:
1)等效电路与原电路在端口参数方面具有相同的电学特性。
等效电路的应用主要有以下两个方面:
1)简化电路分析。
将一个复杂的电路转化为等效电路来代替原电路,从而使电路的分析变得更简单和方便。
2)设计和优化电路。
根据等效电路的特性和性能,我们可以对电路进行优化和设计,从而实现电路的更好性能和更高效的运行。
本文简要介绍了戴维南定理、诺顿定理和等效电路的概念和基本原理。
希望读者可以通过学习这些电路定理,更好地掌握电路分析和设计的技能。
戴维南定理和诺顿定理引言在电路理论中,戴维南定理和诺顿定理都是非常重要的理论。
戴维南定理和诺顿定理是解决电路中相互独立的两个部分联通时的问题,最早于19世纪初被提出。
本文将介绍这两个定理的定义、证明以及应用。
戴维南定理定义戴维南定理是指任何由电阻、电源和电线组成的电路网络,在一对电端子之间的电势差等于这一对电端子在电路网络中所取的任何一条通路的电阻乘以沿此通路的电流的代数和。
证明设电路网络中有一对电端子,其电压为V,电流为I,连接这一对电端子的任意通路电阻为R。
则戴维南定理可以写成如下的方程:V = IR戴维南定理可以很容易地从欧姆定律推导出来。
因为电势差等于电流和电阻的乘积:V = IR应用戴维南定理可以应用于解决电路中的任何问题。
例如,可以使用戴维南定理计算两个点之间的电位差;可以使用戴维南定理计算电路中的总电阻,以及计算电阻的并联和串联等。
诺顿定理定义诺顿定理是指任何由电阻、电流源和电线组成的电路网络,在任意两个电端子之间的电流等于这一对电端子所取的任意一条通路的电流源的代数和和这一对电端子所取的任意一条通路的电阻的倒数之和。
证明设电路网络中有一对电端子,其电流为I,连接这一对电端子的任意通路电阻为R,通路电流源为Is。
则诺顿定理可以写成如下方程式:I = I_s - IR将其化简可得:I_s = IR + I诺顿定理的本质和戴维南定理相同,只是引入了电流源。
应用诺顿定理和戴维南定理可以互相转换。
诺顿定理通常用于求解对称网络中的电路,因为对于这类电路,电压源和电流源的作用是相同的。
戴维南定理和诺顿定理是电路理论中非常基础的两个定理。
熟练掌握这两个定理可以在解决电路问题中起到重要的作用,可以大大简化计算难度。
同时,掌握这两个定理还可以帮助我们更深入地理解电路中电势、电流以及电阻等基本概念。
戴维南定理和诺顿定理1.戴维南定理一个线性含源一端口网络,对外电路来说,可以用一个电压源和电阻串联的电路等效替换。
电压源电压等于该一端口网络的开路电压uoc;电阻等于一端口网络内部所有独立源置零后的等效电阻Req 。
线性含源网络11′1′1戴维南等效电路u oc+–u oc+–R eq2.诺顿定理一个线性含源一端口网络,对外电路来说,可以用一个电流源和电阻并联的电路等效替换。
电流源电流等于该一端口网络的短路电流isc;电阻等于一端口网络内部所有独立源置零后的等效电阻Req 。
线性含源网络11′诺顿等效电路i scR eq1′1i sc3.定理证明R eq u oc +–线性含源网络支路支路i u +–i线性含源网络u (1)+–线性含源网络)2()1(u u +=oc u =i R eq −=iu (2)+–线性无源网络i R u eq oc −==+R eq iR u eq oc −=u +–i–u +i有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)线性无源网络4.定理应用线性含源网络支路支路线性含源网络u oc :将代求支路断开后的一端口的开路电压。
R eq :将一端口内部独立电源全部置零后所得无源一端口的等效电阻。
u oc +–R eqR eq u oc+–戴维南定理的应用线性无源网络R eq 的计算方法(1)一端口内部不含受控源,电阻串联、并联和Y-∆等效法。
(2)一端口内部含有受控源,电压比电流法:加电压求电流或加电流求电压。
(3)开路电压-短路电流法。
iuR =eq i sc i sc u oc +–scoc eq i u R =eqocR u =线性含源网络R eq u oc+–ii u +–线性无源网络线性含源网络支路支路线性含源网络i sc :将代求支路断开后的一端口的短路电流。
R eq :将一端口内部独立电源全部置零后所得无源一端口的等效电阻。
R eq诺顿定理的应用i scR eq 诺顿等效电路可由戴维南等效电路经电源等效变换得到i scu oc+–sc oceq i u R =惠斯通电桥x eq oc R R u I +=+–u s R 2R 4R 1R 3I R x +–u s 11′R 2R 4R 1R 3R eq u oc+–11′R x I 求戴维南等效电路)(211433s oc -R R R R R R u u ++=4422R R R R R R R R R +++=3311eq 断开R x 支路42423131s 424313sc R R R R R R R R u R R R R R R i ++++−+=)(i sc R 411′R 2R 1R 3。
戴维南定理和诺顿定理的验证实验+数据在电子电路的世界里,有两个超级明星——戴维南定理和诺顿定理。
今天,我们就来聊聊这两个家伙是怎么在实验室里大显身手的,看看它们的魔力到底有多强。
一、理论基础1.1 戴维南定理的定义戴维南定理,简单来说,就是任何复杂的线性电路都能被一个等效的电压源和一个电阻串联起来。
这就像你用一块小小的巧克力就能代替一大盘甜品,虽然外形不一样,但味道还是很棒。
我们实验的第一步,就是搭建一个电路,试试这个定理能否成立。
1.2 诺顿定理的定义接下来,诺顿定理也是个不错的家伙。
它告诉我们,复杂电路可以被看作一个等效的电流源和一个电阻并联。
这就像你一开始看到的复杂拼图,实际上只需找到几个关键的块,就能轻松搞定。
我们将把两个定理放在一起,看看它们的不同与相似。
二、实验步骤2.1 实验准备首先,我们准备了一些基本的元件,包括电压源、电阻、导线,还有一个多用表。
听起来简单,但细节可不少。
电路图纸得画好,布局得讲究,不然可就麻烦了。
我们选用的电压源是9V,电阻值则有1kΩ、2kΩ、3kΩ等,确保能覆盖多个组合。
简直像调味品,调调就能变出不同的味道。
2.2 构建电路把这些元件一一连接起来,脑海中回想着戴维南和诺顿的理论。
小心翼翼地连接,确保没有短路,也没有虚接。
电路搭建好后,开始测量输出电压和电流。
那一瞬间,心里小鹿乱撞,兴奋之余也有点紧张。
我们把输出端的电压连接到多用表上,仔细记录下每一个读数。
2.3 数据记录与分析通过不同组合测得的数据,就像一张宝藏地图。
通过计算等效电压和等效电流,开始验证我们的理论。
数据清晰地展示出,戴维南和诺顿的确为我们打开了一扇新世界的大门。
它们不是纸上谈兵,而是真正能够在现实中应用的原理。
三、实验结果3.1 戴维南定理的验证经过一番测量,我们的实验结果显示,计算出的等效电压和实测电压几乎一模一样。
那种成功的感觉,简直不能用言语来形容。
电流的流动如同一首美妙的乐章,每一个音符都在诉说着电路的故事。
戴维南定理和诺顿定理一、戴维南定理图2-7-1二端网络也称为一端口网络,其中含有电源的二端网络称为有源一端口网络,不含电源的二端网络称为无源一端口网络,它们的符号分别如图2-7-1(a)(b)所示。
图2-7-2任一线性有源一端口网络(如图2-7-2(a)所示)对其余部分而言,可以等效为一个电压源和电阻相串联的电路(如图2-7-2(b)所示),其中的大小等于该有源一端口网络的开路电压,电压源的正极与开路端高电位点对应;等于令该有源一端口网络内所有独立源为零(即电压源短接、电流源开路)后所构成的无源一端口网络的等效电阻。
这就是戴维南定理,也称为等效电源定理;与串联的电路称为戴维南等效电路。
要计算一个线性有源一端口网络的戴维南等效电路,其步骤和方法为:1、计算:利有电路分析方法,计算相应端口的开路电压;2、计算:当线性有源一端口网络A中不含受控源时,令A内所有独立电源为零后得到的无源一端口网络P则为纯电阻网络,利用无源一端口网络的等效变换就可求出端口等效电阻;当线性一端口网络A中含有受控源时,令A内所有独立电源为零后得到的一端口网络P 中仍含有受控源,这时,可采用加压法和开路短路法求。
图2-7-3例2-7-1 利用戴维南定理求图2-7-4(a)所示电路中的电流I 为多少?图2-7-4 例2-7-1附图解:将A、B左边部分电路看作有源一端口网络,用戴维南等效电路替代后如图2-10-4(b)所示。
(1)求:将A、B端口开路,得到图2-10-4(c)所示电路。
由米尔曼公式得:(2)求等效电阻:令A、B以左的三个独立源为零,得到图2-10-4(d)所示电路,则A、B端口的等效电阻为:(3)从图2-10-4(b)中求I:图2-10-5 例2-7-2附图例2-7-2 在图2-7-5(a)所示电路中,已知,,求A、B端口的戴维南等效电路。
解:(1)求:图2-10-5(a)中A、B端口处于开路状态,列写KVL方程:(2)求等效电阻:下面分别用两种方法求解。
简述戴维宁定理和诺顿定理的内容
1 戴维宁定理
戴维宁定理,又称交叉定理,是线性代数中非常有用的一个定理,它说明了两个给定的矩阵A,B之间存在着如下关系:
$$A \cdot B = B \cdot A$$
该定理表明,乘积AB与乘积BA具有相同的值,也就是说,乘积
AB等于乘积BA,它的意义在于可以方便的推导,便于矩阵的秩的计算。
2 诺顿定理
诺顿定理也称诺比特定理,是一个描述矩阵交换秩的定理。
该定
理告诉我们,如果我们在定义矩阵时不能交换行和列,那么把这种矩
阵看做是确定的;而如果我们可以任意交换行和列,那么这种秩就等
于1。
具体地说,一个n阶矩阵若秩等于一,表示当你任意地把它的行和列互换时,它仍然能够变换成有序行向量或列向量,秩越大,表示
你矩阵在你把行和列任意交换也不能得到一个有序的行向量或者列向量.
总而言之,戴维宁定理可以让我们更好的计算矩阵的乘积,而诺
顿定理则让我们更好的理解矩阵的秩。
这两个定理都在现代线性代数
中占有重要的位置。
一、基本原理:A.戴维南定理和诺顿定理:戴维南定理:含独立源的线性电阻单口网络N,就其端口来看,可等效为一个电压源串联电阻的支路。
其中电压源的电压等于网络N的开路电压uoc,串联的电阻等于网络N中所有独立源置零时所得网络N0的等效电阻R0。
诺顿定理:含独立源的线性电阻单口网络N,就其端口来看,可等效为一个电流源与电阻并联的组合。
其中电流源的电流等于网络N的短路电流isc,并联的电阻等于网络N中所有独立源置零时所得网络N0的等效电阻R0。
测量实际二端网络(EEL-53)的开路电压(用电压表)和短路电流(电流表),得到二端网络的内阻,改变负载的电阻,记下不同电阻的电压和电流。
通过一个等效电路,电流源和电阻并联(诺顿定理),和另一个等效电路,电压源和电阻串联(戴维南定理)在不同负载电阻的电流和电压与其比对,若作出的数据图表拟合性好,证明验证戴维南定理和诺顿定理成功,否则失败。
B.有源二端网络等效参数的测量方法:开路电压、短路电流法在有源二端网络输出端开路时,用电压表直接测其暑促段的开路电压U,然后再将其输出端短路,测其短路电流I,则其内阻是:R=U/IC.置换定理一个有唯一解的电阻电路N,若已知其中一个单口网络NK的端口电压,用一个电压值为a的电压源置换该单口网络NK,若置换后的电路也有唯一解,则置换前后电路其余部分的电流和电压值保持不变。
测量电路只接12V电压源,只接6V电压源,两个同时接上时,EEL-52各个支路和元件的电流和电压,由数据记录的叠加,验证叠加定理二、简要实验步骤:A.任务一:1.按实验书原理图接好电路。
2.S1上拔,S2右拔,记录电压。
3.S1下拔,S2左拔,记录电流。
4.计算内阻R 。
任务二:1.在原电路加负载。
2.记录下各阻值下的电流和电压。
任务三:1.按实验书电流源和电阻并联。
2.记录下各阻值下的电流和电压。
3.按实验书电压源和电阻串联。
4记录下各阻值下的电流和电压。
5.作图比较拟合程度。
戴维南定理、诺顿定理戴维南定理和诺顿定理是电路理论中的两个重要定理,它们在电路分析和设计中有着广泛的应用。
本文将分别介绍这两个定理的概念和应用,并探讨它们在电路领域中的重要性。
一、戴维南定理戴维南定理,也称为戴维南-诺顿定理,是电路理论中的基本定理之一。
它是由英国科学家戴维南和诺顿在19世纪末提出的,用于简化复杂电路的分析。
该定理表明,任何一个线性电路都可以用一个电压源和一个串联的电阻模型等效代替。
戴维南定理的核心思想是将电路分为两部分:被测电路和测量电路。
被测电路是指需要分析的电路,而测量电路是指用于测量电路参数的电路。
根据戴维南定理,可以将被测电路的复杂结构简化为一个等效的电压源和串联电阻。
通过戴维南定理,我们可以方便地计算电路中的电流和电压。
例如,在分析直流电路时,可以通过测量电压源的电压和串联电阻的电流,来确定整个电路的特性。
这样,我们可以将复杂的电路问题转化为简单的电路问题,从而更容易解决。
二、诺顿定理诺顿定理,也称为诺顿-戴维南定理,是电路理论中的另一个重要定理。
它与戴维南定理相似,也是用于简化电路分析的工具。
诺顿定理表明,任何一个线性电路都可以用一个电流源和一个并联的电导模型等效代替。
诺顿定理的思想与戴维南定理相似,同样将电路分为被测电路和测量电路。
不同的是,诺顿定理通过一个电流源和并联电导来简化被测电路。
这样,我们可以通过测量电流源的电流和并联电导的电压,来确定整个电路的特性。
诺顿定理的应用同样广泛。
在分析交流电路时,诺顿定理可以帮助我们简化电路结构,从而更方便地计算电流和功率。
通过将复杂的电路分解为简单的电路,我们可以更加精确地预测电路的性能,并进行相应的设计和调整。
三、戴维南定理与诺顿定理的关系戴维南定理和诺顿定理虽然在表述上有所不同,但实质上是等效的。
它们都可以将复杂的电路简化为一个等效的电源和电阻或电流源和电导。
两者的转换关系可以通过一些简单的数学运算实现。
具体而言,戴维南定理可以通过将电流源的电流与串联电阻的阻值相除,得到等效的电压源和串联电阻。
戴维南定理与诺顿定理导言:在电路理论中,戴维南定理(Kirchhoff's Current Law)和诺顿定理(Norton's Theorem)是两个非常重要的基本定理。
它们为我们分析和解决电路问题提供了有力的工具。
本文将从理论原理、应用范围以及实际案例等方面介绍戴维南定理与诺顿定理,帮助读者更好地理解和应用这两个定理。
一、戴维南定理1.1 原理戴维南定理,又称作电流守恒定律,是由德国物理学家叶史瓦·戴维南于1845年提出的。
该定理表明,在任何一个电路中,进入某节点的电流之和等于离开该节点的电流之和。
简而言之,电流在节点处守恒。
1.2 应用戴维南定理为我们分析电路提供了一个重要的基本原则。
在实际应用中,我们可以通过应用戴维南定理来简化电路,从而更方便地求解电路中的各种参数。
通过将复杂的电路分解为多个简单的节点,我们可以利用戴维南定理将电路简化为一系列串、并联的电阻,从而求解电流和电压的分布情况。
1.3 例子为了更好地理解戴维南定理的应用,我们来看一个简单的例子。
假设有一个由三个电阻串联而成的电路,电阻分别为R1、R2和R3,电流为I。
根据戴维南定理,我们可以得到以下等式:I = I1 = I2 = I3其中,I1、I2和I3分别表示通过R1、R2和R3的电流。
通过这个等式,我们可以得到I与三个电阻的关系,从而求解电路中的各个参数。
二、诺顿定理2.1 原理诺顿定理是由美国工程师爱德华·诺顿于1926年提出的。
该定理表明,在任何一个电路中,可以通过一个等效的电流源和一个等效的电阻来代替电路中的复杂部分。
这个等效的电流源称为诺顿电流源,等效的电阻称为诺顿电阻。
2.2 应用诺顿定理为我们分析电路提供了一种简化的方法。
通过将电路中的复杂部分转化为一个等效的电流源和电阻,我们可以更方便地计算电路的各种参数。
诺顿定理在电路分析和设计中有着广泛的应用,特别是在大规模集成电路设计和复杂电路的分析中,诺顿定理可以帮助工程师简化电路结构,提高设计的效率。
§4-3 戴维南定理和诺顿定理戴维南定理(Thev enin’s theorem )是一个极其有用的定理,它是分析复杂网络响应的一个有力工具。
不管网络如何复杂,只要网络是线性的,戴维南定理提供了同一形式的等值电路。
在§2-4(输入电阻和等效电阻)一节中曾介绍过二端网络/也叫一端口网络的概念。
(一个网络具有两个引出端与外电路相联,不管其内部结构多么复杂,这样的网络叫一端口网络)。
含源单口(一端口)网络──内部含有电源的单口网络。
单口网络一般只分析端口特性。
这样一来,在分析单口网络时,除了两个连接端钮外,网络的其余部分就可以置于一个黑盒子之中。
含源单口网络的电路符号:图中N ──网络 方框──黑盒子U单口松驰网络──含源单口网络中的全部独立电源置零,受控电源保留,(动态元件为零状态),这样的网络称为单口松驰网络。
电路符号:一、戴维南定理(一)定理:一含源线性单口一端网络N ,对外电路来说,可以用一个电压源和电阻的串联组合来等效置换,此电压源的电压等于端口的开路电压,电阻等于该单口网络对应的单口松驰网络的输入电阻。
(电阻等于该单口网络的全部独立电源置零后的输入电阻)。
上述电压源和电阻串联组成的电压源模型,称为戴维南等效电路。
该电阻称为戴维南等效电阻。
U任意负载任意负载U oc =U s求戴维南等效电路,对负载性质没有限定。
用戴维南等效电路置换单口网络后,对外电路的求解没有任何影响,即外电路中的电流和电压仍然等于置换前的值。
(二)戴维南定理的证明:1. 设一含源二端网络N 与任意负载相接,负载端电压为U ,端电流为I 。
2. 任意负载用电流源替代,取电流源的电流为I I S 。
方向与I 相同。
替代后,整个电路中的电流、电压保持不变。
下面用叠加定理分析端电压U 与端电流I 。
3. 设网络N 内的独立电源一起激励,受控源保留,电流源I S 置零,即ab 端开路。
这时端口电压、电流加上标(1),有4. I S 单独激励,网络N 内的独立电源均置零,受控电源保留,这时,含源二端网络N 转化成单口松驰网络N 0,图中端口电流、电压加上标(2),SU (1)=U ocI (1)=0有I R I R U eq S eq -=-=)2(I I I S ==)2( 应用叠加定理,得⎪⎩⎪⎨⎧=+=-=+=I I I I I R U U U U eq oc )2()1()2()1( (1)可以看到,在戴维南等效电路中,关于ab 端的特性方程与(1)式相同。
由此,戴维南定理得证。
(三)戴维南定理的应用应用戴维南定理,关键需要求出端口的开路电压以及戴维南等效电阻。
1. 求开路电压:用前一章所学知识,或结合叠加原理。
2. 求戴维南等效电阻 ① 串并联法令独立电源为0,根据网络结构,用串并联法求R eq 。
② 外加电源法令网络中独立电源为0,外加一电压源/电流源,用欧姆定律求R eq 。
(2)S外加电压源法I U R Seq =外加电流源法S eq I U R =③ 开短路法SC OCeq I U R =(四)应用戴维南定理要注意的几个问题 1. 戴维南定理只适用于含源线性二端网络。
因为戴维南定理是建立在叠加概念之上的,而叠加概念只能用于线性网络。
2. 应用戴维南定理时,具有耦合的支路必须包含在网络N 之内。
3. 计算网络N 的开路电压时,必须画出相应的电路,并标出开路电压的参考极性。
4. 计算网络N 的输出电阻时,也必须画出相应的电路。
SSI SC5. 在画戴维南等效电路时,等效电压源的极性,应与开路电压相一致。
6. 戴维南等效电路等效的含义指的是,网络N 用等效电路替代后,在连接端口ab 上,以及在ab 端口以外的电路中,电流、电压都没有改变。
但在戴维南等效电路与被替代网络N 中的内部情况,一般并不相同。
例1 V U S 11=,Ω=22R ,Ω=33R ,Ω=44R ,Ω=55R ,V U 555=,A I S 66=,R 1可变,试问:R 1 = ?时A I 11-=。
解:采用戴维南定理分析 (1)开路电压oC U将支路1从图中移去后,电路如图所示。
用网孔法:5635532)(S S U I R I R R R =-++ 563)532(5=⨯-++I A I 3.25=U S1R 4R 4在外围电路中应用KVL 得 开路电压V I R I R U U S S oC 5.30643.25564555-=⨯-⨯-=--=(2)求戴维南等效电阻将上图中的独立源置零后的电路如图所示:4325)//(R R R R R eq ++= 4)32(5)32(5++++⨯=Ω=5.6(3)电路化简为∵ eqS oC R R U U I ++=111∴ Ω=--+-=-+=235.6115.30111eq S oC R I U U R 例2 已知:Ω=11R ,Ω=22R ,Ω=33R ,Ω=1m r ,V U S 11=。
试计算电流I 3(用戴维南定理)R 4R 5ReqS1R 3I 3解:(1)求开路电压oC U 。
注意:应用戴维南定理时,具有耦合的支路必须包含在二端网络N 之内。
(I 3被处理在N 之内) ∵ 03=I ,∴ 0)1(3=I r mV U R R R U S oC3212121212=⨯+=+= (2)求等效电阻R eq ,用开、短路法 A R U IS 11111)2(1=== )2(2)2(2)2(1)2(31IIII-=-= (1))2(3)2(32)2(32)2(3)2(25.0211I I R I R I r I m =⨯=⨯==(2)(2)代入(1)得A I32)2(3= ∴ 短路电流A I I SC 32)2(3==U OCI 3(1)I 3(2)I SCI 1(2)Ω===13232SCoCeq I U R (3)电路化简为A R R U I eq oC 61313233=+=+= 例3 已知:Ω=11R ,Ω=33R ,Ω=44R ,Ω=55R ,V U S 11=,A I S 22=,V U S 33=,V U S 44=,V U S 55=。
解:本例只要计算电流3I ,采用戴维南定理求解是适宜的。
1)ab 左端网络的等效参数211S S aboc I R U U -=V 1211-=⨯-=Ω==111R R eq2)cd 右端网络的等效参数R 3I 3S5bd5U abOC545444R R U U R U U S S S cdoc ++-=V 0545444=++⨯-=Ω==+⨯=+⨯=22.292054545454R R R R R eq 3)电路化简为∴ A R R R U U U i eq eq cdoc S acoc 321.0322.213123133=+++-=++-+= 例1.求戴维南等效电路解:1)求开路电压0=I 03=IS5d5Ub U Rd18V6Ω18V6Ω OC121861212=⨯+=OCU (V ) 2)求等效电阻a) 用外加电压源法121S U I =11223I I I I I I --=--=212)122(6)2(6612SS S U I U I I I I U --=--=--==81223S SU U I -=-=8-=-=IU R Seq (Ω)b) 用外加电流源法6ΩU S6ΩIS I I =S S S S I I I I U 8)2(4)3(126126-=-=-+⨯=8-=-=Seq I U R (Ω)c) 用开短路法SC I I -=SC I I I I I 2232-==+-= SC I I 126182-==,231218-=-=∴SCI82312-=-=-=SC OC eq I U R (Ω) 3)画戴维南等效电路18V6ΩI SC例2.求戴维南等效电路,r=2解:1)求开路电压A I 25101==)(4221V rI U OC =⨯==2)求等效电阻 用外加电流源法01=I 021==I U 0==Seq I U R3)戴维南等效电路:10Ωb10ΩbOC10ΩbSba。