[高中数学]10B-3-学生-对数函数反函数
- 格式:doc
- 大小:295.50 KB
- 文档页数:8
高一数学中的反函数与对数函数有何特性在高一数学的学习中,反函数与对数函数是两个重要的概念,它们具有独特的特性和应用。
理解这些特性对于我们掌握数学知识、解决数学问题以及培养数学思维都具有重要意义。
首先,让我们来了解一下反函数。
反函数是指对于一个给定的函数,如果把它的自变量和因变量互换,所得到的新函数就是原函数的反函数。
通俗地说,如果函数 f(x) 把 x映射到 y,那么它的反函数就把 y 映射回 x。
反函数存在的条件是原函数必须是一一映射。
也就是说,对于原函数定义域内的每一个 x 值,都有唯一的 y 值与之对应;反过来,对于值域内的每一个 y 值,也都有唯一的 x 值与之对应。
以最简单的一次函数 y = 2x 为例,它是一个一一映射的函数。
我们将 x 和 y 互换,得到 x = 05y,然后将 y 写成自变量的形式,即 y =05x,这就是原函数的反函数。
反函数的图像与原函数的图像关于直线 y = x 对称。
这是反函数的一个重要特性。
通过这个特性,我们可以通过研究原函数的图像来了解反函数的图像特征,反之亦然。
反函数的性质还体现在其定义域和值域上。
原函数的定义域是其反函数的值域,原函数的值域是其反函数的定义域。
接下来,我们再看看对数函数。
对数函数是以对数形式表示的函数,常见的有以自然常数 e 为底的自然对数函数(ln x)和以 10 为底的常用对数函数(log₁₀ x)。
对数函数的定义是:如果 a 的 b 次幂等于 N(a>0,且a≠1),那么数 b 叫做以 a 为底 N 的对数,记作logₐ N = b。
对数函数的定义域是(0,+∞),因为对数中的真数必须大于 0。
对数函数具有一些重要的性质。
首先,当底数 a>1 时,函数单调递增;当 0<a<1 时,函数单调递减。
例如,对于函数 y = log₂ x,因为底数 2>1,所以它在定义域内是单调递增的。
而对于函数 y = log₀5 x,由于底数 05<1,所以它在定义域内是单调递减的。
反函数
1.反函数
【知识点归纳】
【定义】一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y 把x 表示出,得到x
=g(y).若对于y 在中的任何一个值,通过x=g(y),x 在A 中都有唯一的值和它对应,那么,x=g(y)就表
示y 是自变量,x 是因变量是y 的函数,这样的函数y=g(x)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记
作y=f(﹣1)(x)反函数y=f(﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.
【性质】
反函数其实就是y=f(x)中,x 和y 互换了角色
(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x 对称;函数及其反函数的图形关于直线y=x 对称
(2)函数存在反函数的重要条件是,函数的定义域与值域是一一映射;
(3)一个函数与它的反函数在相应区间上单调性一致;
(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C (其中C 是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ).奇函数不一定存在反函数,被与y 轴垂直的直线
截时能过 2 个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.
(5)一切隐函数具有反函数;
(6)一段连续的函数的单调性在对应区间内具有一致性;
(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】;
(8)反函数是相互的且具有唯一性;
(9)定义域、值域相反对应法则互逆(三反);
(10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)).
1/ 1。
函数一、函数:1.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个数x ,在集合B 中都有唯一确定的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为A x x f y ∈=),( (2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(称为函数)(x f y =的值域。
(2)函数的三要素:定义域、值域和对应法则 2.映射的概念设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为B A f →:重、难点突破重点:掌握映射的概念、函数的概念,会求函数的定义域、值域 难点:求函数的值域和求抽象函数的定义域 重难点:1.关于抽象函数的定义域求抽象函数的定义域,如果没有弄清所给函数之间的关系,求解容易出错误 问题1:已知函数)(x f y =的定义域为][b a ,,求)2(+=x f y 的定义域 问题2:已知)2(+=x f y 的定义域是][b a ,,求函数)(x f y =的定义1. 求值域的几种常用方法〔1〕配方法:对于〔可化为〕“二次函数型”的函数常用配方法,如求函数4cos 2sin 2+--=x x y ,可变为2)1(cos 4cos 2sin 22+-=+--=x x x y 解决〔2〕基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数)32(log 221++-=x x y 就是利用函数u y 21log =和322++-=x x u 的值域来求。
〔3〕判别式法:通过对二次方程的实根的判别求值域。
如求函数22122+-+=x x x y 的值域 由22122+-+=x x x y 得012)1(22=-++-y x y yx ,假设0=y ,则得21-=x ,所以0=y 是函数值域中的一个值;假设0≠y ,则由0)12(4)]1(2[2≥--+-=∆y y y 得021332133≠+≤≤-y y 且,故所求值域是]2133,2133[+- 〔4〕别离常数法:常用来求“分式型”函数的值域。
一、对数1、对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .易得:log a N a N =——对数恒等式,自然对数:以e 为底的对数成为自然对然,记作ln,常用对数:以10为底的对数,记作lg 。
实际上指数与对数只是数量间的同一关系的两种不同形式. 2、指数式与对数式的关系:a b =N ⇔log a N =b (a >0,a ≠1,N >0). 要能灵活运用这个关系,能随时将二者互化。
3、对数运算性质:①log a (MN )=log a M +log a N . ②log aNM=log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④log m na M =nmlog a M .(M >0,N >0,a >0,a ≠1) ⑤换底公式:log b N =bNa a log log (0<a ≠1,0<b ≠1,N >0).二、反函数1、反函数定义一般地,对于函数y=f(x),设它的定义域为D ,值域为A ,如果对A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应,使y=f(x),这样得到的x=()1fy -。
在习惯上,自变量用x 表示,而函数用y 表示,所以把它改写为()1y f x -=()x A ∈2、关于反函数的结论(1)关于反函数的定义域与值域分别是其原函数的值域和定义域, (2)互为反函数的两个函数y=f(x)与()1y f x -=图像关于直线y=x 对称;若点M (a ,b )在y=f(x)的图像上,则点'M (b,a)必在()1y fx -=图像上;(3)一般地,偶函数不存在反函数(y=c,{}0x ∈除外,其中c 为常数),奇函数不一定有反函数,若有反函数,则反函数也是奇函数;(4)原函数与其反函数的单调性相同,但单调区间不一定相同,单调函数必有反函数,有反函数的函数不一定是单调的,比如1y x=; 对数、反函数知识梳理(5)y=f(x)与()1y fx -=互为反函数,设f(x)定义域为D ,值域为A ,则有f[()1fx -]=x ()x A ∈,()()1f f x x x D -=∈⎡⎤⎣⎦;(6)如果函数y=f(x)的图像关于直线y=x 对称,那么它存在反函数,并且其反函数就是它本身;(7)反函数存在条件:函数的定义域与值域之间的对应关系一一对应; (8)x=f(y), ()1y f x -=,()1x f y -=与函数y=f(x)的比较;(9)y=f(x)与()1y fx -=图像若有公共点,并非一定在y=x 上,例如:f(x)=116x⎛⎫ ⎪⎝⎭与()1116log f x x -⎛⎫ ⎪⎝⎭=有两个公共点(1/2,1/4)与(1/4,1/2)关于y=x 对称3、求反函数的步骤(1)求反函数y=(x)的值域(若值域显然,解题时常略去不写);(2)反解:由y=(x)解出()1x f y -=;(3)改写:在()1x fy -=中,将x,y 互换得到()1y f x -=;(4)标明反函数的定义域,即(1)中求出的值域。
2.2.3 对数函数的图象和性质第1课时反函数及对数函数的图象和性质[学习目标] 1.理解对数函数的概念.2.初步掌握对数函数的图象及性质.3.会类比指数函数,研究对数函数的性质.[知识]1.作函数图象的步骤为列表、描点、连线.另外也可以采取图象变换法.2.指数函数y=a x(a>0且a≠1)的图象与性质.a>10<a<1 图象定义域R值域(0,+∞)性质过定点过点(0,1),即x=0时,y=1函数值的变化当x>0时,y>1;当x<0时,0<y<1当x>0时,0<y<1;当x<0时,y>1 单调性是R上的增函数是R上的减函数[预习导引]1.对数函数的概念把函数y=log a x(x>0,a>0,a≠1)叫作(以a为底的)对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象与性质a>10<a<1 图象性质定义域(0,+∞)值域R过点过点(1,0),即x=1时,y=0函数值的变化当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0单调性是(0,+∞)上的增函数是(0,+∞)上的减函数3.反函数(1)对数函数y=log a x(a>0且a≠1)与指数函数y=a x(a>0,且a≠1)互为反函数.(2)要寻找函数y=f(x)的反函数,可以先把x和y换位,写成x=f(y),再把y解出来,表示成y=g(x)的形式,如果这种形式是唯一确定的,就得到f(x)的反函数g(x).要点一对数函数的概念例1 指出下列函数哪些是对数函数?(1)y=3log2x;(2)y=log6x;(3)y=log x3;(4)y=log2x+1.解(1)log2x的系数是3,不是1,不是对数函数.(2)符合对数函数的结构形式,是对数函数.(3)自变量在底数位置上,不是对数函数.(4)对数式log2x后又加1,不是对数函数.规律方法判断一个函数是对数函数必须是形如y=log a x(a>0且a≠1)的形式,即必须满足以下条件(1)系数为1.(2)底数为大于0且不等于1的常数.(3)对数的真数仅有自变量x.跟踪演练1 若某对数函数的图象过点(4,2),则该对数函数的解析式为( )A.y=log2x B.y=2log4xC.y=log2x或y=2log4x D.不确定答案 A解析设对数函数的解析式为y=log a x(a>0且a≠1),由题意可知log a4=2,∴a2=4,∴a =2,∴该对数函数的解析式为y=log2x.要点二对数函数的图象例2 如图所示,曲线是对数函数y =log a x 的图象,已知a 取3,43,35、110,则相应于c 1、c 2、c 3、c 4的a 值依次为( )A.3、43、35、110B.3、43、110、35C.43、3、35、110D.43、3、110、35 答案 A解析 方法一 先排c 1、c 2底的顺序,底都大于1,当x >1时图低的底大,c 1、c 2对应的a 分别为3、43.然后考虑c 3、c 4底的顺序,底都小于1,当x <1时底大的图高,c 3、c 4对应的a 分别为35、110.综合以上分析,可得c 1、c 2、c 3、c 4的a 值依次为3、43、35、110.故选A.方法二 作直线y =1与四条曲线交于四点,由y =log a x =1,得x =a (即交点的横坐标等于底数),所以横坐标小的底数小,所以c 1、c 2、c 3、c 4对应的a 值分别为3、43、35、110,故选A.规律方法 函数y =log a x (a >0且a ≠1)的底数变化对图象位置的影响.观察图象,注意变化规律:(1)上下比较:在直线x =1的右侧,a >1时,a 越大,图象向右越靠近x 轴,0<a <1时a越小,图象向右越靠近x 轴.(2)左右比较:比较图象与y =1的交点,交点的横坐标越大,对应的对数函数的底数越大. 跟踪演练2 (1)函数y =log a (x +2)+1的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1) D .(-1,1)(2)如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1 答案 (1)D (2)B解析 (1)令x +2=1,即x =-1, 得y =log a 1+1=1,故函数y =log a (x +2)+1的图象过定点(-1,1).(2)作直线y =1,则直线与C 1,C 2的交点的横坐标分别为a ,b ,易知0<b <a <1. 要点三 对数函数的定义域例3 (1)函数f (x )=11-x +lg(1+x )的定义域是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞) D.(-∞,+∞) (2)若f (x )=121log (21)x +,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎭⎪⎫-12,+∞ C.⎝ ⎛⎭⎪⎫-12,0∪(0,+∞) D.⎝ ⎛⎭⎪⎫-12,2 答案 (1)C (2)C解析 (1)由题意知⎩⎪⎨⎪⎧1+x >0,1-x ≠0,解得x >-1且x ≠1.(2)由题意有⎩⎪⎨⎪⎧2x +1>0,2x +1≠1,解得x >-12且x ≠0.规律方法 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性地解不等式. 跟踪演练3 (1)函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1] (2)函数y =lgx +1x -1的定义域是( )A .(-1,+∞) B.[-1,+∞)C .(-1,1)∪(1,+∞) D.[-1,1)∪(1,+∞) 答案 (1)B (2)C解析 (1)因为y =x ln(1-x ),所以⎩⎪⎨⎪⎧x ≥0,1-x >0,解得0≤x <1.(2)要使函数有意义,需⎩⎪⎨⎪⎧x +1>0,x -1≠0,解得x >-1且x ≠1,故函数的定义域为(-1,1)∪(1,+∞),故选C. 要点四 反函数例4 求下列函数的反函数:(1)y =2x -5;(2)y =x1-x ;(3)y =1+e 2x . 解 (1)从x =2y -5中解得y =x +52,即为所求;(2)从x =y 1-y 中解得y =xx +1,即为所求;(3)从x =1+e 2y 移项得x -1=e 2y .两端取自然对数得到ln(x -1)=y2,解得y =2ln(x -1),即为所求.规律方法 要找寻函数y =f (x )的反函数,可以先把x 和y 换位,写成x =f (y ),再把y 解出来,表示成y =g (x )的形式.如果这种形式是唯一确定的,就得到了f (x )的反函数g (x ).既然y =g (x )是从x =f (y )解出来的,必有f (g (x ))=x ,这个等式也可以作为反函数的定义. 跟踪演练4 y =ln x 的反函数是________. 答案 y =e x解析 由y =ln x ,得x =e y ,所以反函数为y =e x.1.下列函数是对数函数的是( ) A .y =log a (2x ) B .y =log 22xC .y =log 2x +1D .y =lg x 答案 D解析 选项A 、B 、C 中的函数都不具有“y =log a x (a >0且a ≠1)”的形式,只有D 选项符合. 2.函数f (x )=11-x +lg(3x +1)的定义域是( )A .(-13,+∞) B.(-∞,-13)C .(-13,13)D .(-13,1)答案 D解析 由⎩⎪⎨⎪⎧1-x >0,3x +1>0,可得-13<x <1.3.函数y =a x与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象形状可能是( )答案 A解析 函数y =-log a x 恒过定点(1,0),排除B 项; 当a >1时,y =a x是增函数,y =-log a x 是减函数,排除C 项,当0<a <1时,y =a x是减函数,y =-log a x 是增函数,排除D 项,A 项正确.4.若a >0且a ≠1,则函数y =log a (x -1)+1的图象恒过定点________. 答案 (2,1)解析 函数图象过定点,则与a 无关, 故log a (x -1)=0,所以x -1=1,x =2,y =1, 所以y =log a (x -1)+1过定点(2,1). 5.函数y =lg x 的反函数是________. 答案 y =10x解析 由反函数的定义知x =10y,故反函数为y =10x.1.判断一个函数是不是对数函数关键是分析所给函数是否具有y =log a x (a >0且a ≠1)这种形式.2.在对数函数y =log a x 中,底数a 对其图象直接产生影响,学会以分类的观点认识和掌握对数函数的图象和性质.3.涉及对数函数定义域的问题,常从真数和底数两个角度分析.一、基础达标1.函数y =log a x 的图象如图所示,则a 的值可以是( )A .0.5B .2C .eD .π 答案 A解析 ∵函数y =log a x 的图象单调递减,∴0<a <1,只有选项A 符合题意. 2.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 答案 A解析 由⎩⎪⎨⎪⎧x -1>0,4-x ≥0,解得1<x ≤4.3.在同一坐标系中,函数y =log 3x 与y =13log x 的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称 答案 B解析 ∵y =13log x =-log 3x ,∴函数y =log 3x 与y =13log x 的图象关于x 轴对称.4.如图是三个对数函数的图象,则a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b 答案 D解析 y =log a x 的图象在(0,+∞)上是上升的,所以底数a >1,函数y =log b x ,y =log c x 的图象在(0,+∞)上都是下降的,因此b ,c ∈(0,1),又易知c >b ,故a >c >b .5.已知函数f (x )=⎩⎪⎨⎪⎧3x, x ≤0,log 2x ,x >0,那么f (f (18))的值为( )A .27 B.127C .-27 D .-127答案 B解析 f (18)=log 218=log 22-3=-3,f (f (18))=f (-3)=3-3=127.6.已知对数函数f (x )的图象过点(8,-3),则f (22)=________. 答案 -32解析 设f (x )=log a x (a >0,且a ≠1), 则-3=log a 8,∴a =12.∴f (x )=log 12x ,f (22)=log 12(22)=-log 2(22)=-32.7.求下列函数的定义域: (1)f (x )=lg(x -2)+1x -3; (2)f (x )=log (x +1)(16-4x ).解 (1)要使函数有意义,需满足⎩⎪⎨⎪⎧x -2>0,x -3≠0,解之得x >2且x ≠3.∴函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足⎩⎪⎨⎪⎧16-4x >0,x +1>0,x +1≠1,解之得-1<x <0或0<x <4. ∴函数定义域为(-1,0)∪(0,4). 二、能力提升8.设函数f (x )=log 2x 的反函数为y =g (x ),且g (a )=14,则a 等于( )A .2B .-2 C.12 D .-12答案 B解析 ∵函数f (x )=log 2x 的反函数为y =2x,即g (x )=2x. 又∵g (a )=14,∴2a=14,∴a =-2.9.若函数f (x )=log a (x +b )的图象如图,其中a ,b 为常数,则函数g (x )=a x+b 的图象大致是( )答案 D解析 由函数f (x )=log a (x +b )的图象可知,函数f (x )=log a (x +b )在(-b ,+∞)上是减函数.所以0<a <1且0<b <1.所以g (x )=a x+b 在R 上是减函数,故排除A ,B.由g (x )的值域为(b ,+∞).所以g (x )=a x+b 的图象应在直线y =b 的上方,故排除C. 10.若log 2a 1+a21+a<0,则a 的取值X 围是____________.答案 ⎝ ⎛⎭⎪⎫12,1解析 当2a >1时,∵log 2a 1+a21+a <0=log 2a 1,∴1+a 21+a <1.∵1+a >0,∴1+a 2<1+a , ∴a 2-a <0,∴0<a <1,∴12<a <1.当0<2a <1时,∵log 2a 1+a21+a <0=log 2a 1,∴1+a 21+a >1.∵1+a >0,∴1+a 2>1+a , ∴a 2-a >0,∴a <0或a >1,此时不合题意.综上所述,a ∈⎝ ⎛⎭⎪⎫12,1. 11.已知f (x )=log 3x . (1)作出这个函数的图象;(2)若f (a )<f (2),利用图象求a 的取值X 围. 解 (1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2.由图象知:函数f (x )为单调增函数,当0<a <2时,恒有f (a )<f (2).∴所求a 的取值X 围为(0,2). 三、探究与创新12.求y =(log 12x )2-12log 12x +5在区间[2,4]上的最大值和最小值.解 因为2≤x ≤4,所以log 122≥log 12x ≥log 124,即-1≥log 12x ≥-2.设t =log 12x ,则-2≤t ≤-1,所以y =t 2-12t +5,其图象的对称轴为直线t =14,所以当t =-2时,y max =10;当t =-1时,y min =132.13.若函数f (x )为定义在R 上的奇函数,且x ∈(0,+∞)时,f (x )=lg(x +1),求f (x )的word 11 / 11 表达式,并画出大致图象.解 ∵f (x )为R 上的奇函数,∴f (0)=0. 又当x ∈(-∞,0)时,-x ∈(0,+∞), ∴f (-x )=lg(1-x ).又f (-x )=-f (x ),∴f (x )=-lg(1-x ),∴f (x )的解析式为f (x )=⎩⎪⎨⎪⎧lg x +1,x >0,0,x =0,-lg 1-x ,x <0,∴f (x )的大致图象如图所示:。
反函数与对数函数【知识梳理】1. 反函数的概念设函数()y f x =的定义域为D, 值域为A, 若对于A 中的每一个确定的y , 都有唯一确定的D 中的x 与之对应, 则由这一对应法则得到的函数称为()y f x =的反函数; 记作1()x f y -=. 习惯上仍记作1()y f x -=.2. 函数存在反函数的判定(整体性质)(1) 对应法则f 是一个一一对应;(2) 函数的图像满足水平线法则(用于否定);(3) 反函数定理. 若一个函数在其定义域内单调, 则其必存在反函数, 且其反函数的单调性与其一致.3. 函数与反函数间的关系(1) 函数的定义域是反函数的值域; 函数的值域是反函数的定义域;(2) 对应法则满足:1(())(A)f f x x x -=∈, 1(())(D)f f x x x -=∈;(3) 它们的图像关于直线y x =对称;(4) 性质(3)具体到点上: 若一个函数()y f x =过点(,)a b , 则其反函数必过点(,)b a .4. 求一个函数的反函数(1) 遵循以下步骤: ①求出原函数的值域; ②用y 表示x , 有分歧找定义域; ③x , y 互换, 写上定义域;(2) 分段函数求反函数应当分段求值域, 分段求解析式, 最后仍表示成分段的形式.5. 对数函数及其性质形如log (0,1)a y x a a =>≠的函数称为对数函数. 对数函数具有如下性质:(1) 对数函数log (0,1)a y x a a =>≠与指数函数(0,1)x y a a a =>≠互为反函数;(2) 对数函数的定义域是(0,)+∞, 值域是R;(3) 对数函数非奇非偶;(4) 对数函数过定点(1,0), 这是函数值正负的分界点;(5) 对数函数当1a >时, 是单调递增的; 当01a <<时, 是单调递减的.【典型例题】例1. 判断下列命题的真假, 并说明理由.(1) 若函数()y f x =的图像与y a =有两个交点, 则此函数不存在反函数;(2) 一个函数的反函数可能是其本身;(3) 若一个函数的图像和它反函数的图像有公共点, 则公共点必在一三象限角平分线上;(4) 反函数与原函数具有相同的奇偶性.例2. 求下列函数的反函数.(1)221(0)y x x x =--≤;(2)y =;(3)12log (1)1(1)y x x =-+<;(4)1()(0,1,0)2x x y a a a a x -=+>≠≥.例3. 求函数2 1 1() 1 1x x f x x x ⎧+≤-=⎨-+>-⎩的反函数.例4. 已知函数3(0)3x x f x x +⎛⎫=≠ ⎪⎝⎭, 求13x f -⎛⎫⎪⎝⎭.例5. 函数与反函数的图像(1) 若函数1()y f x -=是函数()y f x =的反函数, 且函数1()y f x -=过定点(1,0), 则函数1(1)2f x -的反函数图像一定过点___________;(2) 23()1x f x x +=-, 函数()y g x =的图像与1(1)y f x -=+的图像关于y x =对称, 求(11)g 的值.例6. 解下列不等式 (1)22151311()()22x x x --+>; (2)20.50.5log (215)log (13)x x x -->+.例7. 已知函数()21x f x =-有反函数1()f x -, 4()log (31)g x x =+;(1) 若1()()f x g x -≤, 求x 的取值范围D ;(2) 设函数11()()()2H x g x f x -=-, 当x D ∈时, 求函数()H x 的值域.【巩固练习】1. 函数1()4(0,1)x f x a a a -=+>≠的反函数的图像经过的定点的坐标是……………...............................( )A. (1,4)B. (1,5)C. (5,1)D.(4,1)2. 设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1), 反函数的图像过点(2,8), 则a b +的值为...( )A. 3B. 4C. 5D.63. 函数ln 1(0)y x x =+>的反函数为…….…………………………………………………..........................( )A. 1(R)x y e x +=∈B. 1(R)x y e x -=∈C. 1(1)x y e x +=>D. 1(1)x y e x -=>4. 设3()|log |f x x =, 若()(3.5)f x f >, 则x 的取值范围是………………………………...........................( ) A. 27(0,)(1,)72⋃ B. 7(,)2+∞ C. 27(0,)(,)72⋃+∞ D. 27(,)725. 函数1()ln 1x f x x+=-的定义域是 ; 6. 函数20.3()log (32)f x x x =-+的单调区间是 ;7. 若函数2()412([,))f x x x x a =+-∈+∞存在反函数, 则实数a 的取值范围是 ;8. 已知函数5()2x f x x m-=+的图像关于直线y x =对称, 则m 的值是___________; 9. 已知函数1()(0,1)x f x a b b b -=+>≠的图像经过点(1,3), 函数1()(0)f x a x -+>的图像经过(4,2), 试求函数1()f x -的表达式.10. 是否存在实数a , 使得2()log ()a f x ax x =-在区间[2,4]上是增函数? 若存在, 求出a 的值(或范围); 若不存在, 说明理由.。
高一对数函数知识点梳理对数函数是高中数学中的一个重要概念,对数函数既是指数函数的逆运算,也是一种特殊的函数类型。
在高一阶段,对数函数是数学课程中的重点,它的概念和性质需要我们掌握清楚。
本文将对高一对数函数的知识点进行梳理和总结,以帮助大家更好地理解和应用。
一、对数函数的定义和性质1. 对数函数的定义:对于任意的正实数a和正实数x,以a为底的对数函数定义为:y=logₐx,其中a>0且a≠1,x>0。
其中a称为底数,x称为真数,y称为对数。
对数函数是解指数方程的重要工具,可以帮助我们求解各种数学问题。
2. 对数函数的性质:(1)对数函数的定义域为正实数集(0,+∞)(2)对数函数的值域为实数集(-∞,+∞)(3)对数函数的图像在x轴的正半轴上是递增的(4)对数函数的图像在x=a处有唯一的切线,且斜率为1/a (5)对数函数y=logₐx的反函数是指数函数y=aˣ二、对数函数的基本公式1. 对数的运算法则:(1)对数乘法公式:logₐ(mn) = logₐm + logₐn(2)对数除法公式:logₐ(m/n) = logₐm - logₐn(3)对数乘方公式:logₐ(m^p) = p × logₐm2. 常用对数:以10为底的对数,记作logx=log₁₀x,简写为lgx。
常用对数可以简化对数运算和计算,是数学和科学中经常使用的一种对数形式。
3. 自然对数:以自然常数e为底的对数,记作lnx。
自然对数在微积分和概率论中应用广泛,它具有特殊的性质和应用价值。
三、对数函数的图像和性质1. 对数函数的图像特点:(1)以正实数a为底的对数函数y=logₐx的图像在x轴的正半轴上递增。
当x=1时,y=0;当x>1时,y>0;当0<x<1时,y<0。
(2)对数函数的图像在x=a处有一个特殊点A(a,1),该点为对数函数图像的对称轴的交点。
(3)因为对数函数是单调递增的,所以它在定义域内的任意两点A(x₁,y₁)、B(x₂,y₂),若x₁<x₂,则y₁<y₂。