实验三 戴维南定理和诺顿定理
- 格式:ppt
- 大小:2.54 MB
- 文档页数:7
戴维南定理和诺顿定理实验报告戴维南定理和诺顿定理是电路理论中非常重要的两个定理,它们为我们理解和分析电路提供了重要的理论支持。
本次实验旨在通过实际操作验证戴维南定理和诺顿定理,并对实验结果进行分析和讨论。
实验一,验证戴维南定理。
首先,我们搭建了一个包含多个电阻的电路,并通过测量电路中各个电阻的电压和电流,得到了电路的电压-电流特性曲线。
然后,我们通过改变电路中的电阻值,重新测量电路的电压-电流特性曲线。
最后,我们根据戴维南定理,将电路简化为一个等效的电压源和电阻,通过比较原始电路和简化电路的特性曲线,验证了戴维南定理的有效性。
实验二,验证诺顿定理。
在这个实验中,我们利用相同的电路,通过测量电路中的电压和电流,得到了电路的电压-电流特性曲线。
然后,我们将电路简化为一个等效的电流源和电阻,重新测量电路的电压-电流特性曲线。
通过比较原始电路和简化电路的特性曲线,验证了诺顿定理的有效性。
实验结果分析。
通过实验验证,我们发现戴维南定理和诺顿定理在实际电路中具有很高的适用性。
戴维南定理告诉我们,任何线性电路都可以用一个等效的电压源和电阻来表示,而诺顿定理则告诉我们,任何线性电路都可以用一个等效的电流源和电阻来表示。
这些定理为我们分析复杂电路提供了便利,使得我们可以通过简化电路结构来更好地理解电路的特性和行为。
结论。
通过本次实验,我们验证了戴维南定理和诺顿定理在实际电路中的有效性,这些定理为我们理解和分析电路提供了重要的理论基础。
在今后的电路设计和分析中,我们可以充分利用这些定理,简化复杂电路的分析过程,提高工作效率,更好地理解电路的行为。
总结。
戴维南定理和诺顿定理是电路理论中的重要定理,通过本次实验,我们验证了它们在实际电路中的有效性。
这些定理为我们提供了简化电路分析的方法,为电路设计和分析提供了重要的理论支持。
希望通过本次实验,能够加深对这些定理的理解,提高电路分析能力,为今后的学习和工作打下良好的基础。
戴维南定理和诺顿定理验证实验报告(参考)戴维南定理和诺顿定理验证实验报告(参考)第二篇:戴维南和诺顿等效电路 2200字《电路与电子学基础》实验报告实验名称戴维南和诺顿等效电路班级学号姓名实验1 戴维南和诺顿等效电路一、实验目的1.对一个已知网络,求出它的戴维南等效电路。
2.对一个已知网络,求出它的诺顿等效电路。
3.确定戴维南定理的真实性。
4.确定诺顿定理的真实性。
5.对一个已知网络,确定它的戴维南等效电路。
6.对一个已知网络,确定它的诺顿等效电路。
二、实验器材直流电压电源 1个直流电压表 1个直流电流表 1个电阻数个三、实验步骤1.在电子工作平台上建立如图1-1所示的实验电路。
2.以鼠标左键单击仿真电源开关,激活该电路,测量a-b两端开路电压Voc。
实验测得a-b两端开路电压Voc=4.950 V3.根据图1-1所示的电路的元件值,计算a-b两端的电压Voc。
根据两电阻串联分压原理可得? Voc=10*10/(10+10)=5 V4.在电子工作平台上建立如图1-2所示的实验电路。
5.以鼠标左键单击仿真电源开关,激活该电路,测量a-b两端的短路电流Isc。
实验测得a-b两端的短路电流 Isc=500.0 uA6.根据图1-2所示的电路元件值,计算短路电流Isc。
计算时应该用一个短导线代替电流表。
由图易知:r2和r3并联再与r1串联计算r1//r2=1/(1/5+1/10)=3.33333 k ohm所以干路总电阻 R=10+3.33333=13.33333 k ohm所以干路电流为 I=10/13.33333=0.75 mA =750 uA再由并联分流原理可得Isc=750×10/15 = 500.0 uA7.根据Voc和Isc的测量值,计算戴维南电压Vtn和戴维南电阻Req。
Req=Voc/Isc=4.95/500*10^-6=9900 ohmVtn=4.95 V8.根据步骤7的计算值,画出戴维南等效电路。
实验三戴维南定理和诺顿定理的验证一、实验目的1、理解戴维南定理和诺顿定理的内涵与应用。
2、初步掌握使用直流电桥、电流表、电压表等测量仪器的能力。
二、实验原理1、戴维南定理戴维南定理是指在电路中任意两个结点之间的电压等于由这两个结点划分出来的方块电路内部欧姆接触电阻与外接电阻之和乘以通过这个方块电路的电流。
戴维南定理的实际应用与布朗—博利定理类似,也是希望通过这个定理来简化电路分析和设计过程中繁琐的计算。
学习戴维南定理主要是为了在电路分析和设计中寻找我们需要的信息。
2、诺顿定理诺顿定理是指任何线性电路的戴维南等效电流源与电阻的串联等于该电路,即:在电路中任意两点的电压等于戴维南等效电流源与这两点间的欧姆电阻串联在一起的电路的电压。
诺顿定理与戴维南定理是等价的,因此学习它们两个定理的任一一个都可以很好地理解和应用它们两个。
三、实验器材和器件示波器万用表直流电源初始化电阻电箱直流电桥四、实验步骤(1)连接和调节实验电路:按照实验电路图连接电路。
(2)找寻电路中的方块电路:将电路按照结点手法分成方块,再将方块内的欧姆电阻与外接电阻相加,求出它们的和R。
(3)测量电路电流:在电路中加入电流表I01、I02,分别测量出I01、I02,作为通过方块电路的电流Ip。
(5)计算电路方块的电压:将U01 - U02的值除以Ip,求出方块电路的电压Up。
(6)实验验证:实验中得到的Up和实际测量值的误差小于5%,表明戴维南定理的应用正确。
(2)求出诺顿等效电流源的电流:通过电路中的电阻电箱,依次取出100Ω、1kΩ、10kΩ、100kΩ等不同阻值的电阻,将它们依次串联在电路中,通过万用表测量电阻电箱电阻值并各自记下,然后将测量出的电流值与电阻值计算出来,可以得到诺顿等效电流源的电流。
(3)在电路中加入一电阻:通过电路中的电阻电箱,在电路中加入一电阻表现为RL。
五、实验数据记录和分析(2)找寻电路中的方块电路(3)测量电路电流(6)实验验证(2)求出诺顿等效电流源的电流RL/Ω 电流量(mA)100 5.0001k 0.82410k 0.100100k 0.010(3)在电路中加入一电阻(4)测量加入电阻后的电路电压六、实验结论通过实验,可以得到以下结论:1、戴维南定理和诺顿定理等价,即任何线性电路都能用戴维南定理与诺顿定理进行等效转换。
戴维宁定理和诺顿定理实验报告戴维宁定理和诺顿定理实验报告引言:在物理学领域,有两个重要的定理被广泛应用于电路分析和设计中,它们分别是戴维宁定理和诺顿定理。
本文将通过实验报告的形式,对这两个定理进行探讨和验证。
实验一:戴维宁定理的验证戴维宁定理是电路分析中的重要定理之一,它指出在直流电路中,电流分支与电压分支之间的关系可以通过电流和电压的比值来表示。
为了验证戴维宁定理,我们设计了以下实验。
实验装置:1. 直流电源2. 电阻器3. 电流表4. 电压表5. 连接线实验步骤:1. 将直流电源连接到电路的一端,另一端接地。
2. 将电阻器连接到电路中,形成一个简单的直流电路。
3. 将电流表和电压表分别连接到电路的不同位置,测量电流和电压数值。
4. 记录电流和电压的数值。
实验结果:根据戴维宁定理,我们可以通过电流和电压的比值来计算电阻的阻值。
通过实验测量得到的电流和电压数值,我们可以得出电阻的阻值,并与理论值进行比较。
实验结果表明,实测值与理论值相符,验证了戴维宁定理的准确性。
实验二:诺顿定理的验证诺顿定理是电路分析中另一个重要的定理,它指出在直流电路中,任意两个电路元件之间的电流可以通过等效电流源来表示。
为了验证诺顿定理,我们进行了以下实验。
实验装置:1. 直流电源2. 电阻器3. 电流表4. 连接线实验步骤:1. 将直流电源连接到电路的一端,另一端接地。
2. 将电阻器连接到电路中,形成一个简单的直流电路。
3. 将电流表连接到电路中,测量电流数值。
4. 移除电流表,用一个等效电流源连接到电路中,调整其电流大小与实测值相同。
5. 记录等效电流源的电流数值。
实验结果:根据诺顿定理,我们可以通过等效电流源来表示电路中的电流。
通过实验测量得到的等效电流源的电流数值与实测值相同,验证了诺顿定理的准确性。
讨论:戴维宁定理和诺顿定理在电路分析和设计中起到了重要的作用。
它们使得我们能够通过简化电路的结构和参数,更方便地进行电路分析和计算。
戴维南定理与诺顿定理实验报告课件
一、实验目的
1. 了解戴维南定理与诺顿定理的基本概念;
2. 掌握戴维南定理与诺顿定理的计算方法;
3. 通过实验验证戴维南定理与诺顿定理的正确性。
二、实验原理
1. 戴维南定理
戴维南定理是指将一个线性电路中的一个支路用等效电动势和等效内阻代替,这样等效电路与原电路的两端电压和电流关系等效。
戴维南定理是基于线性电路的特性,其中支路可以自由地替换为电动势和内阻。
戴维南定理的示意图如下:
2. 诺顿定理
三、实验步骤
1. 测量原电路的开路电压和短路电流;
2. 根据测量结果算出等效电动势和内阻/等效电流和电阻;
3. 绘制等效电路;
4. 测量等效电路的开路电压和短路电流;
5. 根据测量结果验证戴维南定理和诺顿定理的正确性。
四、实验数据
1. 原电路的参数:
开路电压:9V
短路电流:2A
等效电动势:9V
等效内阻:4.5Ω
五、实验结果与分析
根据实验结果可知,等效电路的开路电压和短路电流与原电路的开路电压和短路电流几乎相同,说明戴维南定理和诺顿定理的正确性被验证了。
六、实验总结
通过本次实验,我们学会了如何利用戴维南定理和诺顿定理计算线性电路的等效电动势和内阻/等效电流和电阻,并验证了定理的正确性。
这对我们理解电路的等效性质和研究电路的行为十分重要。
实验三戴维南定理和诺顿定理的验证实验三戴维南定理和诺顿定理的验证——有源⼆端⽹络等效参数的测定六、实验报告1. 根据步骤2、3、4,分别绘出曲线,验证戴维南定理的正确性,并分析产⽣误差的原因。
答:曲线如下,U1为原电路参数,U2为等效电路参数。
由上可见,以上数据基本符合戴维南定理,由于电路元件和电表的消耗,以及仪器误差的,所以数据与理论存在⼀定的差别,但是在可接受的误差范围内,还是可以得出戴维南定理的验证得出结果是准确的。
2. 根据步骤1、5、6的⼏种⽅法测得的Uoc与R0与预习时电路计算的结果作⽐较,你能得出什么结论。
答:计算结果为理论值,由步骤得出的数据与理论值存在⼀定的差距,实际操作中电压表和电流表会产⽣误差,元件的内阻会对电路产⽣⼀定的影响,所以在忽略可接受的误差的前提下,戴维南定理的验证得出结果是正确的。
3. 归纳、总结实验结果。
答:实验过程中,由于测量有源⼆端⽹络开路电压及等效内阻的⽅法不同,存在的误差也不⼀样,所以综合本实验过程可得,实验过程中测量数据与理论值不可能完全⼀样,但是忽略可接受的误差外,由数据可知,戴维南定理是准确的。
4.⼼得体会通过这次做戴维南定理的课程设计报告,让我明⽩原来有些事并⾮我们以为的那么困难的。
很多时候都是我们为⾃⼰找理由。
最初听到⽼师给我们的课程设计报告的要求时,⼤多数同学都很吃惊,觉得⽼师的要求太难了。
但是作业布置了我们还是要去做的,在仔细看了课程设计报告的要求和戴维南定理实验报告的页⼦以及相关资料后,课程设计报告做起来也不是很难,况且我们都有亲⾃动⼿做过实验。
还记得在第⼀次上电路课时⽼师就告诉我们这门课很重要,是以后学习专业知识的基础。
两三个⽉过后,我也深有体会。
其实每次做实验都有助于我们巩固所学的知识,也能在⼀定程度上提升我们的学习兴趣,提⾼我们的动⼿能⼒。
学习总是有法可依的,上课时认真听⽼师做预习指导和讲解,把⽼师特别提醒会出错的地⽅写下来,⾃⼰再去复习巩固。
戴维南定理和诺顿定理实验报告戴维南定理实验总结戴维南定理和诺顿定理实验报告篇一:戴维南定理和诺顿定理实验报告实验一、戴维南定理一、实验目的:1、深刻理解和掌握戴维南定理。
2、初步掌握用Multisim软件绘制电路原理图。
3、初步掌握Multisim软件中的Multimeter、Voltmeter、Ammeter 等仪表的使用以及DC Operating Point、Parameter Sweep等SPICE仿真分析方法。
4、掌握电路板的焊接技术以及直流电源、万用表等仪表的使用。
二、实验内容:1、计算等效电压和等效电阻;2、用Multisim软件测量等效电压和等效电阻;3、用Multisim软件仿真验证戴维南定理;4、在实验板上测试等效电压和等效电阻;5、在实验板上验证戴维南定理;三、实验步骤1、计算等效电压V=US(R3//R33)/((R1//R11)+(R3//R33))=2.613 V ;等效电阻R=((R1//R3)+R2)//((R11//R33)+R22)=250 .355Ω2、软件仿真(1)实验电路在Multisim软件上绘制实验电路,如图11图1 实验电路参数测试负载RL短路时的短路电流Isc 10.42mA 负载RL开路时的开路电压Uoc 2.609V调节负载RL时的数据如表1所示。
(2)等效电路在Multisim软件上绘制等效电路,如图2图2 等效电路参数测试负载RL短路时的短路电流Isc 10.41mA 负载RL开路时的开路电压Uoc 2.60V调节负载RL时的数据如表1所示。
23、电路实测(1)实验电路负载RL短路时的短路电流Isc 10.01mA 负载RL开路时的开路电压Uoc 2.58V调节负载RL时的数据如表1所示。
(2)等效电路负载RL短路时的短路电流Isc 10.1mA 负载RL开路时的开路电压Uoc 2.58V调节负载RL时的数据如表1所示。
表1负载电阻0~5KΩ变化时的仿真及实测数据四、实验数据处理1、分别画出仿真(2组)与实测(2组)的V-I特性曲线(负载电流为横坐标,负载电压为纵坐标分别画原电路和等效电路的V-I特性曲线),如图3以及图4:3图3 原电路仿真与实测数据的V-I 特性曲线图4 原电路仿真与实测数据的V-I 特性曲线2、数据分析(1)分析导致仿真数据与实测数据有差别的原因第一、等效电路中等效电阻是用电位器替代的,而电位器调解时是手动调节,存在较大误差;第二、仪器测量存在误差。
戴维宁定理和诺顿定理的实验报告引言:戴维宁定理和诺顿定理是电路理论中的两个重要定理,它们为我们理解电路的运行原理提供了重要的理论基础。
本实验报告旨在通过实验验证戴维宁定理和诺顿定理,并分析实验结果,以加深对这两个定理的理解和应用。
一、实验目的:本实验的目的是验证戴维宁定理和诺顿定理,并分析实验结果,探讨这两个定理在电路分析中的重要性和应用。
二、实验原理:1. 戴维宁定理:戴维宁定理是电路分析中的重要定理之一,它给出了计算电路中任意两点之间电压的方法。
根据戴维宁定理,我们可以将电路中的电压源和电阻转化为等效的电流源和电阻,从而简化电路分析的过程。
2. 诺顿定理:诺顿定理也是电路分析中的重要定理,它给出了计算电路中任意两点之间电流的方法。
根据诺顿定理,我们可以将电路中的电流源和电阻转化为等效的电压源和电阻,从而简化电路分析的过程。
三、实验步骤:1. 实验准备:准备一块实验板、电压源、电流表和电阻。
2. 实验一:验证戴维宁定理将电压源和电阻连接在实验板上,测量并记录两点之间的电压。
然后根据戴维宁定理,将电压源转化为等效的电流源,再次测量并记录两点之间的电压。
比较两次测量结果,验证戴维宁定理的准确性。
3. 实验二:验证诺顿定理将电流源和电阻连接在实验板上,测量并记录两点之间的电流。
然后根据诺顿定理,将电流源转化为等效的电压源,再次测量并记录两点之间的电流。
比较两次测量结果,验证诺顿定理的准确性。
四、实验结果与分析:根据实验数据计算得出的电压和电流结果与实验测量结果基本一致,验证了戴维宁定理和诺顿定理的准确性。
通过对实验结果的分析,我们可以进一步理解戴维宁定理和诺顿定理在电路分析中的应用。
五、实验结论:本实验通过验证实验结果,证明了戴维宁定理和诺顿定理的准确性和重要性。
这两个定理为我们简化电路分析提供了理论基础,使得电路分析更加简单和高效。
六、实验心得:通过本次实验,我更加深入地理解了戴维宁定理和诺顿定理的原理和应用。
戴维南定理和诺顿定理的验证实验+数据在电路分析中,戴维南定理和诺顿定理是两个非常重要的定理,它们为复杂电路的简化和分析提供了有力的工具。
为了深入理解和验证这两个定理,我们进行了一系列的实验,并对实验数据进行了详细的分析。
一、实验目的本次实验的主要目的是通过实际测量和计算,验证戴维南定理和诺顿定理的正确性,并加深对这两个定理的理解和应用。
二、实验原理1、戴维南定理戴维南定理指出,任何一个线性含源一端口网络,对外电路来说,可以用一个电压源和电阻的串联组合来等效替代。
其中,电压源的电压等于该一端口网络的开路电压 Uoc,电阻等于该一端口网络内部所有独立电源置零(即电压源短路,电流源开路)后的等效电阻 Ro。
2、诺顿定理诺顿定理则表明,任何一个线性含源一端口网络,对外电路来说,可以用一个电流源和电阻的并联组合来等效替代。
电流源的电流等于该一端口网络的短路电流 Isc,电阻仍为网络内部所有独立电源置零后的等效电阻 Ro。
三、实验器材本次实验所使用的器材包括:直流电源、电阻箱、电压表、电流表、导线若干等。
四、实验步骤1、测量含源一端口网络的开路电压 Uoc将含源一端口网络的输出端开路,用电压表测量其两端的电压,即为开路电压 Uoc。
2、测量含源一端口网络的短路电流 Isc将含源一端口网络的输出端短路,用电流表测量其短路电流,即为短路电流 Isc。
3、求含源一端口网络的等效电阻 Ro将含源一端口网络内部的所有独立电源置零(电压源短路,电流源开路),然后用电阻箱测量其等效电阻 Ro。
4、构建戴维南等效电路根据测量得到的 Uoc 和 Ro,用一个电压源和电阻串联的组合来构建戴维南等效电路。
5、构建诺顿等效电路根据测量得到的 Isc 和 Ro,用一个电流源和电阻并联的组合来构建诺顿等效电路。
输出电压和电流,并与原含源一端口网络的测量结果进行比较。
五、实验数据记录与处理1、含源一端口网络的开路电压 Uoc 和短路电流 Isc 测量数据|测量次数|Uoc(V)|Isc(A)||||||1|_____|_____||2|_____|_____||3|_____|_____|取平均值得到:Uoc =______ V,Isc =______ A2、含源一端口网络的等效电阻 Ro 测量数据|测量次数|Ro(Ω)|||||1|_____||2|_____||3|_____|取平均值得到:Ro =______ Ω和电流测量数据|负载电阻(Ω)|原含源一端口网络|戴维南等效电路|诺顿等效电路|||||||10|电压(V):_____|电压(V):_____|电压(V):_____|||电流(A):_____|电流(A):_____|电流(A):_____||20|电压(V):_____|电压(V):_____|电压(V):_____|||电流(A):_____|电流(A):_____|电流(A):_____||30|电压(V):_____|电压(V):_____|电压(V):_____|||电流(A):_____|电流(A):_____|电流(A):_____|六、实验结果分析通过对实验数据的分析,我们可以发现:1、戴维南等效电路和诺顿等效电路在不同负载电阻下的输出电压和电流与原含源一端口网络的测量结果非常接近,误差在允许范围内。
戴维南定理和诺顿定理的验证实验+数据在电子电路的世界里,有两个超级明星——戴维南定理和诺顿定理。
今天,我们就来聊聊这两个家伙是怎么在实验室里大显身手的,看看它们的魔力到底有多强。
一、理论基础1.1 戴维南定理的定义戴维南定理,简单来说,就是任何复杂的线性电路都能被一个等效的电压源和一个电阻串联起来。
这就像你用一块小小的巧克力就能代替一大盘甜品,虽然外形不一样,但味道还是很棒。
我们实验的第一步,就是搭建一个电路,试试这个定理能否成立。
1.2 诺顿定理的定义接下来,诺顿定理也是个不错的家伙。
它告诉我们,复杂电路可以被看作一个等效的电流源和一个电阻并联。
这就像你一开始看到的复杂拼图,实际上只需找到几个关键的块,就能轻松搞定。
我们将把两个定理放在一起,看看它们的不同与相似。
二、实验步骤2.1 实验准备首先,我们准备了一些基本的元件,包括电压源、电阻、导线,还有一个多用表。
听起来简单,但细节可不少。
电路图纸得画好,布局得讲究,不然可就麻烦了。
我们选用的电压源是9V,电阻值则有1kΩ、2kΩ、3kΩ等,确保能覆盖多个组合。
简直像调味品,调调就能变出不同的味道。
2.2 构建电路把这些元件一一连接起来,脑海中回想着戴维南和诺顿的理论。
小心翼翼地连接,确保没有短路,也没有虚接。
电路搭建好后,开始测量输出电压和电流。
那一瞬间,心里小鹿乱撞,兴奋之余也有点紧张。
我们把输出端的电压连接到多用表上,仔细记录下每一个读数。
2.3 数据记录与分析通过不同组合测得的数据,就像一张宝藏地图。
通过计算等效电压和等效电流,开始验证我们的理论。
数据清晰地展示出,戴维南和诺顿的确为我们打开了一扇新世界的大门。
它们不是纸上谈兵,而是真正能够在现实中应用的原理。
三、实验结果3.1 戴维南定理的验证经过一番测量,我们的实验结果显示,计算出的等效电压和实测电压几乎一模一样。
那种成功的感觉,简直不能用言语来形容。
电流的流动如同一首美妙的乐章,每一个音符都在诉说着电路的故事。
戴维南定理和诺顿定理实验_模板(优选)word资料实验三戴维南定理和诺顿定理实验姓名学号专业实验台号实验时间一、实验目的1.通过实验验证戴维南定理和诺顿定理,加深理解等效电路的概念2.学习用补偿法测量开路电压二、原理1.戴维南定理:一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电压源和电阻的串联组合等效置换。
诺顿定理:一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电流源和电导的并联组合等效电路。
以上等效变换的电路如图3-1所示。
(a) 线性含源一端口电路(b) 基于戴维南定理的替代电路(c) 基于诺顿定理的替代电路图3-1 等效变换图2.含源一端口网络开路电压的测量方法(1)直接测量法:当电压表内阻R v相比可以忽略不计时,可以直接用电压表测量器开路电压U oc。
(2)补偿法:当电压表内阻R v相比不可忽略时,补偿法可以消除或减小电压表内阻在测量中产生的误差。
图3-23.测量一端口网络输入端等效电阻R i(1)测量含源一端口网络的开路电压U oc和短路电流I sc,则oci scU R I =(2)将含源一端口网络除源,化为无源网络P ,然后按图接线,测量U s 和I ,则si U R I=图3-3三、实验仪器和器材1. 0-30V 可调直流稳压电源 2. +15直流稳压电源 3. 0~200mA 可调恒流源 4. 电阻 5. 电阻箱6. 交直流电压电流表/电流表 7. 实验电路板 8. 短接桥 9. 导线四、实验内容及步骤1. 测量含源一端口网络的外部伏安特性测量含源一端口网络的外部伏安特性:用电阻箱作为一端口网络的外接电阻R L ,如图3-4所示,测量结果在表3-1中。
()L R ω0 500 1k 1.5k 2k 2.5k 开路 I(mA) U(V)图3-42. 验证戴维南定理电压源用直流稳压电源代替,调节电源输出电压,使之等于U OC ,R i 用电阻箱代替,在CD 端接入负载电阻R L ,改变电阻值,侧去电流和电压。
验证戴维南定理和诺顿定理实验报告戴维南定理(Kirchhoff's theorem)和诺顿定理(Norton's theorem)是电路理论中重要的基本定理。
为了验证这两个定理,可以进行以下实验。
实验步骤:1. 准备一个简单的直流电路,包括电源、电阻等元件。
2. 使用万用表测量电路中的各个元件的参数,如电流、电压等。
验证戴维南定理:1. 在电路中选择一个节点,将其它节点与该节点相连。
2. 测量该节点处的电流,记为I。
3. 将电流源连接到该节点,同时将电阻连接到电流源的另一头。
4. 测量电流源的电压,记为U。
5. 在电路中测量其它节点处的电压和电流,确保测量连接正确。
6. 计算I-U,即节点处进出的电流差异。
如果差异接近于零,说明实验结果符合戴维南定理。
验证诺顿定理:1. 在电路中选择一个支路,断开该支路的导线。
2. 测量该支路两个断开导线处的电压,记为U1和U2。
3. 计算U1-U2,即支路两端电压差。
确保测量连接正确。
4. 在电路中测量该支路断开导线处的电流,记为I。
5. 计算(U1-U2)/I,即支路两端电压差除以电流。
如果结果接近于零,说明实验结果符合诺顿定理。
实验注意事项:1. 实验过程中要注意安全,避免触电等危险。
2. 对于测量仪器的使用,要按照操作说明正确使用,避免误差产生。
3. 在连接电路时,要保证连接牢固,避免导线接触不良导致的测量错误。
4. 实验数据的精确性和准确性对于验证定理的结果有着重要影响,需要仔细测量和计算。
总结:通过以上实验步骤的操作和数据测量,可以验证戴维南定理和诺顿定理是否成立。
如果实验结果符合定理的要求,说明定理的基本原理得到了验证。
一、基本原理:A.戴维南定理和诺顿定理:戴维南定理:含独立源的线性电阻单口网络N,就其端口来看,可等效为一个电压源串联电阻的支路。
其中电压源的电压等于网络N的开路电压uoc,串联的电阻等于网络N中所有独立源置零时所得网络N0的等效电阻R0。
诺顿定理:含独立源的线性电阻单口网络N,就其端口来看,可等效为一个电流源与电阻并联的组合。
其中电流源的电流等于网络N的短路电流isc,并联的电阻等于网络N中所有独立源置零时所得网络N0的等效电阻R0。
测量实际二端网络(EEL-53)的开路电压(用电压表)和短路电流(电流表),得到二端网络的内阻,改变负载的电阻,记下不同电阻的电压和电流。
通过一个等效电路,电流源和电阻并联(诺顿定理),和另一个等效电路,电压源和电阻串联(戴维南定理)在不同负载电阻的电流和电压与其比对,若作出的数据图表拟合性好,证明验证戴维南定理和诺顿定理成功,否则失败。
B.有源二端网络等效参数的测量方法:开路电压、短路电流法在有源二端网络输出端开路时,用电压表直接测其暑促段的开路电压U,然后再将其输出端短路,测其短路电流I,则其内阻是:R=U/IC.置换定理一个有唯一解的电阻电路N,若已知其中一个单口网络NK的端口电压,用一个电压值为a的电压源置换该单口网络NK,若置换后的电路也有唯一解,则置换前后电路其余部分的电流和电压值保持不变。
测量电路只接12V电压源,只接6V电压源,两个同时接上时,EEL-52各个支路和元件的电流和电压,由数据记录的叠加,验证叠加定理二、简要实验步骤:A.任务一:1.按实验书原理图接好电路。
2.S1上拔,S2右拔,记录电压。
3.S1下拔,S2左拔,记录电流。
4.计算内阻R 。
任务二:1.在原电路加负载。
2.记录下各阻值下的电流和电压。
任务三:1.按实验书电流源和电阻并联。
2.记录下各阻值下的电流和电压。
3.按实验书电压源和电阻串联。
4记录下各阻值下的电流和电压。
5.作图比较拟合程度。