高三数学反函数1
- 格式:pdf
- 大小:974.83 KB
- 文档页数:10
2.5 反函数●知识梳理1.反函数定义:若函数y =f (x )(x ∈A )的值域为C ,由这个函数中x 、y 的关系,用y 把x 表示出来,得到x =ϕ(y ).如果对于y 在C 中的任何一个值,通过x =ϕ(y ),x 在A 中都有唯一的值和它对应,那么,x =ϕ(y )就表示y 是自变量,x 是自变量y 的函数.这样的函数x =ϕ(y )(y ∈C )叫做函数y =f (x )(x ∈A )的反函数,记作x =f -1(y ). 在函数x =f -1(y )中,y 表示自变量,x 表示函数.习惯上,我们一般用x 表示自变量,y表示函数,因此我们常常对调函数x =f -1(y )中的字母x 、y ,把它改写成y =f -1(x ).2.互为反函数的两个函数y =f (x )与y =f -1(x )在同一直角坐标系中的图象关于直线y =x 对称.3.求反函数的步骤:(1)解关于x 的方程y =f (x ),得到x =f -1(y ).(2)把第一步得到的式子中的x 、y 对换位置,得到y =f -1(x ). (3)求出并说明反函数的定义域〔即函数y =f (x )的值域〕. ●点击双基1.(2005年北京东城区模拟题)函数y =-11+x (x ≠-1)的反函数是 A.y =-x1-1(x ≠0) B.y =-x1+1(x ≠0)C.y =-x +1(x ∈R )D.y =-x -1(x ∈R )解析:y =-11+x (x ≠-1)⇒x +1=-y 1⇒x =-1-y 1.x 、y 交换位置,得y =-1-x1.答案:A2.函数y =log 2(x +1)+1(x >0)的反函数为A.y =2x -1-1(x >1)B.y =2x -1+1(x >1) C.y =2x +1-1(x >0) D.y =2x +1+1(x >0)解析:函数y =log 2(x +1)+1(x >0)的值域为{y |y >1},由y =log 2(x +1)+1,解得x =2y -1-1.∴函数y =log 2(x +1)+1(x >0)的反函数为y =2x -1-1(x >1). 答案:A3.函数f (x )=-12+x (x ≥-21)的反函数 A.在[-21,+∞)上为增函数 B.在[-21,+∞)上为减函数 C.在(-∞,0]上为增函数D.在(-∞,0]上为减函数解析:函数f (x )=-12+x (x ≥-21)的值域为{y |y ≤0},而原函数在[-21,+∞)上是减函数,所以它的反函数在(-∞,0]上也是减函数.答案:D4.(2005年春季上海,4)函数f (x )=-x 2(x ∈(-∞,-2])的反函数f -1(x )=______________.解析:y =-x 2(x ≤-2),y ≤-4.∴x =-y -.x 、y 互换, ∴f -1(x )=-x -(x ≤-4).答案:-x -(x ≤-4) 5.若函数f (x )=2+x x ,则f -1(31)=___________.解法一:由f (x )=2+x x ,得f -1(x )=x x -12.∴f -1(31)=311312-⋅=1. 解法二:由2+x x=31,解得x =1. ∴f -1(31)=1. 答案:1评述:显然解法二更简便. ●典例剖析【例1】 设函数f (x )是函数g (x )=x 21的反函数,则f (4-x 2)的单调递增区间为 A.[0,+∞) B.(-∞,0] C.[0,2) D.(-2,0]解析:f (4-x 2)=-log 2(4-x 2).x ∈(-2,0]时,4-x 2单调递增;x ∈[0,2)时,4-x 2单调递减.答案:C 深化拓展1.若y =f (x )是[a ,b ]上的单调函数,则y =f (x )一定有反函数,且反函数的单调性与y =f (x )一致.2.若y =f (x ),x ∈[a ,b ](a <b )是偶函数,则y =f (x )有反函数吗?(答案:无)【例2】 求函数f (x )=⎩⎨⎧->+-≤+)1(1),1(12x x x x 的反函数.解:当x ≤-1时,y =x 2+1≥2,且有x =-1-y ,此时反函数为y =-1-x (x ≥2). 当x >-1时,y =-x +1<2,且有x =-y +1,此时反函数为y =-x +1(x <2).∴f (x )的反函数f -1(x )=⎪⎩⎪⎨⎧<+-≥--).2(1),2(1x x x x评述:分段函数应在各自的条件下分别求反函数式及反函数的定义域,分段函数的反函数也是分段函数.【例3】 已知函数f (x )是函数y =1102+x-1(x ∈R )的反函数,函数g (x )的图象与函数y =134--x x的图象关于直线y =x -1成轴对称图形,记F (x )=f (x )+g (x ). (1)求F (x )的解析式及定义域.(2)试问在函数F (x )的图象上是否存在这样两个不同点A 、B ,使直线AB 恰好与y 轴垂直?若存在,求出A 、B 两点坐标;若不存在,说明理由.解:(1)由y =1102+x -1(x ∈R ),得10x =y y +-11,x =lg y y +-11.∴f (x )=lg xx+-11(-1<x <1).设P (x ,y )是g (x )图象上的任意一点,则P 关于直线y =x -1的对称点P ′的坐标为(1+y ,x -1).由题设知点P ′(1+y ,x -1)在函数y =134--x x的图象上,∴x -1=11)1(34-++-y y .∴y =21+x ,即g (x )=21+x (x ≠-2). ∴F (x )=f (x )+g (x )=lg x x +-11+21+x ,其定义域为{x |-1<x <1}.(2)∵f (x )=lg x x +-11=lg (-1+x +12)(-1<x <1)是减函数,g (x )=21+x (-1<x <1)也是减函数,∴F (x )在(-1,1)上是减函数.故不存在这样两个不同点A 、B ,使直线AB 恰好与y 轴垂直.评述:本题是一道综合题,解决第(2)小题常用的方法是反证法,但本题巧用单调性法使问题变得简单明了.深化拓展 若F (x )当x ∈[a ,b ]时是单调函数,则F (x )图象上任两点A 、B 连线的斜率都不为零.●闯关训练 夯实基础1.函数y =1-x +1(x ≥1)的反函数是 A.y =x 2-2x +2(x <1) B.y =x 2-2x +2(x ≥1) C.y =x 2-2x (x <1)D.y =x 2-2x (x ≥1)解析:y =1-x +1(x ≥1)⇒y ≥1,反解x ⇒x =(y -1)2+1⇒x =y 2-2y +2(y ≥1),x 、y 互换⇒y =x 2-2x +2(x ≥1). 答案:B2.记函数y =1+3-x 的反函数为y =g (x ),则g (10)等于 A.2 B.-2 C.3 D.-1解析:g (10)的值即为10=1+3-x 中x 的值⇒3-x =32,∴x =-2. 答案:B (理)(2004年全国Ⅳ,理2)函数y =e 2x (x ∈R )的反函数为 A.y =2ln x (x >0) B.y =ln (2x )(x >0)C.y =21ln x (x >0) D.y =21ln (2x )(x >0) 解析:y =e 2x ⇒2x =ln y ⇒x =21ln y ,x 、y 互换⇒y =21ln x (x >0). 答案:C3.函数y =x 2-2ax -3在区间[1,2]上存在反函数的充要条件是 A.a ∈(-∞,1] B.a ∈[2,+∞) C.a ∈[1,2] D.a ∈(-∞,1]∪[2,+∞) 解析:存在反函数的充要条件是函数在[1,2]上是单调函数.∴a ≤1或a ≥2. 答案:D4.已知函数y =log 2x 的反函数是y =f -1(x ),则函数y =f -1(1-x )的图象是C解析:y =log 2x ⇔x =2y ⇒f -1(x )=2x ⇒f -1(1-x )=21-x . 答案:C 5.若点(2,41)既在函数y =2ax +b 的图象上,又在它的反函数的图象上,则a =___________,b =___________.解析:∵点(2,41)在函数y =2ax +b 的反函数的图象上,根据反函数与原函数的对称关系,∴点(41,2)在函数y =2ax +b 的图象上. 把点(2,41)与(41,2)分别代入函数y =2ax +b 可得.答案:-712 7106.已知函数y =f (x )是奇函数,当x ≥0时,f (x )=3x -1,设f (x )的反函数是y =g(x ),则g (-8)=______________.解析:当x >0时,-x <0,f (-x )=3-x -1.又∵f (x )是奇函数,∴f (-x )=-f (x ),即-f (x )=3-x -1.∴f (x )=1-3-x .∴f (x )=⎪⎩⎪⎨⎧---xx 3113 ⎩⎨⎧<≥.0,0x x ∴f -1(x )=⎩⎨⎧<--≥+.0)1(log ,0)1(log 33x x x x∴f -1(-8)=g (-8)=-log 3(1+8)=-log 332=-2. 答案:-2 培养能力7.已知函数f (x )=mx x +-25的图象关于直线y =x 对称,求实数m .解:∵f (x )的图象关于直线y =x 对称,又点(5,0)在f (x )的图象上,∴点(0,5)也在f (x )的图象上,即-m5=5,得m =-1. 8.已知函数f (x )=a +b x -1(b >0,b ≠1)的图象经过点(1,3),函数f -1(x +a )(a >0)的图象经过点(4,2),试求函数f -1(x )的表达式.解:∵函数f (x )=a +b x -1(b >0,b ≠1)的图象经过点(1,3),∴a +b 0=3,a =3-b 0=3-1=2.又函数f -1(x +a )(a >0)的图象经过点(4,2),∴f -1(4+a )=2.∴f (2)=4+a =4+2=6,即2+b 2-1=6.∴b =4.故f (x )=2+4x -1.再求其反函数即得 f -1(x )=log 4(x -2)+1(x >2).9.已知函数f (x )=2(21-11+x a )(a >0,且a ≠1).(1)求函数y =f (x )的反函数y =f -1(x );(2)判定f -1(x )的奇偶性;(3)解不等式f -1(x )>1.解:(1)化简,得f (x )=11+-x x a a .设y =11+-x x a a ,则a x =y y -+11.∴x =log a yy-+11.∴所求反函数为y =f -1(x )=log axx -+11(-1<x <1). (2)∵f -1(-x )=log a x x +-11=log a (x x -+11)-1=-log a xx -+11=-f -1(x ),∴f -1(x )是奇函数.(3)log axx -+11>1.当a >1时, 原不等式⇒x x-+11>a ⇒11)1(--++x a x a <0. ∴11+-a a <x <1. 当0<a <1时,原不等式⎪⎪⎩⎪⎪⎨⎧>-+<-+,011,11xx a xx解得⎪⎩⎪⎨⎧<<->+-<.11,111x x aa x 或 ∴-1<x <aa +-11. 综上,当a >1时,所求不等式的解集为(11+-a a ,1); 当0<a <1时,所求不等式的解集为(-1,11+-a a ).探究创新10.已知函数f (x )=(11+-x x )2(x >1). (1)求f (x )的反函数f -1(x );(2)判定f -1(x )在其定义域内的单调性;(3)若不等式(1-x )f -1(x )>a (a -x )对x ∈[161,41]恒成立,求实数a 的取值范围.解:(1)由y =(11+-x x )2,得x =yy -+11. 又y =(1-12+x )2,且x >1,∴0<y <1. ∴f -1(x )=xx -+11(0<x <1).(2)设0<x 1<x 2<1,则1x -2x <0,1-1x >0,1-2x >0. ∴f -1(x 1)-f -1(x 2)=)1)(1()(22121x x x x ---<0,即f -1(x 1)<f -1(x 2).∴f -1(x )在(0,1)上是增函数. (3)由题设有(1-x )xx -+11>a (a -x ).∴1+x >a 2-a x ,即(1+a )x +1-a 2>0对x ∈[161,41]恒成立.显然a ≠-1.令t =x ,∵x ∈[161,41],∴t ∈[41,21].则g (t )=(1+a )t +1-a 2>0对t ∈[41,21]恒成立.由于g (t )=(1+a )t +1-a 2是关于t 的一次函数,∴g (41)>0且g (21)>0,即⎪⎪⎩⎪⎪⎨⎧>-++>-++,01)1(21,01)1(4122a a a a 解得-1<a <45. 评述:本题(3)巧用换元法,通过构造一次函数,借助函数图象求解. ●思悟小结1.反函数的定义域和值域分别是原函数的值域和定义域,因此反函数的定义域不能由其解析式确定,而应当是原函数的值域.2.互为反函数的两个函数具有相同的增减性,它们的图象关于直线y =x 对称.3.求y =f (x )的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y =f (x )的解析式求出x =f -1(y );(3)将x 、y 对换,得反函数的习惯表达式y =f -1(x ). 4.分段函数的反函数,应分别求出各段的反函数,再合成. ●教师下载中心 教学点睛由于本节中的反函数的定义既是重点又是难点,因此复习本节时,针对反函数的定义,教师应渗透如下知识:(1)函数的反函数,本身也是一个函数,由反函数的定义,原来函数也是反函数的反函数.(2)反函数的定义域、值域分别是原来函数的值域与定义域.(3)由反函数定义知:①b =f (a )⇔a =f -1(b ),这两个式子是a 、b 之间关系的两种不同表示形式.②f [f -1(x )]=x (x ∈C ). ③f -1[f (x )]=x (x ∈A ). 拓展题例【例1】 (2004年上海,10)若函数y =f (x )的图象可由y =lg (x +1)的图象绕坐标原点O 逆时针旋转2π得到,则f (x )等于A.10-x -1B.10x -1C.1-10-xD.1-10x 解析:所求函数与y =lg (x +1)的反函数的图象关于y 轴对称. 答案:A【例2】 若函数y =ax ax +-11(x ≠-a1,x ∈R )的图象关于直线y =x 对称,求a 的值.解法一:由y =ax ax +-11,解得x =a ay y +-1.故函数y =axax +-11的反函数为y =a ax x +-1.∵函数y =axax+-11的图象关于直线y =x 对称, ∴函数y =ax ax +-11与它的反函数y =a ax x +-1相同.由ax ax+-11=a ax x +-1恒成立,得a =1.解法二:∵点(0,1)在函数y =axax+-11的图象上,且图象关于直线y =x 对称,∴点(0,1)关于直线y =x 的对称点(1,0)也在原函数图象上,代入得a =1.【例3】 函数y =xx12(x ∈(-1,+∞))的图象与其反函数图象的交点坐标为___________________.答案:(0,0),(1,1)。
高三数学反函数、二次函数、幂、指、对数式 知识精讲一、反函数1. 函数y f x =()存在反函数的条件若函数y f x =()有定义域为A ,值域为B ,对于B 中每一个元素y 0,在A 中都有唯一确定的元素x 0与之对应,则函数y f x =()存在反函数,记为y f x =-1(),否则,就不存在反函数。
2. 互为反函数的图像之间的关系 互为反函数的图像关于直线y x =对称由此可得到如下结论:①反函数的定义域是原函数的值域,反函数的值域是原函数的定义域 ②fa b f b a -=⇔=1()()③函数y f x =()与x f y =-1()的图像完全相同。
④互为反函数的两个函数具有相同的单调性和奇偶性。
3. 求y f x =()的反函数的一般步骤 ①确定原函数的值域,也就是反函数的定义域 ②由y f x =()的解析式解出x f y =-1()③将x 、y 对换、得反函数的习惯表达式y f x =-1()并注明定义域二、二次函数1. 二次函数的基本知识(1)定义:形如f x ax bx c a ()()=++20≠的函数叫做二次函数。
(2)图像:二次函数y ax bx c a =++20()≠的图像是以直线x ba=-2为对称轴的抛物线,其开口方向由a 的符号确定,顶点坐标为()--b a ac b a2442,。
(3)性质:二次函数y ax bx c a =++20()≠的单调性是以项点的横坐标x ba=-2分界。
当a >0时,x ba∈-∞-(],,2f x ()单调递减,x b a ∈-+∞[)2,,f x ()单调递增。
当a <0时,x b af x ∈-∞-(](),,2单调递增,x ba f x ∈-+∞[]()2,,单调递减。
2. 二次函数的解析式(1)一般式f x ax bx c a ()()=++20≠; (2)顶点式f x a x k h a ()()()=++20≠; (3)零点式f x a x x x x a ()()()()=--120·≠;求解析式都是用待定系数法。
高三数学反函数试题答案及解析1.已知函数,则.【答案】1【解析】因为,所以因此【考点】反函数2.把函数f(x)的图象向右平移一个单位长度,所得图象恰与函数的反函数图像重合,则f(x)=()A.B.C.D.【答案】D【解析】将函数的图像向右平移一个单位长度变为,函数的反函数是,则有,设,则,所以,即函数.【考点】1.反函数;2.函数图像的平移变换3.在同一平面直角坐标系中,已知函数的图象与的图象关于直线对称,则函数对应的曲线在点()处的切线方程为.【答案】【解析】由题意知,,所求的切线斜率为,所以切线方程为化简即.【考点】互为反函数的函数图象的关系,导数的几何意义,切线方程的求法.4.函数的反函数是.【答案】【解析】对于函数=y,则可知2x-1=2,x= (2+1),互换x,y可知得到的反函数为,故答案为【考点】反函数点评:主要是考查了反函数的解析式的求解,属于基础题。
5.函数的反函数是()A.B.C.D.【答案】B【解析】根据已知函数,函数,由得,所求反函数为,选B。
【考点】反函数点评:主要是考查了反函数的求解,属于基础题。
6.若满足2x+="5," 满足2x+2(x-1)="5," +=A.B.3C.D.4【答案】A【解析】如图示:因为2x+=5,,所以有,可令,则即为两函数图像交点A的横坐标;又因为2x+2(x-1)=5,,可令,则即为此两函数图像交点B的横坐标,则点A、点B关于直线对称,即直线与直线的交点即是点A、点B的中点,所以有中点坐标公式可得,所以,选择A【考点】本题主要考查互为反函数的同底指对数函数图像的对称性。
点评:要求学生具有很好的数学功底与很好的逻辑思维能力,如果可以结合图像,数形结合的解决本题会使得思路更加清晰,处在选择题中应该可以归为难题了。
7.函数为奇函数,是y=f(x)的反函数,若f(3)=0则=_______.【答案】-1【解析】因为函数为奇函数,是y=f(x)的反函数,若f(3)=0则=-18.已知函数f (x)=a x+2-1(a>0,且a≠1)的反函数为.(1)求;(注意:指数为x+2)(2)若在[0,1]上的最大值比最小值大2,求a的值;(3)设函数,求不等式g(x)≤对任意的恒成立的x的取值范围.(x+1)-2(x>-1).(2)或.【答案】(1)=loga(3)满足条件的x的取值范围为.【解析】本题考查反函数,考查函数的最值及其几何意义,考查函数恒成立问题,综合性强,考查化归思想、方程思想、分类讨论思想的综合运用,属于难题(y+1)-2,即可得f-1(x);(1)由y="f" (x)=a x+2-1,求得x=loga(2)对底数a分a>1与0<a<1两类讨论,分别求得其最大值与最小值,利用f-1(x)在[0,1]上的最大值比最小值大2,即可求得a的值;(3)由题意可得转化为不等式x2≤a3+1对任意的恒成立,从而可求得x的取值范围。
【本讲主要内容】反函数的概念,互反函数的关系,反函数的简单应用。
【知识掌握】 【知识点精析】1. 反函数的概念定义方法1:设确定函数)(x f y =,A x ∈,C y ∈的映射f 是从A 到C 的一一映射,则其逆映射1-f:A C →确定的函数记作)(1x fy -=为)(x f y =的反函数。
定义方法2:若对于函数)(x f y =,A x ∈,C y =从中解出)(y x ϕ=,且x 是y 的函数,则记)(1x y -=ϕ(C x ∈)是)(x f y =的反函数。
注:反函数首先是函数,其具有作为函数的独立性,一律是函数集合中的元素,但寻找它们之间的联系,便是)(x f y =与)(1x f y -=称作互反函数的。
2. 互反函数的关系设)(x f y =的反函数是)(1x fy -=(1))(x f y =的定义域和值域分别是函数)(1x f y -=的值域和定义域。
有些时候,通过求)(1x fy -=的定义域寻找)(x f y =的值域。
(2)单调函数必有反函数,但有反函数的函数不一定单调。
(是否有反函数,还应从定义分析)(3)互反函数的图象间关于直线x y =对称;若两个函数图象关于x y =对称,可认为它们是互为反函数的,特别的,一个函数图象本身关于直线x y =对称,可称它为自反函数,即它的反函数即自身。
(4)由于在一个区间内自变量值的顺序与其对应函数值的顺序始终一致,称此函数为增函数,相反称为减函数,故互反函数单调性一致(如果是单调函数,单调性一致)(5)偶函数不可能有反函数,如果一个函数是奇函数,其有反函数则其反函数也必然是奇函数。
(如3x y =的反函数3x y =)【解题方法指导】[例1] 判断下列函数在各自给的区间内是否有反函数。
(1)xy 1=),0()0,(+∞⋃-∞∈x(2)x x y 22-= ),(+∞-∞∈x (3)x y sin = ]23,2[ππ∈x(4)x y ln = ),0(+∞∈x (5)x y -=12 ),(+∞-∞∈x 解:(1)由x y 1=yx y x 100=≠⇒≠⇒,x 是关于y 的函数∴ 有反函数且为其自身(2)11111)1(2+±=⇒+±=-⇒--=y x y x x y此式对于y 在),1(+∞-上任意取值,都有11+±y 两个值与之对应,即x 非y 的函数,故没有反函数。
高考数学必学反函数的性质数学是人类智慧的结晶,高考数学更是考验青年才华的阶梯。
其中,反函数是必须掌握的知识。
反函数的性质是高考数学中重要的一块。
本文将从反函数的定义、性质等方面对此进行解析。
一、反函数的定义反函数,顾名思义,是数学中的一种特殊函数。
它是一种将原有函数的定义域和值域互换并且有映射关系的函数。
换言之,如果一个函数f(x)与另一个函数g(x)满足以下条件,那么g(x)就是f(x)的反函数:1. f(x)是单调函数;2. f(x)的定义域和值域分别为[A,B]和[C,D];3. g(x)与f(x)的定义域和值域互换,也就是说,g(x)的定义域为[C,D],值域为[A,B]。
二、反函数的性质1.反函数性质的定义在反函数的定义中,已经提到了反函数的主要性质:反函数与原函数的定义域和值域互换。
因此,反函数的主要性质可以总结如下:(1)反函数存在的必要条件是原函数必须是一一映射函数;(2)反函数的定义域和值域与原函数的定义域和值域互换;(3)反函数的导函数等于原函数的导函数的倒数,即f'(g(x))=1/g'(x)。
2.反函数的可导性反函数的可导性也是一个非常重要的性质。
通常情况下,如果一个函数是连续函数且可导,那么它的反函数也应该是连续可导的。
但是,这个性质在较少的情况下不成立,因而反函数的可导性需要我们单独来探讨。
举个例子,如果将y=x^3的图形按y=x的直线做对称,产生的函数是y=x^(1/3)。
由于y=x^3是连续可导的函数,在其定义域上一定是单调递增的函数,因此它的反函数y=x^(1/3)也是单调递增的,且在x≠0处也是连续可导的。
但是,在x=0处,y=x^(1/3)的导数不存在。
这就意味着,反函数的可导性不仅仅取决于原函数的可导性,还受到其定义域和取值范围的影响。
三、反函数的应用反函数的应用非常广泛。
例如,在统计学中,反函数可以用来研究概率分布,因为大多数的概率分布函数具有单调性。
反函数基本公式大全反函数是指对于一个函数f(x),如果存在另一个函数g(x),使得f(g(x)) = x,且g(f(x)) = x成立,那么g(x)就是f(x)的反函数。
在数学中,反函数是一个非常重要的概念,它在解方程、求导、积分等数学问题中都有着重要的应用。
因此,了解反函数的基本公式是十分必要的。
1. 一次函数的反函数。
对于一次函数y = kx + b,它的反函数可以通过以下公式来求解:x = ky + b。
y = (x b) / k。
其中k为一次函数的斜率,b为截距。
通过这个公式,我们可以很容易地求出一次函数的反函数。
2. 二次函数的反函数。
对于二次函数y = ax^2 + bx + c,它的反函数的求解就稍微复杂一些。
我们可以通过以下步骤来求解二次函数的反函数:首先,将y = ax^2 + bx + c中的y替换为x,然后解出关于x的二次方程;接着,将得到的解中的x和y互换位置,得到的表达式就是二次函数的反函数。
3. 对数函数的反函数。
对数函数y = loga(x)的反函数是指数函数y = a^x。
其中,a为对数函数的底数。
这两个函数是互为反函数的关系,它们的图像关于y=x对称。
4. 指数函数的反函数。
指数函数y = a^x的反函数是对数函数y = loga(x)。
同样地,这两个函数也是互为反函数的关系,它们的图像关于y=x对称。
5. 三角函数的反函数。
对于三角函数y = sin(x)、y = cos(x)、y = tan(x)等,它们的反函数分别是反正弦函数y = arcsin(x)、反余弦函数y = arccos(x)、反正切函数y = arctan(x)等。
这些反函数在三角函数的求解中具有重要的作用。
6. 复合函数的反函数。
对于复合函数f(g(x)),它的反函数可以通过以下公式来求解:g(f(x)) = x。
f(g(x)) = x。
通过这些公式,我们可以求解复合函数的反函数,从而在数学问题中得到更加简洁的表达式。
八、反函数一、 反函数的定义1、 传统定义:设有函数M x f(x)y ∈=,,其值域为N ,若由y=f(x)解出x=g(y)且对于任意的N y ∈,通过x=g(y)都有唯一的M x ∈和它相对应,则把函数x=g(y),N y ∈叫作函数M x f(x)y ∈=,的反函数。
一般记作N.x (x),f y -1∈=2、 现代定义:如果给的定函数的对应法则f 是定义域M 到值域N 上的一一映射,那么由其逆映射 -1f 所确定的函数N y (y),f x -1∈=叫做函数M x f(x)y ∈=,的反函数。
一般记作N.x (x),f y -1∈=3、 反函数的本质:y=f(x)与x=g(y)是两个集合M 、N 的元素x 、y 之间的一一对应关系的两种表现形式,可以统一为一个二元方程F(x 、y)=0。
二、反函数的求法:根据定义可以按以下步骤得到函数M x f(x)y ∈=,的反函数。
1、 反解———求出反函数的对应法则 -1f 。
得(y)f x -1=2、 交换———把x 、y 的位置互换。
得(x)f y -1=3、 求出函数M x f(x)y ∈=,的值域N ,即为反函数的定义域。
得到函数M x f(x)y ∈=,的反函数:N.x (x),f y -1∈=。
(三个步骤的先后次序可以交换)三、 互为反函数的两个函数的关系1、 定义域和值域互反;2、 对应法则互逆;3、 在同一坐标系中,M x f(x)y ∈=,的图象与N y (y),f x -1∈=的图像是同一图像;M x f(x)y ∈=,的图象与N.x (x),f y -1∈=的图像关于直线y=x 对称。
四、 一些值得思考的问题1、 什么样的函数才有反函数(1) 充分条件:定义域内的单调函数必有反函数。
(2) 图象特点:平行于x 轴的直线与函数的图像最多只有一个交点。
2、 有反函数的函数是否一定是单调函数?不一定。
例如: ⎩⎨⎧<≤<≤+=1)x (0 x 0)x (-1 1x -y 不是单调函数,但有反函数⎩⎨⎧≤<<≤=2)x (1x-11)x (0 x y 3、 反函数的单调性:与原函数相同。